
Concurrent Wait-Free Graph Snapshots using
Multi-Versioning

Gaurav Bhardwaj, Ayaz Ahmed, and Sathya Peri

Indian Institute of Technology Hyderabad, Hyderabad, India

Abstract. Graphs stand out as a paramount data structure for ad-
dressing real-world challenges. The binary relationships among entities
or objects are vital in navigating intricate, real-time issues seen in ar-
eas like blockchain, social networks, scheduling, biological systems, and
telecommunications. Unlike static graphs with immutable vertices and
edges, dynamic graphs adapt to the ever-changing real-world scenarios
by allowing modifications to both vertices and edges. In this context,
we introduce a concurrent, lock-free dynamic graph that enables the
addition, deletion, and retrieval of vertices and edges. Furthermore, we
present the novel wait-free snapshot algorithm capable of both full and
partial graph snapshots using multi-versioning. These snapshots pave the
way for advanced graph analytics tasks, including SSSP, getpath, BFS,
and more.

1 Introduction
The Graph Data Structure has emerged as a focal point of research interest
within both academic and industrial circles, owing to its myriad real-life appli-
cations spanning blockchains, mapping systems, machine learning algorithms,
biological networks, social networks, and more. Graphs adeptly delineate the
intricate connections and structures among objects by delineating paired entity
relations. Take, for instance, the use of graphs in social networks, where they
serve as a visual representation of user relationships, streamlining tasks like
recommendation generation, trend identification, and user behavior forecasting.
Unlike traditional data structures such as linked lists, hash tables, and trees,
graphs boast distinct advantages across a diverse array of application domains.
Consequently, the resolution of graph-related challenges has assumed a promi-
nent position in the realm of research across multiple disciplines.

The rise of multi-core processors has propelled parallel programming and
concurrency to the forefront of research. Tailored to accommodate the esca-
lating number of threads or tasks, concurrent data structures aim to enhance
scalability, ensuring optimized performance in expansive systems or during sys-
tem expansion. An array of concurrent data structures, such as Stacks[11],
Queues[13,17,20], Linked-Lists [6,9,10,26,29], Hash-Tables [21,22], and others,
have been developed to harness the benefits offered by multi-core processors.

Blocking mechanisms such as locks and barriers are commonly employed in
concurrent applications but can introduce bottleneck issues like deadlocks. Con-
sequently, researchers have explored non-blocking progress conditions to ensure



2 Bhardwaj et al.

both efficiency and correctness. In an obstruction-free setting, threads operate
without acquiring locks, guaranteeing that at least one thread completes its task
within a finite number of steps in the absence of obstructions. Lock-free execu-
tion [14] ensures that at least one thread can finish its operation within a finite
number of steps [14]. Wait-free execution [12], [14], provides the highest level of
progress guarantee by ensuring that all processes can complete within a finite
number of steps.

Dynamic graphs, however, present a unique challenge as they continuously
evolve, with updates potentially arriving at a rapid pace, sometimes reaching
tens or even hundreds of thousands of updates per second. Managing these up-
dates concurrently in multicore environments can be particularly challenging,
as synchronizing them to ensure consistent graph analytical operations becomes
increasingly difficult. Real-life applications of graph analytics operations on dy-
namic graphs yield invaluable insights. For instance, analyzing user interactions
in e-commerce or social network contexts can offer valuable insights into user
behavior, potential fraud detection, and network security.

An essential criterion for concurrent data structures and algorithms is cor-
rectness. In this paper, we consider the correctness as linearizability[15]. A con-
current execution is linearizable if for every method in the execution, effects of
the method are considered to occur instantaneously at some point denoted as
Linearization Point (LP) between its invocation and response.
1.1 Related Work
Graph operations can be primarily categorized into two types: 1) Point Opera-
tions, which encompass adding, removing, and looking up operations, and 2) Set
Operations, which involve partial or full snapshots. These snapshots can subse-
quently be used for more advanced operations such as BFS, getpath, SSSP, and
more.

Significant advancements have recently emerged in the realm of optimizing
graph data structures for multicore systems. Kallimanis et al. [16] pioneered a
concurrent dynamic bounded graph, offering wait-free dynamic graph point op-
erations and facilitating graph traversal. In a separate endeavor, Chatterjee et
al. [5] introduced an unbounded concurrent linearizable graph model, supporting
lock-free point operations and obstruction-free set operations. Their design lever-
aged a lock-free linked list to manage vertices and edges within the adjacency
list. Subsequently, Chatterjee et al. [4] enhanced this structure by integrating a
hash table for vertices and a linked list for edges.

Expanding upon Chatterjee et al.’s framework [5], Bhardwaj et al. [2] devised
a method to create a wait-free snapshot of the graph. Their approach drew in-
spiration from the snapshot algorithm for iterators developed by Petrank and
Timnat [24]. While this technique captures a comprehensive snapshot for exe-
cuting advanced graph analytics functions, it lacks support for partial snapshots.
This deficiency renders it resource-intensive for tasks such as SSSP, GetPath,
BFS, and similar operations.

GraphOne [18] introduced a novel strategy for updates utilizing batch pro-
cessing. They maintain versions of the adjacency list to facilitate graph analytics



Concurrent Wait-Free Graph Snapshots using Multi-Versioning 3

operations and execute deferred updates on edges and vertices in batch form.
Feng et al. [8] proposed an incremental model focused on efficiently computing
graph analytical operations like Breadth-First Search and Single Source Short-
est Path. Their method involves maintaining data structures optimized for these
operations, which are continually updated with each modification to the graph.
However, it’s important to note that their implementation lacks complete dy-
namism, as it does not support the addition or deletion of vertices.

