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Abstract. CRUD operations, along with range queries make a highly
useful abstract data type (ADT), employed by many dynamic analytics
tasks. Despite its wide applications, to our knowledge, no fully wait-free
data structure is known to support this ADT. In this paper, we intro-
duce Uruv, a proactive linearizable and practical wait-free concurrent
data structure that implements the ADT mentioned above. Structurally,
Uruv installs a balanced search index on the nodes of a linked list. Uruv
is the first wait-free and proactive solution for concurrent B+tree. Ex-
periments show that Uruv significantly outperforms previously proposed
lock-free B+trees for dictionary operations and a recently proposed lock-
free method to implement the ADT mentioned above.
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1 Introduction

With the growing size of main memory, the in-memory big-data analytics engines
are becoming increasingly popular [25]. Often the analytics tasks are based on
retrieving keys from a dataset specified by a given range. Additionally, such
applications are deployed in a streaming setting, e.g., Flurry [12], where the
dataset ingests real-time updates. Ensuring progress to every update would be
attractive for many applications in this setting, such as financial analytics [21].
The demand for real-time high-valued analytics, the powerful multicore CPUs,
and the availability of large main memory together motivate designing scalable
concurrent data structures to utilize parallel resources efficiently.

It is an ever desirable goal to achieve maximum progress of the concurrent
operations on a data structure. The maximum progress guarantee – called wait-
freedom [14] – ensures that each concurrent non-faulty thread completes its op-
eration in a finite number of steps. Traditionally, wait-freedom has been known
for its high implementation cost and subsided performance. Concomitantly, a
weaker guarantee that some non-faulty threads will finitely complete their oper-
ations – known as lock-freedom – has been a more popular approach. However,
it has been found that the lock-free data structures can be transformed to prac-
tical wait-free [16] ones with some additional implementation and performance
overhead. Progress promises of wait-free data structures make their development
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imperative, to which a practical approach is to co-design them with their effi-
cient lock-free counterpart. While a progress guarantee is desirable, consistency
of concurrent operations is a necessity. The most popular consistency framework
is linearizability [15], i.e., every concurrent operation emerges taking effect at an
atomic step between its invocation and return.

In the existing literature, the lock-free data structures such as k-ary search
trees [7], and the lock-based key-value map KiWi [3] provide range search. In
addition, several generic methods of concurrent range search have been pro-
posed. Chatterjee [9] presented a lock-free range search algorithm for lock-free
linked-lists, skip-lists, and binary search trees. Arbel-Raviv and Brown [1] pro-
posed a more generic approach associated with memory reclamation that fits
into different concurrency paradigms, including lock-based and software transac-
tional memory-based data structures. Recently, two more approaches – bundled-
reference [19] and constant time snapshots [24] – were proposed along the same
lines of generic design. Both these works derive from similar ideas of expand-
ing the data structure with versioned updates to ensure linearizability of scans.
While the former stores pointers with time-stamped updates, the latter adds
objects to nodes time-stamped by every new range search. Moreover, bundled-
reference [19] design requires locks in every node.

In most cases, for example [3,9,19,24], the range scans are unobstructed even
if a concurrent modification (addition, deletion, or update) to the data structure
starves to take even the first atomic step over a shared node or pointer. A
reader would perceive, indeed for good reasons, that once the modifications are
made wait-free the entire data structure will become wait-free. However, to our
knowledge, none of these works actually investigates how trivial or non-trivial
it would be to arrive at the final implementation of concurrent wait-free CRUD
and range-search. This is exactly where our work contributes.

Proposed wait-free linearizable proactive data structure

In principle, Uruv’s design derives from that of a B+Tree [10], a self-balancing
data structure. However, we need to make the following considerations:

Wait-freedom: Firstly, to ensure wait-freedom to an operation that needs to
perform at least one CAS execution on a shared-memory word, it must announce
its invocation [16]. Even if delayed, the announcement has to happen on realizing
that the first CAS was attempted a sufficient number of times, and yet it starved
[16]. The announcement of invocation is then followed by a guaranteed help by
a concurrent operation at some finite point [16].

