
Non-blocking Dynamic
Unbounded Graphs with Worst-case Amortized Bounds

Bapi Chatterjee
IIIT Delhi

Sathya Peri,
Komma Manogna
IIT Hyderabad

Muktikanta Sa
Telecom SudParis, IP

Paris

OPODIS 2021

Non-blocking Concurrent Graphs 1/24

Motivation

Dynamic Graph

Non-blocking Concurrent Graphs 2/24

Motivation

Dynamic Graph

Non-blocking Concurrent Graphs 2/24

Motivation

reachable path

shortest path

influential person

Non-blocking Concurrent Graphs 3/24

The ADT Operations

1 AddVertex

2 RemoveVertex

3 ContainsVertex

4 AddEdge

5 RemoveEdge

6 ContainsEdge

7 BFS

8 SSSP

9 BC

Non-blocking Concurrent Graphs 4/24

The Graph Data Structure

4

3

1

5

7

B[0] B[1] B[2] B[3]

4 1 3

5 7

7

4

1

ENode

VNode

Hash function: f (x) = x mod 4

Figure 1: A directed graph and its representation. Graph composition of lock-free
sets: a lock-free hash-table and multiple lock-free binary search trees (BSTs).

Non-blocking Concurrent Graphs 5/24

The Graph Framework

1 Three practical operations/queries:

Breadth First Search (BFS)
Single Source Shortest Path (SSSP)
Betweenness Centrality (BC)

2 Dynamic updates of edges and vertices:

AddVertex
RemoveVertex
AddEdge
RemoveEdge

3 Non-blocking progress with linearizability.

4 A light memory footprint.

We call it PANIGRAHAM a: Practical Non-blocking Graph Algorithms.

aPanigraham is the Sanskrit translation of Marriage, which undoubtedly is a
prominent event in our lives resulting in networks represented by graphs.

Non-blocking Concurrent Graphs 6/24

Working Flow of Graph Queries

OP(v)

tid ← GetThreadID();

if(v is marked or not
present)

Y

N NULL

Invoke SCAN(v, tid)

1

Non-blocking Concurrent Graphs 7/24

Working Flow of Graph Queries

return ntree

while(true)

Y

Nif(CompareTree(
otree, ntree))

SCAN(v, tid)

1

List <Node> otree, ntree

otree ← TreeCollect(v, tid)

ntree ← TreeCollect(v, tid)

Y

otree ← ntree

Non-blocking Concurrent Graphs 8/24

Working Flow of Graph Queries

1 During the edge modification operations the atomic counter ecnt at
each vertex is necessarily incremented.

2 The TreeCollect method returns the BFS-tree of VNode in the BFS
traversals.

3 The comparison of the two BFS-trees is done in the procedure
CompareTree along with the counters ecnt of the VNodes
contained in them.

4 Until CompareTree method returns true, the TreeCollect method is
invoked by copying ntree to otree. The time when the CompareTree
method returns true, the SCAN method returns ntree.

Non-blocking Concurrent Graphs 9/24

Correctness and Progress Guarantees

Theorem 1:
1 The ADT operations are linearizable.

Theorem 2:
1 The queries are individually obstruction-free.

2 The algorithm that implements the ADT is lock-free.

Proofs of Theorem 1 and 2 and complexity analysis are shown in the
technical report.b

bhttps://arxiv.org/abs/2003.01697
Non-blocking Concurrent Graphs 10/24

Experiments

Intel(R) Xeon(R) E5-2690 v4 CPU containing 14 cores running at
2.60GHz on two sockets. Each core supports 2 logical threads.

A total of 56 logical cores.

Implementation in C++ without any garbage collection.
Multi-threaded implementation is based on Posix threads.

We loaded a R-MAT graph, thereafter performed warm-up operations,
followed by an end-to-end run of 104 operations in total.

Non-blocking Concurrent Graphs 11/24

Workload Distributions

Graph Operations: Op, AddVertex, RemoveVertex, AddEdge,
and RemoveEdge

2/49/49: (2%, 24.5%, 24.5%, 24.5%, 24.5%)

5/47.5/47.5: (5%, 23.75%, 23.75%, 23.75%, 23.75%)

10/45/45: (10%, 22.5%, 22.5%, 22.5%, 22.5%)

We have compared the following cases.