Multiversion concurrency control has long been employed in various domains
such as database systems [28], transactional memory [19], [7], and shared memory
data structures. This approach enables concurrent data updates while preserv-
ing multiple versions of the data in history, each associated with a timestamp.
These distinct versions facilitate consistent data reads from different versions
concurrently without interfering with ongoing update operations. Wei et al. [27]
introduced a wait-free snapshot algorithm utilizing multiversioning. Similarly,
Nelson et al. [23] proposed a similar approach, albeit utilizing locks for ver-
sion updates. In recent years, significant research attention has been devoted
to range queries and snapshot-based techniques built upon these foundational
approaches.

In many contemporary applications, such as single-source shortest-path com-
putations, reachability queries, and various approximation algorithms, there is
a pressing demand for wait-free partial snapshots. These applications often re-
quire targeted access to specific portions of a graph rather than its entirety.
Traditional snapshot methods, while effective for full graph access, fall short
when precision and efficiency in partial graph access are paramount. Given this
context, there is a clear gap in the current landscape of snapshot algorithms.
To address this, we propose a wait-free snapshot(partial and full) algorithm to
provide efficient, targeted access while ensuring concurrent operations remain
unhindered. We have integrated the multi-version concurrency control concept
from Wei et al. [?] into our graph implementation to achieve wait-free partial
snapshots.
Our Contribution: This paper presents the design and implementation of a
dynamic versioned graph data structure. Our graph data structure offers full
dynamism, enabling concurrent lock-free point operations. It also incorporates
the capability to perform wait-free graph set operations. The contributions of
this work are summarized below:

– For a directed Graph G = (V,E), we present an Abstract Data Type (ADT)
in section 3.1.

– The data structure component of our graph implementation is described in
section 3.2.

– Our implementation of the ADT operations is discussed in section 4.
– A comparison of our implementation with its counterparts is provided in sec-

tion 5. The code is available at https://github.com/PDCRL/VersionConcGraph.
git.

2 Preliminaries and Background
Our implementation adheres to a conventional shared memory model, where
a finite set of processors is accessible by a defined number of threads operating

https://github.com/PDCRL/VersionConcGraph.git
https://github.com/PDCRL/VersionConcGraph.git


4 Bhardwaj et al.

asynchronously. These threads interact by executing operations on shared objects
and obtaining corresponding responses. The system is equipped with support for
atomic read, write, and compare-and-swap (CAS) instructions.

We have devised a versioned graph data structure modeled after Chatterjee
et al. [4], where vertices and edges are organized in an adjacency list format.
Vertices are stored within a concurrent lock-free hash table [21], while edges are
managed using a concurrent lock-free linked list [9]. To ensure consistency in
graph analytics operations, we have integrated the concept of versioning from
Wei et al. [?]. In addition to supporting graph point operations as described in
[4], our implementation extends its capabilities to encompass various wait-free
graph set operations, using partial and full snapshots of the graph.
Pseudocode Convention: The pseudocode featuring the Algorithm is outlined
in algorithm 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 1.8. Throughout this paper, the
pseudocode is crafted using a blend of C and JAVA-style programming languages.
For accessing the member field x of a class object pointer P, we utilize the
notation P.x. To convey multiple variables returned from an operation, we adopt
the notation ⟨x1, x2, ..., xn⟩.

3 Graph Data Structure
3.1 The Abstract Data Type (ADT)
We focus on implementing a simple directed weighted graph, denoted as G =
(V,E), where V denotes the set of vertices and E denotes the set of directed
edges (ordered pairs of vertices). Each edge connects an ordered pair of vertices
from V and is associated with a weight. Every vertex v ∈ V is linked to an
immutable and unique key k ∈ K, where K is a totally ordered set. A vertex
v ∈ V with key k is represented as v(k). The notation e(k, l, w) is used to indicate
an edge from v(k) to v(l) in the set E with weight w.

ADT operation on G is defined below. The graph point operations are first
described.

1. AddVertex(k) adds a vertex v(k) in V if v(k) /∈ V and returns “VERTEX
ADDED ”otherwise returns “VERTEX ALREADY PRESENT ”.

2. RemoveVertex(k) removes the vertex v(k) from V if v(k) ∈ V and returns
“VERTEX REMOVED ”otherwise returns “VERTEX NOT PRESENT ”.

3. AddEdge(i,j,w) adds an edge e(i, j, w) in E if e(i, j, w) /∈ E and returns
“EDGE ADDED ”otherwise returns “EDGE ALREADY PRESENT ”.

4. Remove(i, j) removes the edge e(i, j) from E if e(i, j) ∈ E, and returns
“EDGE REMOVED ”; otherwise, it returns “EDGE NOT PRESENT ”.

5. ContainsVertex(k) returns “VERTEX PRESENT ”if v(k) ∈ V otherwise re-
turns “VERTEX NOT PRESENT ”.

6. ContainsEdge(i,j) returns “EDGE PRESENT ”if e(i, j, w) ∈ E otherwise re-
turns “EDGE NOT PRESENT ”.

We now describe the set operations implemented by us.

7. BFS (v) returns sequence of vertices in the BFS order if v ∈ V otherwise
returns “VERTEX NOT PRESENT ”;



Concurrent Wait-Free Graph Snapshots using Multi-Versioning 5

8. SSSP (v) returns set of all the vertices along with the distance δ from v such
that ∀u ∈ V ∧ u is connected to v δ(u) is the minimum total weight of any
directed path from v to u.

9. Snapshot returns the consistent snapshot of the graph.

While we have only delved into a subset of graph set operations within our
ADT, it’s important to note that our implementation is equipped to handle a
wide array of such operations. The approach for these operations is akin to those
we have discussed, as they rely on the partial or dynamic snapshot of the graph.
This versatility allows our implementation to adapt to various graph-related
tasks beyond those explicitly mentioned seamlessly.