Linearizability: Now, to ensure linearizability of a scan requires that its out-
put reflects the relevant changes made by every update during its lifetime. The
technique of repeated multi-scan followed by validation [7], and collecting the
updates at an augmented object, such as RangeCollector in [9], to let the range
search incorporate them before it returns, have been found scaling poorly [7,9].
Differently, multi-versioning of objects, for example [19], can have a (theoreti-
cal) possibility to stockpile an infinite number of versioned pointers between two
nodes. Interestingly, [1] exploits the memory reclamation mechanism to synchro-
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nize the range scans with delete operations via logically deleted nodes. However,
for lock-freedom, they use a composite primitive double-compare-single-swap
(DCSS). In comparison, [24] uses only single-word CAS. However, managing the
announcement by a starving updater that performs the first CAS to introduce a
versioned node to the data structure requires care for a wait-free design.

Node Structure: The “fat” (array-based) data nodes, for example Kiwi [3],
improve traversal performance by memory contiguity [17]. However, the bench-
marks in [24] indicate that it does not necessarily help as the number of con-
current updates picks up. Similarly, the lock-free B+trees by Braginsky and
Petrank [5] used memory chunks, and our experiments show that their method
substantially underperforms. Notwithstanding, it is wise to exploit memory con-
tiguity wherever there could be a scope of “slow” updates in a concurrent setting.

Proactive maintenance: Finally, if the number of keys in a node exceeds (falls
short of) its maximum (minimum) threshold after an insertion (deletion), it re-
quires splitting (merging). The operation splitting the node divides it into two
while adding a key to its parent node. It is possible that the split can percolate
to the root of the data structure if the successive parent nodes reach their respec-
tive thresholds. Similarly, merging children nodes can cause cascading merges of
successive parent nodes. With concurrency, it becomes extremely costly to tackle
such cascaded split or merge of nodes from a leaf to the root. An alternative to
this is a proactive approach which checks threshold of nodes whiles traversing
down a tree every time; if a node is found to have reached its threshold, without
waiting for its children, a pre-emptive split or merge is performed. As a result,
a restructure remains localized. To our knowledge, no existing concurrent tree
structure employs this proactive strategy.

With these considerations, we introduce a key-value store Uruv (or, Uru-
vriksha c) for wait-free updates and range search. More specifically,

(a) Uruv stores keys with associated values in leaf nodes structured as linked-list.
The interconnected leaf nodes are indexed by a balanced tree of fat nodes,
essentially, a classical B+ Tree [10], to facilitate fast key queries. (Section 2)

(b) The key-nodes are augmented with list of versioned nodes to facilitate range
scans synchronize with updates. (Section 3)

(c) Uruv uses single-word CAS primitives. Following the fast-path-slow-path tech-
nique of Kogan and Petrank [16], we optimize the helping procedure for wait-
freedom. (Section 4). We prove linearizability and wait-freedom and present
the upper bound of step complexity of operations. (Section 5)

(d) Our C++ implementation of Uruv significantly outperforms existing similar
approaches – lock-free B+tree of [5], and OpenBWTree [23] for dictionary
operations. It also outperforms a recently proposed method by Wei et al. [24]
for concurrent workloads involving range search. (Section 6)

A full version of the paper is available at http://arxiv.org/abs/2307.

14744 [4]. Please refer to the full version for detailed pseudocode.

c Uruvriksha is the Sanskrit word for a wide tree.

http://arxiv.org/abs/2307.14744
http://arxiv.org/abs/2307.14744
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2 Preliminaries

We consider the standard shared-memory model with atomic read, write, FAA
(fetch-and-increment), and CAS (compare-and-swap) instructions. Uruv imple-
ments a key-value store (K,V) of keys K ∈ K and their associated values V ∈ V.

