Non-blocking Dynamic

Unbounded Graphs with Worst-case Amortized Bounds

Bapi Chatterj Sathya Peri, Muktikanta Sa
aI|3|I|T S |E'rjee Komma Manogna Telecom SudParis, 1P
o IIT Hyderabad Paric

OPODIS 2021

Non-blocking Concurrent Graphs 1/24

Dynamic Graph

[P -
*i ei® T
S i lsb -

Non-blocking Concurrent Graphs

N
N
IN

c
.2
+—
T
2
=
O
=

Q:
-nln ...ﬂ:iu z ln

.nu-.n“
EIN o ’,._.n
..n..ln“ .
Cam |

< X

S T guem
O -n.nl."“n cka | efim =

£ ® i ¢

g cse !

A L 3

I
o

Non-blocking Concurrent Graphs

- n
I'\. ’ l - -**
I

nBrun . B°b

. =-:!.

@ reachable path
@ shortest path
. o influential person

={
o
3

— Eotk T

Non-blocking Concurrent Graphs 3/24

The ADT Operations

@ AddVertex
@ RemoveVertex

@ ContainsVertex

@ AddEdge

© RemoveEdge

@ ContainsEdge
@ BFS
@ SSSP

o BC

The Graph Data Structure

Hash function: f(x) = x mod 4

Blo] B[] B[2] B[3]

%

Figure 1: A directed graph and its representation. Graph composition of lock-free
sets: a lock-free hash-table and multiple lock-free binary search trees (BSTs).

Non-blocking Concurrent Graphs 5/24

The Graph Framework

© Three practical operations/queries:
o Breadth First Search (BFS)
o Single Source Shortest Path (SSSP)
o Betweenness Centrality (BC)

@ Dynamic updates of edges and vertices:

AddVertex
RemoveVertex
AddEdge
RemoveEdge

© Non-blocking progress with linearizability.
@ A light memory footprint.

We call it PANIGRAHAM 2: Practical Non-blocking Graph Algorithms.

?Panigraham is the Sanskrit translation of Marriage, which undoubtedly is a
prominent event in our lives resulting in networks represented by graphs.
Non-blocking Concurrent Graphs 6/24

Working Flow of Graph Queries

if(v is marked or not
present)

NULL

| tid — GetThreadID(); |

|

| Invoke SCAN(v, tid) |

Non-blocking Concurrent Graphs 7/24

Working Flow of Graph Queries

|

| SCAN(v, tid) |

l

‘ List <Node> otree, ntree ‘

l

‘ otree — TreeCollect(v, tid) ‘

‘ ntree — TreeCollect(v, tid) ‘

if(CompareTree N
otree, ntree)

[Y

‘ return ntree ‘

Non-blocking Concurrent Graphs 8/24

Working Flow of Graph Queries

© During the edge modification operations the atomic counter ecnt at
each vertex is necessarily incremented.

@ The TreeCollect method returns the BFS-tree of VNode in the BFS
traversals.

© The comparison of the two BFS-trees is done in the procedure
CompareTree along with the counters ecnt of the VNodes
contained in them.

@ Until CompareTree method returns true, the TreeCollect method is
invoked by copying ntree to otree. The time when the CompareTree
method returns true, the SCAN method returns ntree.

Non-blocking Concurrent Graphs 9/24

Correctness and Progress Guarantees
@ The ADT operations are linearizable. \

@ The queries are individually obstruction-free.

@ The algorithm that implements the ADT is lock-free.

Proofs of Theorem 1 and 2 and complexity analysis are shown in the
technical report.”

Phttps:/ /arxiv.org/abs/2003.01697

o Intel(R) Xeon(R) E5-2690 v4 CPU containing 14 cores running at
2.60GHz on two sockets. Each core supports 2 logical threads.

e A total of 56 logical cores.

@ Implementation in C++ without any garbage collection.
Multi-threaded implementation is based on Posix threads.