3.2 Graph Data Structure Components

int global_ts

Hash H
class VNode{

int k
Vnode_version∗ vhead

}
class Vnode_version{

int k
int insert_ts
int delete_ts
Enode∗ e l i s t
Vnode_vesion∗ next_ver

}

class ENode{
int l
ENode∗ enext
Enode_version∗ ehead

}

class Enode_version{
int weight
int insert_ts
int delete_ts
Vnode_version∗ dest_ver_node
Enode_version∗ next_ver

}

Fig. 1: Graph Datastructure Components.

In our implementation, we have maintained vertices, denoted as Vnode, within
a concurrent resizable hash table H [21]. Each Vnode maintains a list of versions,
documenting the history of a specific vertex through a pointer variable known as
vhead. Every version of a vertex, referred to as Vnode_version, records the ver-
tex’s history by capturing both the insert and delete timestamp of that version.
These timestamps facilitate the determination of the time span during which a
particular vertex was active. Vnode_version node in the version lists are main-
tained in the descending order of their insert timestamp where pointer next_ver
points to the next version available. These versions ensure that a new entry is
not appended to the list unless the delete timestamp of the preceding version is
established, thus preserving the sequential order.

Additionally, each Vnode_version maintains a list of all outgoing edges
in the form of a linked list, with the individual edges represented as Enode
nodes. Similar to Vnode, we adopt a versioning approach to track the history of
edges. Each edge version list is comprised of Enode_version nodes, where each
Enode_version captures both the insert timestamp and the delete timestamp of
that specific version. Notably, each Enode_version also preserves a pointer to
the corresponding destination vertex version node, simplifying graph traversal.

Additionally, we have a global shared counter global_ts to track the current
timestamp of the data structure. Whenever a graph update occurs, global_ts is



6 Bhardwaj et al.

used to record the timestamp of the update. This enables us to pinpoint precisely
when a particular data element was active within the data structure. Further-
more, each time a graph set operation commences, the system atomically fetches
and increments this global timestamp. This mechanism allows us to examine all
vertices and edges that existed during that specific timespan. For more details,
please refer to Figure 1.

4 Algorithm Description and Reasoning
This section will elaborate on the various ADT operations discussed in Section
3.1. As previously mentioned, our data structure utilizes an adjacency list where
vertices are stored in a lock-free concurrent Hash Table. Each vertex is managed
within a bucket in the Hash Table, and the outgoing edges are organized in the
form of a lock-free linked list as shown in Figure 1.

The initiation of any ADT operation involves a search for the vertex within
the hash table. The hash table comprises buckets containing vertices arranged
in an unsorted linked list. When searching for a vertex, it traverses the com-
plete list of vertices within the relevant bucket. Adding a vertex not currently
present in the vertex list of its bucket is achieved atomically by placing it at
the head of the linked list. This ensures a streamlined and efficient addition pro-
cess. Furthermore, our approach incorporates versioning when removing a vertex
from the linked list. During removal, we set the delete_ts (delete timestamp)
for the vertex, applying a version control concept for effective data structure
management.

1: AddVertex(i)
2: curr_V node← H.FindV(i)
3: if (curr_V node = nullptr) then
4: newVnode = new Vnode(i)
5: if (H.insert (newVnode) ) then
6: setTs(newVnode)
7: return VERTEX ADDED
8: else
9: return VERTEX ALREADY PRESENT

10: else

11: curr_ver ← read(curr_V node.vhead)
12: if (curr_ver.delete_ts =∞) then
13: return VERTEX ALREADY PRESENT
14: setTs(curr_ver)
15: new_ver = new Vnode_version(i)
16: if (cas(curr_V node.vhead, curr_ver, new_ver))

then
17: setTs(new_vesion)
18: return VERTEX ADDED
19: else VERTEX ALREADY PRESENT

Algorithm 1.1: AddVertex Operation.

4.1 Lock-free Vertex operations
AddVertex operation is given in lines 1 to 19 in Algorithm 1.1. The FindV

method, denoted at line 2, conducts a search for the vertex in the Hash Table and
returns the corresponding VNode if the vertex is present; otherwise, it returns
nullptr. If the vertex is not found in the Hash Table, a new VNode is created at
line 4, and an attempt is made to insert it into the Hash Table at line 5.

In the case where the insert operation fails, it implies that another concurrent
thread has successfully inserted the VNode into the Hash table, and it simply
returns “VERTEX ALREADY PRESENT ”at line 9. On the other hand, if the insertion
of the VNode into the hash table is successful, the timestamp of the newly
inserted VNode is set at line 6. Finally, the operation concludes by returning
“VERTEX ADDED ”at line 7.



Concurrent Wait-Free Graph Snapshots using Multi-Versioning 7

20: RemoveVertex(i)
21: curr_V node← H.FindV(i)
22: if (curr_V node = nullptr) then
23: return VERTEX NOT PRESENT
24: else
25: curr_ver ← read(curr_V node.vhead)
26: if (curr_ver.delete_ts =∞) then
27: if (cas(curr_ver.delete_ts,∞,−1))

then

28: setTs(curr_ver)
29: return VERTEX REMOVED
30: else
31: setTs(curr_ver)
32: return VERTEX NOT PRESENT
33: else
34: setTs(curr_ver)
35: return VERTEX NOT PRESENT

Algorithm 1.2: RemoveVertex Operation.
36: ContainsVertex(i)
37: curr_V node← H.FindV(i)
38: if (curr_V node = nullptr) then
39: return VERTEX NOT PRESENT
40: else
41: curr_ver ← read(curr_V node.vhead)

42: if (curr_ver.delete_ts =∞) then
43: return VERTEX PRESENT
44: else
45: setTs(curr_ver)
46: return VERTEX NOT PRESENT

Algorithm 1.3: ContainsVertex Operation.