The Abstract Data Type (ADT): We consider an ADTA as a set of oper-
ations:A= {Insert(K,V ), Delete(K), Search(K), RangeQuery(K1,K2)}
1. An Insert(K,V ) inserts the key K and an associated value V if K /∈ K.
2. A Delete(K) deletes the key K and its associated value if K ∈ K.
3. A Search(K) returns the associated value of key K if K ∈ K; otherwise, it

returns −1. It does not modify (K,V).
4. A RangeQuery(K1,K2) returns keys {K ∈ K : K1≤K≤K2}, and associ-

ated values without modifying (K,V); if no such key exists, it returns −1.

2.1 Basics of Uruv’s Lock-free Linearizable Design

Uruv derives from a B+Tree [10], a self-balancing data structure. However, to
support linearizable range search operations, they are equipped with additional
components. The key-value pairs in Uruv are stored in the key nodes. A leaf node
of Uruv is a sorted linked-list of key nodes. Thus, the leaf nodes of Uruv differ
from the array-based leaf nodes of a B+Tree. The internal nodes are implemented
by arrays containing ordered set of keys and pointers to its descendant children,
which facilitate traversal from the root to key nodes. A search path in Uruv is
shown in Figure 1.

root
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Nodes
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linear search 
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3 17 43 65 93 113 171 195 267 291 397
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Nodes

Fig. 1: Example of Uruv’s design. In this example, a search
operation is being performed wherein the red arrows indicate
a traversal down Uruv, and we find the key, highlighted red,
in the linked-list via a linear search.
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Fig. 2: Versioned key nodes

Unlike an array in a B+Tree’s leaf node, the key nodes making leaf nodes of
Uruv contain lists of versioning nodes mainly to ensure linearizability of range
search operations. The mechanism of linearizable range search derives from that
of Wei et al. [24] – every range search increments a data structure-wide version
counter whereby concurrent addition and removal operations determine their
versions. A range search returns the keys and corresponding values only if its
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version is at most the version of the range search. Thus the linearization point
of range search coincides with the atomic increment of version counter.

The associated values to a key are stored in the versioning nodes, see Figure
2. The creation of a key-value pair, its deletion, and addition back to the key-
value store updates the version list with a version and associated value. With
this design, Uruv supports concurrent linearizable implementation of the ADT
operations as described above.

3 Lock-Free Algorithm

3.1 The structures of the component nodes

Here we first describe the structure of the nodes in Uruv. See Figure 3. A version-
ing node is implemented by the objects of type Vnode. A key node as described
in the last section, is implemented by the objects of the class llNode. Nodes of
type llNode make the linked-list of a leaf-node which is implemented by the class
VLF LL.

The leaf and internal nodes of Uruv inherit the Node class. See Figure 4.
An object of class Node of Uruv, hereafter referred to as a node object, keeps
count of the number of keys. A node object also stores a boolean to indicate if
it is a leaf node. A boolean variable ‘frozen’ helps with “freezing a node” while
undergoing a split or merge in a lock-free updatable setting. A thread on finding
that a node is frozen helps the operation that triggered the freezing.

Vnode{
v a l u e t value ;
i n t t s ;
Vnode* nextv ;

}

l lNode {
key t key ;
Vnode* vhead ;
l lNode * next ;

}

VLF LL{

l lNode * head ;

}

Fig. 3: Versioned Lock-Free Linked-List Data Structure

Every leaf node has three pointers next, newNext and a pointer to version
list ver head and one variable ts for the timestamp. The next pointer points to
the next adjacent leaf node in Uruv. When a leaf node is split or merged, the
newNext pointer ensures leaf connection. A new leaf node is created to replace it
when a leaf node is balanced. Using the newNext pointer, we connect the old and
new leaf nodes. When traversing the leaf nodes for RangeQuery with newNext
set, we follow newNext instead of next since that node has been replaced by
a newer node, ensuring correct traversal. The initial ts value is associated with
the construction of the leaf node.