@ We loaded a R-MAT graph, thereafter performed warm-up operations,
followed by an end-to-end run of 10* operations in total.

Non-blocking Concurrent Graphs 11/24

Workload Distributions

Graph Operations: OP, ADDVERTEX, REMOVEVERTEX, ADDEDGE,
and REMOVEEDGE

o 2/49/49: (2%, 24.5%, 24.5%, 24.5%, 24.5%)
o 5/47.5/47.5: (5%, 23.75%, 23.75%, 23.75%, 23.75%)
o 10/45/45: (10%, 22.5%, 22.5%, 22.5%, 22.5%)

Non-blocking Concurrent Graphs 12/24

Workload Distributions

Graph Operations: OP, ADDVERTEX, REMOVEVERTEX, ADDEDGE,
and REMOVEEDGE

o 2/49/49: (2%, 24.5%, 24.5%, 24.5%, 24.5%)
o 5/47.5/47.5: (5%, 23.75%, 23.75%, 23.75%, 23.75%)
o 10/45/45: (10%, 22.5%, 22.5%, 22.5%, 22.5%)

We have compared the following cases.

‘ S. No ‘ Label ‘ Explanation
1 PG-Cn Linearizable PANIGRAHAM
2 PG-lcn Inconsistent PANIGRAHAM
3 Ligra Supports BFS, SSSP, and BC
4 Stinger | REMOVEVERTEX, ADDEDGE, REMOVEEDGE, and BF'S

Non-blocking Concurrent Graphs 12/24

Results: BFS

2/49/49 5/47.5/47.5 10/45/45
103 — . . . 103 = T T ? 103 FT T T El
1 1 —e— Stinger
g0 ;107 L0 pagos
g 101 L -—4.74.774% 101 [| 1 —— PG-Icn
B — o . 1 107} e
e N T e —
7 14 28 56 7 14 28 56 7 14 28 56
#threads #threads #threads
(a) (b) (c)

Figure 2: Latency of the executions containing OP: BF'S on a R-MAT graph of
size |V| = 131K and |E| = 2.4M. A total of 10* operations were performed.
Workload Distributions: BFS, ADDVERTEX, REMOVEVERTEX, ADDEDGE,
and REMOVEEDGE :2/49/49: (2%, 24.5%, 24.5%, 24.5%, 24.5%)

Non-blocking Concurrent Graphs 13/24

More BF'S Results

B PG-CN
B LIGRA
B PG-ICN

(c) 30/50/20 (d) 20/60,20

Figure 3: The dataset sizes as labeled on the y-axis are {(V//E), {(1) :
1K /10K, (2) : 8K /80K, (3) : 16K /160K, (4) : 32K /320K, (5) : 65K /500K }.

Non-blocking Concurrent Graphs 14/24

Results: SSSP

10°

7 14 28 56

2/49/49 5/47.5/47.5 10/45/45
100 = =l [‘ —e— Ligra L‘ T
- —= PG-C -

| PG-Cn 1 01 L 1\;;\:
& .\. 10% . |

g 10705 \ A I
& I 3
\.\.\’
. 107t 3) 1

28 5

7 14

6
#threads #threads #threads
(a) (b) (c)

Figure 4: Latency of the executions containing OP: SSSP on a R-MAT graph of
size |V| = 8K and |E| = 80K. A total of 10* operations were performed.

15/24

Non-blocking Concurrent Graphs

More SSSP Results

Tlh4f€ad%8
(c) 30/50/20 (d) 20/60/20

Figure 5: The dataset sizes as labeled on the y-axis are {(V//E), (1) :
1K /10K, (2) : 4K /30K, (3) : 8K /50K, (4) : 8K /70K, (5) : 8K /80K }.