S. No Label Explanation

1 PG-Cn Linearizable PANIGRAHAM

2 PG-Icn Inconsistent PANIGRAHAM

3 Ligra Supports BFS, SSSP, and BC

4 Stinger RemoveVertex, AddEdge, RemoveEdge, and BFS

Non-blocking Concurrent Graphs 12/24

Workload Distributions

Graph Operations: Op, AddVertex, RemoveVertex, AddEdge,
and RemoveEdge

2/49/49: (2%, 24.5%, 24.5%, 24.5%, 24.5%)

5/47.5/47.5: (5%, 23.75%, 23.75%, 23.75%, 23.75%)

10/45/45: (10%, 22.5%, 22.5%, 22.5%, 22.5%)

We have compared the following cases.

S. No Label Explanation

1 PG-Cn Linearizable PANIGRAHAM

2 PG-Icn Inconsistent PANIGRAHAM

3 Ligra Supports BFS, SSSP, and BC

4 Stinger RemoveVertex, AddEdge, RemoveEdge, and BFS

Non-blocking Concurrent Graphs 12/24

Results: BFS

7 14 28 56

100

101

102

103

#threads

T
im

e
(S
ec
)

2/49/49

(a)

7 14 28 56
100

101

102

103

#threads

5/47.5/47.5

(b)

7 14 28 56

101

102

103

#threads

10/45/45

Stinger
Ligra
PG-Cn
PG-Icn

(c)

Figure 2: Latency of the executions containing Op: BFS on a R-MAT graph of
size |V | = 131K and |E | = 2.4M. A total of 104 operations were performed.
Workload Distributions: BFS, AddVertex, RemoveVertex, AddEdge,
and RemoveEdge :2/49/49: (2%, 24.5%, 24.5%, 24.5%, 24.5%)

Non-blocking Concurrent Graphs 13/24

More BFS Results

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

T
im

e
(S

ec
)

0.00
9.31
18.61
27.92

PG-CN

LIGRA

PG-ICN

(a) 60/20/20

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

T
im

e
(S

ec
)

0.00
7.79
15.57
23.36

(b) 40/40/20

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

T
im

e
(S

ec
)

0.00
6.77
13.54
20.32

(c) 30/50/20

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

T
im

e
(S

ec
)

0.00
6.65
13.29
19.94

(d) 20/60/20

Figure 3: The dataset sizes as labeled on the y-axis are {(V /E), {(1) :
1K/10K , (2) : 8K/80K , (3) : 16K/160K , (4) : 32K/320K , (5) : 65K/500K}.

Non-blocking Concurrent Graphs 14/24

Results: SSSP

7 14 28 56

10−0.5

100

#threads

T
im

e
(S
ec
)

2/49/49

(a)

7 14 28 56
10−1

100

#threads

5/47.5/47.5

Ligra
PG-Cn
PG-Icn

(b)

7 14 28 56
100

101

#threads

10/45/45

(c)

Figure 4: Latency of the executions containing Op: SSSP on a R-MAT graph of
size |V | = 8K and |E | = 80K . A total of 104 operations were performed.

Non-blocking Concurrent Graphs 15/24

More SSSP Results

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

T
im

e
(S

ec
)

0
119
238
357

PG-CN

LIGRA

PG-ICN

(a) 60/20/20

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

T
im

e
(S

ec
)

0.0
60.3
120.6
180.9

(b) 40/40/20

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

T
im

e
(S

ec
)

0.0
37.4
74.9
112.3

(c) 30/50/20

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

T
im

e
(S

ec
)

0.00
16.05
32.09
48.14

(d) 20/60/20

Figure 5: The dataset sizes as labeled on the y-axis are {(V /E), (1) :
1K/10K , (2) : 4K/30K , (3) : 8K/50K , (4) : 8K/70K , (5) : 8K/80K}.