3.2 Versioned Linked-List

The description of lock-free linearizable implementation of the ADT operations
RangeQuery, Insert, and Delete requires detailing the versioned linked list.
A versioned list holds the values associated with the key held at various peri-
ods. Each versioned node (Vnode) in the versioned list has a value, the time
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Uruv{
Node* root ;

}
InternalNode : Node{

long key [MAX]
Node* ptr [MAX+1]
he lp idx

}

LeafNode : Node{
VLF LL* ver head ;
LeafNode* next ;
LeafNode* newNext ;
i n t t s

}

Node{
long count ;
bool i s L e a f ;
bool f r o z en ;

}

Fig. 4: The details of object structures

when the value was modified, and a link to the previous version of that key.
Versioned linked-list information may be seen in Figure 2 and Figure 3. The ver-
sioned list’s nodes are ordered in descending order by the time they have been
updated. Compared to the [13], there is no actual delinking of nodes; instead,
we utilise a tombstone value (a special value not associated with any key) to
indicate a deleted node. Moreover, deleting a node requires no help since there
is no delinking. Although, for memory reclamation, we retain a record of active
RangeQuery and release nodes that are no longer needed. Any modification to
the versioned linked list atomically adds a version node to the vhead of llNode
using CAS.

3.3 Traversal and Proactive maintenance in Uruv

We traverse from root to leaf following the order provided by the keys in the
internal nodes. In each internal node, a binary search is performed to determine
the appropriate child pointer. While traversal in Insert and Delete opera-
tions, we follow the proactive approach as described earlier. Essentially, if we
notice that a node’s key count has violated the maximum/minimum threshold,
we instantly conduct a split/merge action, and the traversal is restarted. The
proactive maintenance is shown in Figure5.
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Fig. 5: (a) Split Leaf, (b) Merge Leaf, (c) Split Internal
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3.4 ADT Operations

1: Insert(key, value)
2: retry:
3: Node* curr := root
4: if curr = nullptr then
5: Node* nLeaf →insLeaf(key, value)
6: if ! root.CAS(curr, nLeaf) then
7: goto retry
8: else return
9: curr := balanceRoot(curr)

10: if ! curr then goto retry

11: Node* prev, child := nullptr
12: int pidx, cidx
13: while !curr → isLeaf do
14: if curr → helpIdx 6= −1 then
15: Node* res := help(prev, pidx, curr)
16: if res then curr := res
17: else goto retry

18: cidx is set to the index of appropriate
child based on key using Binary Search

19: child := curr → ptr[cidx]
20: if child → isLeaf && child →

frozen then
21: curr → freezeInternal()
22: if ! curr →setHelpIdx(cidx) then

23: goto retry

24: Node*newNode := child →
balanceLeaf(prev, pidx, curr, cidx)

25: if newNode then
26: then curr := newNode
27: else goto retry

28: else if ! child → isLeaf&& child →
count ≥MAX then

29: curr → freezeInternal()
30: if ! curr →setHelpIdx(cidx) then
31: goto retry

32: Node* newNode := child →
splitInternal(prev, pidx, curr, cidx)

33: if newNode then
34: then curr := newNode
35: else goto retry

36: prev := curr
37: curr := child
38: pidx := cidx

39: res := curr → insertLeaf(key, value)
40: if res = Failed then
41: goto retry
42: else return res

Fig. 6: Pseudocode of Insert operation

An Insert operation starts with performing a traversal as described above to
locate the leaf node to insert a key and its associated value. It begins with the
root node; if it does not exist, it builds a new leaf node and makes it the root
with a CAS. If it cannot update the root, another thread has already changed
it, and it retries insertion. Method balanceRoot splits the root if needed and
replaces it with a new root using CAS. If CAS fails, then some other thread must
have changed the root, and it returns null. If there is no need to split the root,
it will return the current root.

Lines 14-17 describe the helping mechanism, which makes the data structure
lock-free. If any node helpIdx is set to a value other than -1, then the child
node at helpIdx is undergoing the split/merge process. In that case, it will help
that child finish its split/merge operation. Method help helps child node in
split/merge operation and returns the new curr node if it successfully replaces
it using CAS; otherwise, it returns null. Then, it performs a binary search over
curr’s keys at line 18 to find the correct child pointer. It copies the child pointer
into child and stores its index in the pointer array as cidx.