Non-blocking Concurrent Graphs 16/24

Results: BC

2/49/49 5/47.5/47.5 10/45/45

\/ 100 | % F\~,;\'\\\\ -
T 100] . -
1 S —e— Ligra ||
< | -\—\ffffa 10 —=— PG-Cn
g - 1 —e— PG-Icn
= . T 1 10705} .w\"\\ 1 \
\;\;\‘— e 4 \\\0777** TTT——
107t e | L B . . .) I I L
7 14 28 56 7 14 28 56 7 14 28 56
#threads #threads #threads
(a) (b) (c)

Figure 6: Latency of the executions containing Op: BC on a R-MAT graph of
size |V| = 16K and |E| = 160K. A total of 10* operations were performed.

Non-blocking Concurrent Graphs

More BC Results

(c) 30/50/20 (d) 20/60,20

Figure 7: The dataset sizes as labeled on the y-axis are {(V//E), (1) :
1K /10K, (2) : 2K /20K, (3) : 4K /40K, (4) : 8K /80K, (5) : 16K /120K }.

Non-blocking Concurrent Graphs 18/24

GraphOne vs PANIGRAHAM

101 -

fg '//\
& —
o) —e— PGen P
= -m PGlen —
= —e— GraphOne P
_—
100]
7 14 28 56

7 14 28 56

(a) 2/49/49 (b) 10/45/45 (¢) 20/40/40
Figure 8: OP: BFS on a graph of size |V| = 65K and |E| = 500K. Total 10*
operations were performed with given distributions. The distributions for each
cases is: BFS/ADDEDGE/REMOVEEDGE, e.g., 2/49/49 :

{BFS : 2%, ADDEDCGE : 49%, REMOVEEDGE : 49%}. X-axis unit is the number
of threads.

Non-blocking Concurrent Graphs 19/24

Memory Footprint

[T stinger N Ligral PG-Cnl PG-Ten | W Ligral PG-OnlPG-Ien | I Ligral PG-Onl PG-Ten |
=
= 2
= 10*f E 10
%
z 10%
ol |
g 10 I I I 105
z
= Ul ANin EHIR BN

7 14 28 56 7 14 28 56 7 14 28 56
#threads #threads #threads
(a) BFS (b) SSSP (c) BC

Figure 9: The memory footprint during the run-time corresponding to the
workload distribution 10/45/45. BFS: |V| = 131K and |E| = 2.4M. SSSP:
|V| =8K and |E| = 80K. BC: |V| = 16K and |E| = 160K.

Non-blocking Concurrent Graphs 20/24

Average number of Scans

#V = 4K #E = 30K #v = 8K #E = 5OK

#V = 66K #E 4201<
|60/20/20 6 |60/20/20 3
6(140/40/20 40/40/20
= |120/60/20 £ 4|"20/60/20 £ 9l;
S 4F = =
:#: 2 7 I | | :H: 2 | ‘ :H: 1 |
0 I - ’ ' 0 0
7 56 14 928 14 28
#threads #threads #threads
(a) OP:BFS. (b) OP:SSSP. () OP:BC.

Figure 10: Average number of scans during a query.

Non-blocking Concurrent Graphs 21/24

Conclusions

@ We implemented a concurrent graph with queries: BF'S, SSSP, and
BC.

@ We compared these results with Ligra, Stinger, and GraphOne.

© We extensively evaluate a sample C++ implementation of the
algorithm through a number of micro-benchmarks.

@ Non-Blocking implementations handsomely outperform Ligra, Stinger
and GraphOne.

© However, as graph size increases, Ligra starts taking advantage of the
parallel implementation.

Non-blocking Concurrent Graphs 22/24

For More Information

© The Technical Report is available at:
https://arxiv.org/abs/2003.01697

@ And the complete source code is available at:
https://github.com/PDCRL/PANIGRAHAM

Non-blocking Concurrent Graphs 23/24

Thank You!

Non-blocking Concurrent Graphs 2

	Motivation
	The ADT Operations
	The Graph Data Structure
	PANIGRAHAM Framework
	Simulation Results
	Conclusion and Future Work