If the vertex is already present in the Hash Table, the FindV method returns
the corresponding VNode. It proceeds to read the current version from the ver-
sion list of the V Node associated with the vertex, located at its vhead. If the
delete_ts (delete timestamp) of the current version is set to ∞, it indicates that
the vertex exists, and we can return “VERTEX ALREADY PRESENT ”at line 13.

However, if the delete timestamp suggests that the vertex has been marked
for deletion, we set the timestamp of the version at line 14 (if not already set)
using method setTs (given in Algorithm 1.8) and initiate the creation of a
new version. By trying to set the delete_ts, the AddVertex is helping the
RemoveVertex method. Subsequently, an attempt is made to atomically add
the newly created vertex version to the head of the version list using CAS at line
16. Upon a successful CAS operation, the timestamp (insert_ts) for the newly
added vertex version is set to the current global timestamp, and the operation
returns “VERTEX ADDED ”. In the event of a CAS operation failure, signifying
that another concurrent thread has successfully added the version, the operation
concludes by returning “VERTEX ALREADY PRESENT ”at line 19.

47: AddEdge(i, j, w)
48: ⟨sv, dv⟩ ← H.FindVplus(i, j)
49: if (sv ∨ dv) then
50: return VERTEX NOT PRESENT
51: else
52: c_ENode← sv.FindE(j)
53: if (c_ENode = nullptr) then
54: n_Enode← new Enode(j, d_ver, w)
55: if (sv.insert(n_Enode)) then
56: setTs(n_Enode)
57: else
58: c_ENode← sv.FindE(j)
59: goto Insert Version
60: else
61: Insert Version:
62: c_Ever ← read(c_Enode.vhead)
63: if (c_Ever.delete_ts =∞∧

c_Ever.weight = w) then

64: return EDGE ALREADY PRESENT
65: n_Ever ← new Enode_version(dv, w)

66: if (cas(c_Enode.vhead, c_Ever, n_Ever))
then

67: setTs(c_Enode)
68: else goto Insert Version
69: if (sv.delete_ts ̸=∞) then
70: setTs(sv)
71: if (sv.delete_ts < n_Ever.insert_ts)

then
72: return VERTEX NOT PRESENT
73: if (dv.delete_ts ̸=∞) then
74: setTs(dv)
75: if (dv.delete_ts < n_Ever.insert_ts)

then
76: return VERTEX NOT PRESENT
77: return EDGE ADDED

Algorithm 1.4: AddEdge Operation.



8 Bhardwaj et al.

RemoveVertex operation is detailed from lines 20 to 35 in Algorithm 1.2.
Utilizing a multi-versioning approach for consistent snapshots, this operation
refrains from physically deleting a vertex. Instead, it marks the active version as
deleted by setting the delete timestamp (delete_ts). Following a similar pattern
to AddVertex, this operation commences by locating the vertex in the hash
table.

If the vertex is not present in the hash table, the operation promptly returns
“VERTEX NOT PRESENT ”at line 23. In the event that the vertex is found in the
Hash Table, it examines the curr_ver (current version) on the version list of
the corresponding V Node. If the delete_ts of the curr_ver is not set to ∞,
indicating that the vertex exists. Setting the delete_ts undergoes a two-step
process. Initially, it is atomically set to -1 using the CAS operation at line 27,
signaling to other threads that this version is marked for deletion. Subsequently,
the delete_ts is set to the current global timestamp at line 28, and the operation
returns “VERTEX REMOVED ”at line 29.

78: RemoveEdge(i, j)
79: ⟨sv, dv⟩ ← H.FindVplus(i, j)
80: if (sv ∨ dv) then
81: return VERTEX NOT PRESENT
82: else
83: c_ENode← sv.FindE(j)
84: if (c_ENode = nullptr) then
85: return EDGE NOT PRESENT
86: else
87: c_Ever ← read(c_Enode.vhead)
88: if (c_Ever.delete_ts ̸=∞) then
89: setTs(c_Enode)
90: return EDGE NOT PRESENT
91: else

92: cas(c_Ever.delete_ts,∞,−1)
93: setTs(c_Ever)

94: if (sv.delete_ts ̸=∞) then
95: setTs(sv)
96: if (sv.delete_ts < c_Ever.delete_ts)

then
97: return VERTEX NOT PRESENT
98: if (dv.delete_ts ̸=∞) then
99: setTs(dv)
100: if (dv.delete_ts < c_Ever.delete_ts)

then
101: return VERTEX NOT PRESENT
102: return EDGE REMOVED

Algorithm 1.5: RemoveEdge Operation.

If the CAS operation fails, implying that another concurrent thread has set
the delete_ts to -1, the operation proceeds to set the timestamp for the current
version and returns “VERTEX NOT PRESENT ”at line 32. Similarly, if the delete_ts
of the current version is not ∞, indicating that it is already marked for deletion,
the delete_ts is set to the current global timestamp, and the operation returns
“VERTEX NOT PRESENT ”at line 35.
ContainsVertex operation is given in line 36 to 46. Upon invocation, it yields
“VERTEX PRESENT ”if the vertex is indeed present; conversely, it yields “VERTEX
NOT PRESENT ”if the vertex is absent.