If the child node is a frozen leaf node or an internal node that has reached the
threshold, it performs a split/merge operation. It starts by freezing its parent,
curr, at line 21 by setting a special freezing marker on every child pointer, so
that no other thread can change the parent node and cause inconsistency. After
freezing the parent, it stores the index of the child pointer in helpIdx of the
parent node using CAS so that other threads can help in split/merge operation.
If setHelpIdx fails, that means some other thread has already set the helpIdx,
and it retries.
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Restructuring a child is performed at line 24 and 32 using balanceLeaf
and splitInternal respectively. balanceLeaf performs the split/merge operation
on the leaf node based on the number of elements and returns the node replaced
by the parent node using CAS. Similarly, splitInternal splits the internal node
and returns the new parent node. If in any of the above methods, CAS is failed,
then some other thread must have replaced it, and it will return nullptr and
retries at line 31 and 35. It repeats the same process until it reaches the leaf
node. Once it reaches the leaf node, it performs the insert operation in the leaf
node at line 39. It returns on success, otherwise it retries.

Insert into a leaf. In the leaf node, all the updates occur concurrently in
the versioned linked list. It first checks if the leaf node is frozen. If it is, it re-
turns ”Failed”, realizing that another thread is trying to balance this node. If
the node’s count has reached the maximum threshold, it freezes it and returns
”Failed”. Leaf node is frozen by setting a special freezing mark on llnode next
pointer and the vhead pointer. In both the cases, when it returns ”Failed” inser-
tion will be retried after balancing it. Otherwise, it would insert the key into the
versioned lock-free linked list. If another thread is concurrently freezing the leaf
node, the insertion into the linked list might fail. If it fails, it will again return
”Failed” and retries the insertion. If the key is already present in the linked list,
it updates that key’s version by adding a new version node in the version list
head with a new value. Else it will create a new node in the linked list contain-
ing the key and its value in the version node. After the key is inserted/updated
in the linked list, its timestamp is set to the current timestamp, which is the
linearization point for insertion in the tree.

A Delete operation follows a similar approach as Insert. It traverses the
tree to the leaf node, where the key is present. The difference in traversal with
respect to Insert operation is that at line 28, instead of checking the max
threshold, it checks for the minimum threshold. Instead of splitting the internal
node at line 32, it merges the internal node. Once a leaf node is found, it checks
whether the key is in the linked list. If it is in the linked list, it will update a
tombstone value in the version list to mark that key as deleted. If the key is
absent, it returns ”Key not Present”.

Delete from Leaf. If the key is present, this operation creates a versioned
node with a tombstone value to set it as deleted. Just like inserting the new
versioned node its timestamp is set to the current timestamp. If the key is not
present in the linked list it simply returns ”Key Not Present”.

Search operation. Traversal to a leaf node in case of searching doesn’t need
to perform any balancing. After finding the leaf node, it checks the key in the
linked list; if it is present, it returns the value from the version node from the
head of the list; otherwise, it simply returns ”Key not Present”. Before reading
the value from the versioned node it checks if the timestamp is set or not. If it is
not set, it sets the timestamp as the current timestamp before reading the value.

RangeQuery. A range query returns keys and their associated values by a
given range from the data. Uruv supports a linearizable range query employing a
multi-version linked list augmented to the nodes containing keys. This approach
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draws from Wei et al. [24]’s work. A global timestamp is read and updated every
time a range query is run. The leaf node having a key larger than or equal to
the beginning of the supplied range is searched after reading the current time.
Then, it chooses a value for the relevant key from the versioned list of values.
Figure 5(c) depicts a versioned linked list, with the higher versions representing
the most recent modifications.

By iterating over each versioned node individually, it selects the first value
in the list whose timestamp is smaller than the current one. This means that
the value was changed before the start of the range query, making it consistent.
It continues to add all keys and values that are less than or equal to the end of
the given range. Because all of the leaf nodes are connected, traversing them is
quick. After gathering the relevant keys and values, the range query will produce
the result.

As a leaf node could be under split or merge, for every leaf node that we
traverse, we first check whether their newNext is set. If it is and the leaf pointed
to by newNext has a timestamp lower than the range query’s timestamp, it
traverses the newNext pointer. This ensures that our range query collects data
from the correct leaf nodes. Were the timestamp not part of the leaf node, there
is a chance that the range query traverses newNext pointers indefinitely due to
repeated balancing of the leaf nodes.