Non-blocking Concurrent Graphs 16/24

Results: BC

7 14 28 56
10−1

100

#threads

T
im

e
(S
ec
)

2/49/49

(a)

7 14 28 56

10−0.5

100

#threads

5/47.5/47.5

(b)

7 14 28 56

100

#threads

10/45/45

Ligra
PG-Cn
PG-Icn

(c)

Figure 6: Latency of the executions containing Op: BC on a R-MAT graph of
size |V | = 16K and |E | = 160K . A total of 104 operations were performed.

Non-blocking Concurrent Graphs 17/24

More BC Results

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

T
im

e
(S

ec
)

0.00
9.27
18.54
27.82

PG-CN

LIGRA

PG-ICN

(a) 60/20/20

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

T
im

e
(S

ec
)

0.00
5.59
11.19
16.79

(b) 40/40/20

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

T
im

e
(S

ec
)

0.00
3.89
7.78
11.66

(c) 30/50/20

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

T
im

e
(S

ec
)

0.000
2.312
4.625
6.937

(d) 20/60/20

Figure 7: The dataset sizes as labeled on the y-axis are {(V /E), (1) :
1K/10K , (2) : 2K/20K , (3) : 4K/40K , (4) : 8K/80K , (5) : 16K/120K}.

Non-blocking Concurrent Graphs 18/24

GraphOne vs PANIGRAHAM

7 14 28 56
100

101

T
im

e
(S
ec
)

PGcn
PGIcn

GraphOne

(a) 2/49/49

7 14 28 56

100.5

101

(b) 10/45/45

7 14 28 56
100.5

101

(c) 20/40/40

Figure 8: Op: BFS on a graph of size |V | = 65K and |E | = 500K . Total 104

operations were performed with given distributions. The distributions for each
cases is: BFS/AddEdge/RemoveEdge, e.g., 2/49/49 :
{BFS : 2%,AddEdge : 49%,RemoveEdge : 49%}. X-axis unit is the number
of threads.

Non-blocking Concurrent Graphs 19/24

Memory Footprint

7 14 28 56

103

104

#threads

M
em

or
y
u
se
d
(M

B
)

Stinger Ligra PG-Cn PG-Icn

(a) BFS

7 14 28 56

101.5

102

#threads

Ligra PG-Cn PG-Icn

(b) SSSP

7 14 28 56

102

#threads

Ligra PG-Cn PG-Icn

(c) BC

Figure 9: The memory footprint during the run-time corresponding to the
workload distribution 10/45/45. BFS: |V | = 131K and |E | = 2.4M. SSSP:
|V | = 8K and |E | = 80K . BC: |V | = 16K and |E | = 160K .

Non-blocking Concurrent Graphs 20/24

Average number of Scans

7 14 28 56
0

2

4

6

#threads

#
co
ll
ec
ts

#V = 66K,#E = 420K

60/20/20
40/40/20
20/60/20

(a) Op:BFS.

7 14 28 56
0

2

4

6

#threads

#
co
ll
ec
ts

#V = 4K,#E = 30K

60/20/20
40/40/20
20/60/20

(b) Op:SSSP.

7 14 28 56
0

1

2

3

#threads

#
co
ll
ec
ts

#V = 8K,#E = 50K

(c) Op:BC.

Figure 10: Average number of scans during a query.

Non-blocking Concurrent Graphs 21/24

Conclusions

1 We implemented a concurrent graph with queries: BFS, SSSP, and
BC.

2 We compared these results with Ligra, Stinger, and GraphOne.

3 We extensively evaluate a sample C++ implementation of the
algorithm through a number of micro-benchmarks.

4 Non-Blocking implementations handsomely outperform Ligra, Stinger
and GraphOne.

5 However, as graph size increases, Ligra starts taking advantage of the
parallel implementation.

Non-blocking Concurrent Graphs 22/24

For More Information

1 The Technical Report is available at:
https://arxiv.org/abs/2003.01697

2 And the complete source code is available at:
https://github.com/PDCRL/PANIGRAHAM

Non-blocking Concurrent Graphs 23/24

Thank You!

Non-blocking Concurrent Graphs 24/24

	Motivation
	The ADT Operations
	The Graph Data Structure
	PANIGRAHAM Framework
	Simulation Results
	Conclusion and Future Work