The algorithm first seeks the corresponding V node for the vertex within the
Hash table at line 37. Should the vertex not be found in the Hash Table, indi-
cating its absence, the algorithm promptly returns “VERTEX NOT PRESENT ”at
line 39. Conversely, if the V node is found within the Hash Table, the algorithm
proceeds to check whether the deletion timestamp (delete_ts) for the current
version (curr_ver) of the vertex is set. In the event that the timestamp is not
set, denoting that the vertex has not been deleted, the algorithm concludes by
returning “VERTEX PRESENT ”. Conversely, if the timestamp is set, implying the



Concurrent Wait-Free Graph Snapshots using Multi-Versioning 9

vertex has been deleted, the algorithm updates the timestamp at line 45 and
then returns “VERTEX NOT PRESENT ”.

4.2 Lock-Free Edge operations
AddEdge is described in Algorithm 1.4, facilitates the addition of an edge
between vertices i and j with weight w. It begins by inspecting the vertices in
the Hash Table at line 48 using the FindVplus method. This method retrieves
the latest vertex version for both the source and destination vertices if their
delete timestamps are not set. If either vertex is not present or their deletion
timestamp is already set, indicating deletion, the operation returns nullptr and
“VERTEX NOT PRESENT ”is returned at line 50.

If both source and destination vertices exist in the Hash Table, the algorithm
checks if the ENode for the destination vertex exists in the edge lists of the
source vertex. The FindE method returns the ENode for an outgoing edge to the
destination vertex at line 52; otherwise, it returns nullptr. If no ENode exists
for the destination vertex, a new ENode is created and atomically inserted into
the edge list at line 55. Upon successful insertion, the timestamp for the newly
added edge is set at line 56. If the insertion fails due to concurrent modification
by another thread, the algorithm attempts to find the ENode for the destination
vertex again in the edge list at line 58, and proceeds to add a new edge version
node on the newly found ENode.

Once the Enode for the destination vertex is found in the edge list, we find
its latest edge version. If the delete timestamp of the latest edge version is not
set and the weight is also equal to the current weight, we simply return “EDGE
ALREADY PRESENT ”at line 64. Otherwise, it creates a new edge version node at
line 65 and atomically adds the new version on the vhead of Enode using CAS.
If CAS succeeds, then it sets the timestamp at line 67. If the CAS fails, then
some other thread must have added a new version and we retry adding a new
version from line 61.

103: ContainsEdge(i, j)
104: ⟨sv, dv⟩ ← H.FindVplus(i, j)
105: if (sv ∨ dv) then
106: return VERTEX NOT PRESENT
107: else
108: c_ENode← sv.FindE(j)
109: if (c_ENode = nullptr) then
110: return EDGE NOT PRESENT
111: else
112: c_Ever ← read(c_Enode.vhead)

113: if (c_Ever.delete_ts ̸=∞) then
114: setTs(c_Ever)

115: return EDGE NOT PRESENT
116: if (sv.delete_ts ̸=∞) then
117: setTs(sv)
118: if (sv.delete_ts < c_Ever.insert_ts)

then
119: return VERTEX NOT PRESENT
120: if (dv.delete_ts ̸=∞) then
121: setTs(dv)
122: if (dv.delete_ts < c_Ever.insert_ts)

then
123: return VERTEX NOT PRESENT
124: return EDGE PRESENT

Algorithm 1.6: ContainsEdge Operation.

Upon a successful CAS operation, it’s possible that either the source or des-
tination vertex has already been deleted prior to the insertion of the edge. In
such scenarios, we verify whether the delete timestamp for the source and desti-
nation vertices is already set or not, as indicated in lines 69 and 73, respectively.



10 Bhardwaj et al.

If either the source or destination vertex is already deleted, we examine whether
the delete timestamp of the vertex is less than the insertion timestamp of the
edge. In this situation, we can infer that the edge was added after the deletion
of a vertex, and therefore, we simply return “VERTEX NOT PRESENT ”without
altering the newly added edge.

If the delete timestamp of the vertex is the same as the edge insertion times-
tamp, we can linearize the edge’s insertion just before the vertex’s deletion. Con-
versely, if the delete timestamp of the vertex is greater than the insert timestamp
of the edge, we can conclude that the vertex was deleted after the insertion of the
edge, and thus, we return “EDGE ADDED ”. In cases where the delete timestamp
of the vertex is not set, indicating the vertex still exists, the addition of the edge
is deemed successful.
RemoveEdge method, is described in Algorithm 1.5, serves to eliminate the
edge connecting the source vertex and the destination vertex from the graph,
should it exist. Analogous to the AddEdge operation, RemoveEdge begins
by searching for the source and destination vertices, returning “VERTEX NOT
PRESENT ”if either vertex is absent. Subsequently, it locates the ENode cor-
responding to the destination vertex in the edge list of the source vertex. If
the ENode is absent, it signifies that the edge does not exist. Conversely, if the
ENode is present, RemoveEdge examines the delete timestamp of the latest
version. If the delete timestamp is already set, indicating that the edge has been
deleted, “EDGE NOT PRESENT ”is returned. Otherwise, the delete timestamp is
initially set to −1, followed by setting it to the current global timestamp.

Following the setting of the delete timestamp of the edge, RemoveEdge ver-
ifies whether the source or destination vertex has been deleted. If either vertex
has been deleted, it checks whether the deletion occurred before the edge dele-
tion. In such a scenario, “VERTEX NOT PRESENT ”is returned; otherwise, “EDGE
REMOVED ”is returned.
ContainsEdge method, detailed in Algorithm 1.6, is designed to determine
the presence of an edge and retrieve its weight if it exists. Similar to preceding
edge-related methods, it begins by verifying the presence of both the source and
destination vertices. If either vertex is not found, the method promptly returns
“VERTEX NOT PRESENT ”. Subsequently, it checks the presence of the edge itself.
If the edge is not found, “EDGE NOT PRESENT ”is returned.