4 Wait-Free Construction

We now discuss a wait-free extension to the presented lock-free algorithm above.
Wait-freedom is achieved using fast-path-slow-path method [22]. More specif-
ically, a wait-free operation starts exactly as the lock-free algorithm. This is
termed as the fast path. If a thread cannot complete its operation even after
several attempts, it enters the slow path by announcing that it would need help.
To that effect, we maintain a global stateArray to keep track of the operations
that every thread currently needs help with. In the slow path, an operation first
publishes a State object containing all the information required to help complete
its operation.

For every thread that announces its entry to the slow path, it needs to find
helpers. After completing some fixed number of fast path operations, every
thread will check if another thread needs some help. This is done by keeping
track of the thread to be helped in a thread-local HelpRecord object presented
in Figure 7. After completing the nextCheck amount of fast path operations,
it will assist the currT id. Before helping, it checks if lastPhase equals phase
in currT id’s stateArray entry. If it does, the fast path thread will help exe-
cute the wait-free implementation of that operation; otherwise, currT id doesn’t
require helping as its entry in the stateArray has changed, meaning the oper-
ation has already been completed. In the worst case, if the helping thread also
faces massive contention, every available thread will eventually execute the same
operation, ensuring its success.

Notice that when data and updates are uniformly distributed, the contention
among threads is low, often none. Concomitantly, in such cases, a slow path by
any thread is minimally taken.
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State * s tateArray [ tota lThreads ]

c l a s s HelpRecord{
long currTid ;
long las tPhase ;
long nextCheck ;

}

c l a s s State {
long phase ;
bool f i n i s h e d ;
Vnode* vnode ;
long key ;
long value ;
l lNode * searchNode

}

Fig. 7: Data structures used in wait-free helping

Wait-free Insert. Traversal in Wait-free Insert is the same as that in
the lock-free Insert as mentioned in Section 3. While traversal a thread could
fail the CAS operation in a split/merge operation of a node and would need to
restart traversal from the root again. At first glance, this would appear to repeat
indefinitely, contradicting wait-freedom, but this operation will eventually finish
due to helping. If a thread repeatedly fails to traverse Uruv due to such failure,
every other thread will eventually help it find the leaf node. Once we reach the
leaf node, we add the key to the versioned linked list as described below. There
are two cases - either a node containing the key already exists, or a node does
not exist.

In the former case, we need to update the linked list node’s vhead with the
versioned node, vnode, containing the new value using CAS. The significant differ-
ence between both methods is the usage of a shared Vnode from the stateArray

in wait-free versus a thread local Vnode in lock-free. Every thread helping this
insert will take this vnode from the stateArray and first checks the variable
finished if the operation has already finished. They then check if the phase is the
same in the stateArray, and vnode’s timestamp is set or not. If either is not
true, some other thread has already completed the operation, and they mark
the operation as finished. Else, they will try to update the vhead with vnode
atomically. After inserting the vnode, it initialises the timestamp and sets the
finished to be true.

In the latter case, we create a linked list node, newNode, and set its vhead
to the vnode in the stateArray entry. It tries adding newNode like the lock-free
linked list’s insert. If it is successful, the timestamp of vnode is initialized, and
the finished is set to true in the stateArray.

Wait-free Delete. Delete operation follows the same approach as Insert.
If the key is not present in the leaf node, it returns ”Key Not Present” and sets
the finished to be true. Otherwise, it will add the vnode from stateArray similar
to wait-free Insert. The only difference is that the vnode contains the tombstone
value for a deleted node.

Search and RangeQuery. Neither operation modifies Uruv nor helps any
other operation; hence their working remain as explained in Section 3.

5 Correctness and Progress Arguments

To prove the correctness of Uruv, we have shown that Uruv is linearizable by
describing linearization points (LPs) that map any concurrent setting to a se-
quential order of said operations. We discuss them in detail below.
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5.1 Linearization Points

As explained earlier, we traverse down Uruv to the correct leaf node and perform
all operations on the linked list in that leaf. Therefore, we discuss the LPs of the
versioned linked list.

Insert: There are two cases. If the key does not exist, we insert the key into the
linked list. However, the timestamp of the vnode is not set, so the LP for Insert
operation is when the timestamp of vnode is set to the current timestamp. This
can be executed either just after the insertion of the key in the linked list or by
some other thread before reading the value from vnode.

If the key already exists, we update its value by atomically replacing a new
versioned node by its current vhead. After successfully changing the vhead, the
node’s timestamp is still not set. It can be set just after adding the new versioned
node or by some other thread before reading the value from the newly added
versioned node. In both the cases the LP is when the timestamp of the versioned
node is set to the current timestamp.

Delete. There are two cases. If the key does not exist, then there is no need
to delete the key as it does not exist. Therefore, the LP would be where we last
read a node from the linked list. Instead, if the key exists, the LP will be same
as Insert when we set the timestamp of the versioned node.

Search. There are two cases, first if the key doesn’t exist in the linked list, the
Search LP would be when we first read the node whose key is greater than the
key we are searching for in the linked list. Second, if the key is present in the
linked list it reads the value in the versioned node at vhead. So the LP is when we
atomically reads the value from the versioned node. If a concurrent insert/delete
leads to a split/merge operation, then there is a chance that the search will end
up at a leaf node that is no longer a part of Uruv. In that case, the search’s LP

would have happened before insert/delete’s LP. Search’s LP remains the same as
above.

RangeQuery. RangeQuery method reads the global timestamp and incre-
ment it by 1. So the LP for range query would be the atomic read of global
timestamp. The range query’s LP will remain the same regardless of any other
concurrent operation.

6 Experiments

In this section, we benchmark Uruv against (a) previous lock-free variants of
the B+Tree for updates and search operations (to our knowledge, there are no
existing wait-free implementations of the B+Tree, and lock-free B+Trees do not
implement range search), and (b) the lock-free VCAS-BST of [24], which is the
best-performing data structure in their benchmark. The code of the benchmarks
is available at https://github.com/PDCRL/Uruv.git.

https://github.com/PDCRL/Uruv.git


12 Bhardwaj et al.

Experimental Setup. We conducted our experiments on a system with an IBM
Power9 model 2.3 CPU packing 40 cores with a minimum clock speed of 2.30
GHz and a maximum clock speed of 3.8 GHz. There are four logical threads for
each core, and each has a private 32KB L1 data cache and L1 instruction cache.
Every pair of cores shares a 512KB L2 cache and a 10MB L3 cache. The system
has 240GB RAM and a 2TB hard disk. The machine runs Ubuntu 18.04.6 LTS.
We implement Uruv in C++. Our code was compiled using g++ 11.1.0 with
-std=c++17 and linked the pthread and atomic libraries. We take the average
of the last seven runs out of 10 total runs, pre-warming the cache the first three
times. Our average excludes outliers by considering results closest to the median.
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Fig. 8: The performance of Uruv when compared to LF B+Tree [5] and Open BwTree [23].
Higher is better. The workload distributions are (a) Reads - 100% (b) Reads - 95%, Updates - 5%,
and (c) Reads - 50%, Updates - 50%

Benchmark. Our benchmark takes 7 parameters - read, insert, delete, range
query, range query size, prefilling size, and dataset size. Read, insert, delete,
and range queries indicate the percentage of these operations. We use a uniform
distribution to choose between these four operations probabilistically. We prefill
each data structure with 100 million keys, uniformly at random, from a universe
of 500 million keys ranging [1, 500M].