In the event that the edge is indeed present, ContainsEdge further ensures
that neither the source vertex nor the destination vertex has been concurrently
deleted before the edge was added, as indicated by checking the timestamp of the
deleted vertex. If such deletion is detected, “VERTEX NOT PRESENT ”is returned
to indicate that the edge cannot be accessed due to the deletion of one of its
vertices. Otherwise, the weight of the edge is returned as expected.
4.3 Wait-Free Graph Set Operation
All graph set operations, such as SSSP, BFS, Snapshot, Getpath, leverage
the versioning mechanism previously discussed. Consequently, an atomic fetch
and increment operation is performed on the global timestamp before initiat-
ing any graph set operation. Subsequently, the operation traverses through the



Concurrent Wait-Free Graph Snapshots using Multi-Versioning 11

125: BFS(i)
126: ts← getTS()
127: ⟨v_ver⟩ ← H.FindVplus(i, ts)
128: if (v_ver = nullptr) then
129: return VERTEX NOT PRESENT
130: else
131: queue⟨V node_version⟩ Q
132: list bfs_l
133: bfs_l .insert(v_ver.k)
134: Q.insert(v_ver)
135: while (!Q.empty()) do

136: top← Q.pop()
137: c_edge← top.enext
138: while c_edge do
139: e_ver ← FindEv(c_edge, ts)
140: if (e_ver) then
141: d_v ← e_ver.dest_ver
142: if (d_v.k /∈ bfs_l) then
143: bfs_l.insert(d_v.k)
144: Q.push(d_v)

145: c_edge← c_edge.enext

146: return bfs_l

Algorithm 1.7: BFS Operation.

vertices or edges that were active during the timestamp retrieved, ensuring a
consistent snapshot. Due to space constraints, we focus solely on discussing the
BFS operation in this paper, as the remaining graph set operations follow a
similar approach.

147: setTs(Vnode_version v)
148: c_ver ← v.head
149: if (c_ver.insert_ts = −1) then
150: ts← global_ts
151: cas(c_ver.insert_ts,−1, ts)
152: if (c_ver.delete_ts = −1) then
153: ts← global_ts
154: cas(c_ver.delete_ts,−1, ts)

155: read(Vnode_version v)
156: if (v.insert_ts = −1 ∨ v.delete_ts =
−1) then

157: setTs(v)
158: return v
159: getTS()
160: ts← global_ts
161: cas(global_ts, ts, ts + 1)
162: return ts

Algorithm 1.8: Pseudocode of setTs, read and getTS Operation.

BFS This method systematically explores a graph’s vertices reachable from a
specified source vertex in BFS (Breadth-First Search) order. Commencing with
the getTS operation at line 126, the algorithm initiates an atomic fetch and
increment operation on the global timestamp. The retrieved timestamp, denoted
as t, serves as the reference point for collecting all vertices and edges existing at
that particular timestamp.

The FindVplus method returns an active version of the source vertex (if
it exists) based on the timestamp t. If no vertex version is identified, it grace-
fully returns nullptr, signaling a non-existent vertex version. The algorithm then
proceeds to create a queue that encapsulates all the vertex version nodes requir-
ing traversal, commencing from the source vertex node. Simultaneously, a list is
instantiated to track the order in which vertices are traversed during the BFS
exploration.

The algorithm strategically dequeues elements one by one, inspecting all
edges present at timestamp t. It appends the destination vertices of these edges
to the queue and to the BFS list if they have not been visited previously. This
process continues until the queue is empty, indicating the completion of the
BFS traversal. Subsequently, the algorithm returns the list of vertices traversed
during the BFS exploration.



12 Bhardwaj et al.

4.4 Memory Management

We have leveraged the concept of multi-version concurrency control [19] to exe-
cute consistent snapshots efficiently. As the number of update operations esca-
lates, the count of version nodes in the graph increases as well. This often results
in storing versions that far are too old to serve any useful purpose, thus leading
to bloating of memory. To address this challenge, we have integrated DEBRA
[3], a lock-free memory reclamation algorithm, into our solution. Our imple-
mentation meticulously tracks ongoing graph-set operations by threads along
with their timestamps. This enables us to identify outdated versions within the
graph’s history and reclaim those versions accordingly, thereby ensuring optimal
memory utilization.

5 Evaluations

Experimental Setup. Our experimentation took place on a system equipped
with an AMD EPYC 7452 CPU housing 64 cores, featuring a clock speed spec-
trum ranging from 1.5 GHz to 2.3 GHz. Each core operates with two logical
threads and possesses exclusive 32KB L1 data and instruction caches. Collabo-
ratively, core pairs share a 512KB L2 cache and a substantial 16MB L3 cache.
The system’s robust configuration extends to 252GB of RAM and a 2TB hard
disk. Running on Ubuntu 18.04.6 LTS. The code, compiled using g++ 11.1.0
with -std=c++17, is intricately linked with pthread and atomic libraries. Our
methodology involves averaging results from multiple runs, with a strategic cache
pre-warming during the initial iterations. a

Ligra [25] Obst-Free
[5]

WF [2] Panigraham
[4]

Version
Graph

Version
Graph with

MR

1 8 16 32 64 128
103

104

105

106

107

Number of Threads

T
hr

ou
gh

pu
t

(a)

1 8 16 32 64 128
103

104

105

106

107

Number of Threads

T
hr

ou
gh

pu
t

(b)

Fig. 2: Performance of our implementation compared to its counterparts for point operations. x-
axis: Number of threads. y-axis: Throughput. a) Update Heavy Workload, b) Read Heavy Workload.

a The code is available at https://github.com/PDCRL/VersionConcGraph.git



Concurrent Wait-Free Graph Snapshots using Multi-Versioning 13

In each experiment, we initialize the data structure with input vertices and
edges of wiki-vote [1] dataset. Subsequently, we generate a random permuta-
tion for ADT point operations and graph set operations. The distribution is
over the following ordered set of operations: AddVertex, RemoveVertex,
ContainsVertex, AddEdge, RemoveEdge, ContainsEdge. Specifically:

1. Read Heavy Workload: 3%, 2%, 45%, 3%, 2%, 45%
2. Update Heavy Workload: 12%, 13%, 25%, 13%, 12%, 25%, 2%

For graph set operations, the distribution equally samples from all other
point operations.
Algorithms: We have conducted a comparative analysis between our versioned
graph algorithm and several state-of-the-art graph algorithms, including: (a)
Ligra [25] (b) Obstruction Free Graph Snapshot (Obst-Free) [5], (c) Wait-
free Graph Snapshot (WF) [2], (d) Panigraham [4]. We aimed to encompass
all algorithms that are fully dynamic, allowing concurrent addition and removal
of vertices and edges. We chose not to compare our results with GraphOne [18],
as Panigraham [4] significantly outperforms it.

Obst-Free
[5] WF [2] Panigraham

[4]
Version
Graph

Version
Graph with

MR

1 8 16 32 64 128
103

104

105

Number of Threads

T
hr

ou
gh

pu
t

(a)

1 8 16 32 64 128
103

104

105

Number of Threads

T
hr

ou
gh

pu
t

(b)
Fig. 3: Performance of our implementation compared to its counterparts for complete snapshot
operation. x-axis: Number of threads. y-axis: Throughput. a) Update Heavy Workload with complete
Snapshot, b) Read Heavy Workload with complete snapshot.

Memory Management imposes a substantial overhead on the performance of
lock-free data structures. Interestingly, some of the algorithms we compared with
did not incorporate any memory reclamation technique. Thus, in our results, we
present findings for both scenarios: with and without memory reclamation.
Graph Point Operation In our comparative analysis, we assessed our im-
plementation for point operations against state-of-the-art algorithms in Figure



14 Bhardwaj et al.

Ligra [25] Obst-Free
[5]

Panigraham
[4]

Version
Graph

Version
Graph with

MR

1 8 16 32 64 128
103

104

105

106

Number of Threads

T
hr

ou
gh

pu
t

(a)

1 8 16 32 64 128
103

104

105

106

Number of Threads

T
hr

ou
gh

pu
t

(b)
Fig. 4: Performance of our implementation compared to its counterparts for BFS operation. x-
axis: Number of threads. y-axis: Throughput. a) Update Heavy Workload with BFS, b) Read Heavy
Workload with BFS.

2. Despite the overhead of maintaining versions, our Version Graph algo-
rithm demonstrated superior performance compared to its counterparts. It out-
performed all other algorithms except Panigraham [4], by a large degree of
magnitude. However, when compared to Panigraham [4], Version Graph
showcased a noteworthy improvement, achieving a 20% higher throughput. Fur-
thermore, our loss in throughput due to garbage collection remained minimal,
especially considering the absence of concurrent graph-set operations. We con-
ducted comparisons with and without memory reclamation, considering that
many of our counterparts do not employ any memory reclamation techniques.
Graph Complete Snapshot Operation The complete snapshot operation of
a graph plays a crucial role in concurrent graph processing, particularly for tasks
like calculating Betweenness Centrality, All Pair Shortest Path, Diameter, etc.
This operation enables efficient execution of such tasks by providing a consistent
view of the graph. We have compared our implementation with its counterparts
for a complete snapshot in Figure 3. Our implementation of the complete snap-
shot operation showcased remarkable performance compared to its obstruction-
free counterparts, exhibiting a superiority with a large degree of magnitude.
Notably, without memory reclamation, our multi-version graph surpassed WF
[2] by a significant margin of 20%, primarily attributable to the substantial
overhead of graph construction. While we incurred some performance loss due
to memory reclamation, it’s important to note that we compared our implemen-
tation without memory reclamation against counterparts as all its counterparts
lack memory reclamation mechanism.
Graph Set Operation with partial snapshot In Figure 4 and 5, we com-
pared our implementation against counterparts in terms of graph set operations
like BFS and SSSP. Leveraging the wait-free nature of our algorithm and others
being obstruction-free, we managed to surpass them in performance with a sig-



Concurrent Wait-Free Graph Snapshots using Multi-Versioning 15

Ligra [25] Obst-Free
[5]

Panigraham
[4]

Version
Graph

Version
Graph with

MR

1 8 16 32 64 128
103

104

105

106

Number of Threads

T
hr

ou
gh

pu
t

(a)

1 8 16 32 64 128
103

104

105

106

Number of Threads

T
hr

ou
gh

pu
t

(b)
Fig. 5: Performance of our implementation compared to its counterparts for SSSP operation. x-axis:
Number of threads. y-axis: Throughput. a) Update Heavy Workload with SSSP, b) Read Heavy
Workload with SSSP.

nificant degree of magnitude. Notably, with a single thread, the obstruction-free
variants exhibited superior performance compared to the wait-free version, ow-
ing to the absence of obstructions. However, as the number of threads increased,
the performance of the obstruction-free algorithm declined due to an escalation
in obstructions.
6 Conclusion
In our implementation, we introduce a novel approach to concurrent graph pro-
cessing, incorporating a wait-free mechanism for both partial and complete snap-
shots using multi-version concurrency control. Our algorithm ensures lock-free
execution for all point operations and wait-free performance for graph analyt-
ics operations, surpassing its counterparts by a significant margin. Notably, our
implementation marks the first instance of a wait-free partial snapshot opera-
tion in graph processing. However, the current implementation performs point
operation lock-free, so making it wait-free is another future work.