Performance for dictionary operations. Results of three different workloads -
Read-only(Fig. 8a), Read-Heavy(Fig. 8b), and a Balanced workload(Fig. 8c) are
shown in Figure 8. Across the workloads, at 80 threads, Uruv beats LF B+Tree
[5] by 95x, 76x, and 44x as it replaces the node with a new node for every insert.
Uruv beats OpenBwTree [23] by 1.7x, 1.7x, and 1.25x. The performance of LF-
URUV and WF-URUV correlates since WF-URUV has a lower possibility of any
thread taking a slow path. In all three cases, the gap between Uruv and the rest
increases as the number of threads increases. This shows the scalability of the
proposed method. As we move from 1 to 80 threads, Uruv scales 46x to 61x
in performance, LFB+Tree scales 2.4x to 5x and OpenBw-Tree scales 39x to
42x. These results establish the significantly superior performance of Uruv over
its existing counterpart.
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Performance for workloads including range search. We compare Uruv against
VCAS-BST in various workloads in Figure 9. Figures 9a - 9c are read-heavy
workloads and 9d - 9f are update-heavy workloads. Across each type of work-
load, we vary the range query percentage from 1% to 10%. At 80 threads, we
beat VCAS-BST by 1.38x in update-heavy workloads and 1.68x in read-heavy
workloads. These set of results demonstrate the efficacy of Uruv’s wait-free range
search.
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Fig. 9: The performance of Uruv when compared to VCAS-BST. The workload distributions are
(a) Reads - 94%, Updates - 5%, Range Queries of size 1K - 1%, (b) Reads - 90%, Updates - 5%,
Range Queries of size 1K - 5%, (c) Reads - 85%, Updates - 5%, Range Queries of size 1K - 10%,
(d) Reads - 49%, Updates - 50%, Range Queries of size 1K - 1%, (e) Reads - 45%, Updates - 50%,
Range Queries of size 1K - 5%, and (f) Reads - 40%, Updates - 50%, Range Queries of size 1K - 10%

7 Related Work

We have already discussed the salient points where Uruv differs from existing
techniques of concurrent range search. In particular, in contrast to the locking
method of bundled references [19] and the lock-free method of constant time
snapshots [24], Uruv guarantees wait-freedom. The architecture ensuring wait-
freedom in Uruv, i.e., its stateArray, has to accommodate its multi-versioning.
The existing methods did not have to consider this.
Anastasia et al. [5] developed the first lock-free B+Tree. In their design, every
node implements a linked-list augmented with an array. This ensures that each
node in the linked-list is allocated contiguously. It slows down updates at the leaf
and traversal down their tree. Uruv’s design is inspired by their work, but, does
away with the arrays in the nodes. As the experiments showed, it clearly benefits.
Most importantly, we also support linearizable wait-free range search, which is
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not available in [5]. OpenBw-Tree [23] is an optimized lock-free B+tree that was
designed to achieve high performance under realistic workloads. However, again,
it does not support range search.
We acknowledge that other recently proposed tree data structures could be faster
than Uruv, for example, C-IST [8] and LF-ABTree [6]. However, LF-ABTree is
a relaxed tree where the height and the size of the nodes are relaxed whereas C-
IST [8] uses interpolation search on internal nodes to achieve high performance.
That is definitely an attractive dimension towards which we plan to adapt the
design of Uruv. Furthermore, they are not wait-free. Our focus was on designing
a B+Tree that supports wait-free updates and range search operations.
In regards to wait-free data structures, most of the attempts so far has been
for Set or dictionary abstract data types wherein only insertion, deletion, and
membership queries are considered. For example, Natarajan et al. [18] presented
wait-free red-black trees. Applying techniques similar to fast-path-slow-path,
which we used, Petrank and Timmet [20] proposed converting lock-free data
structures to wait-free ones. They used this strategy to propose wait-free imple-
mentations of inked-list, skip-list and binary search trees. There have been prior
work on wait-free queues and stacks [11], [2]. However, to our knowledge, this
is the first work on a wait-free implementation of an abstract data type that
supports add, remove, search and range queries.

8 Conclusion

We developed an efficient concurrent data structure Uruv that supports wait-free
addition, deletion, membership search and range search operations. Theoreti-
cally, Uruv offers a finite upper bound on the step complexity of each operation,
the first in this setting. On the practical side, Uruv significantly outperforms the
existing lock-free B+Tree variants and a recently proposed linearizable lock-free
range search algorithm.
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