References
1. SNAP Stanford Network Analysis Project: Wiki-Vote dataset. https://snap.

stanford.edu/data/wiki-Vote.html. Accessed: March 2024.
2. Gaurav Bhardwaj, Sathya Peri, and Pratik Shetty. Brief announcement: Non-

blocking dynamic unbounded graphs with wait-free snapshot. In International
Symposium on Stabilizing, Safety, and Security of Distributed Systems, pages 106–
110. Springer, 2023.

3. Trevor Alexander Brown. Reclaiming memory for lock-free data structures: There
has to be a better way. In Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing, pages 261–270, 2015.

4. Bapi Chatterjee, Sathya Peri, Muktikanta Sa, and Komma Manogna. Non-blocking
dynamic unbounded graphs with worst-case amortized bounds. In International
Conference on Principles of Distributed Systems, 2021.

https://snap.stanford.edu/data/wiki-Vote.html
https://snap.stanford.edu/data/wiki-Vote.html


16 Bhardwaj et al.

5. Bapi Chatterjee, Sathya Peri, Muktikanta Sa, and Nandini Singhal. A Simple and
Practical Concurrent Non-blocking Unbounded Graph with Linearizable Reach-
ability Queries. In ICDCN 2019, Bangalore, India, January 04-07, 2019, pages
168–177, 2019.

6. Bapi Chatterjee, Ivan Walulya, and Philippas Tsigas. Help-optimal and Language-
portable Lock-free Concurrent Data Structures. In ICPP, pages 360–369, 2016.

7. Ved P. Chaudhary, Chirag Juyal, Sandeep Kulkarni, Sweta Kumari, and Sathya
Peri. Achieving starvation-freedom in multi-version transactional memory systems.
In Networked Systems: 7th International Conference, NETYS 2019, Marrakech,
Morocco, June 19–21, 2019, Revised Selected Papers, page 291–310, Berlin, Hei-
delberg, 2019. Springer-Verlag. doi:10.1007/978-3-030-31277-0_20.

8. Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao Han,
and Wenguang Chen. Risgraph: A real-time streaming system for evolving graphs
to support sub-millisecond per-update analysis at millions ops/s. In Proceedings of
the 2021 International Conference on Management of Data, pages 513–527, 2021.

9. Timothy L. Harris. A Pragmatic Implementation of Non-blocking Linked-Lists. In
DISC, pages 300–314, 2001.

10. Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer
III, and Nir Shavit. A Lazy Concurrent List-Based Set Algorithm. Parallel Pro-
cessing Letters, 17(4):411–424, 2007.

11. Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algo-
rithm. J. Parallel Distrib. Comput., 70(1):1–12, jan 2010.

12. Maurice Herlihy. Wait-free Synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, January 1991.

13. Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-Free Synchro-
nization: Double-Ended Queues as an Example. In (ICDCS, pages 522–529, 2003.

14. Maurice Herlihy and Nir Shavit. On the Nature of Progress. In OPODIS, pages
313–328, 2011.

15. Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

16. Nikolaos D. Kallimanis and Eleni Kanellou. Wait-Free Concurrent Graph Objects
with Dynamic Traversals. In OPODIS, pages 1–27, 2015.

17. Alex Kogan and Erez Petrank. Wait-Free Queues With Multiple Enqueuers and
Dequeuers. In PPOPP, pages 223–234, 2011.

18. Pradeep Kumar and H Howie Huang. Graphone: A data store for real-time ana-
lytics on evolving graphs. ACM Transactions on Storage (TOS), 15(4):1–40, 2020.

19. Priyanka Kumar, Sathya Peri, and K. Vidyasankar. A TimeStamp Based Multi-
version STM Algorithm. In ICDCN, pages 212–226, 2014.

20. Edya Ladan-Mozes and Nir Shavit. An Optimistic Approach to Lock-free FIFO
Queues. Distributed Computing, 20(5):323–341, 2008.

21. Yujie Liu, Kunlong Zhang, and Michael Spear. Dynamic-sized Nonblocking Hash
Tables. In PODC, pages 242–251, 2014.

22. Maged M. Michael. High Performance Dynamic Lock-Free Hash Tables and List-
Based Sets. In SPAA, pages 73–82, 2002.

23. Jacob Nelson, Ahmed Hassan, and Roberto Palmieri. Bundled references: an ab-
straction for highly-concurrent linearizable range queries. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 448–450, 2021.

24. Erez Petrank and Shahar Timnat. Lock-free data-structure iterators. In Interna-
tional Symposium on Distributed Computing, 2013.

https://doi.org/10.1007/978-3-030-31277-0_20


Concurrent Wait-Free Graph Snapshots using Multi-Versioning 17

25. Julian Shun and Guy E. Blelloch. Ligra: a lightweight graph processing frame-
work for shared memory. SIGPLAN Not., 48(8):135–146, feb 2013. doi:10.1145/
2517327.2442530.

26. Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-Free
Linked-Lists. In OPODIS, pages 330–344, 2012.

27. Yuanhao Wei, Naama Ben-David, Guy E Blelloch, Panagiota Fatourou, Eric Rup-
pert, and Yihan Sun. Constant-time snapshots with applications to concurrent
data structures. In Proceedings of the 26th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pages 31–46, 2021.

28. Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: The-
ory, Algorithms, and the Practice of Concurrency Control and Recovery. Morgan
Kaufmann, 2002.

29. Kunlong Zhang, Yujiao Zhao, Yajun Yang, Yujie Liu, and Michael F. Spear. Prac-
tical Non-blocking Unordered Lists. In DISC, pages 239–253, 2013.

https://doi.org/10.1145/2517327.2442530
https://doi.org/10.1145/2517327.2442530

	Concurrent Wait-Free Graph Snapshots using Multi-Versioning

