
Concurrent Wait-Free Graph
Snapshots using Multi-Versioning

Gaurav Bhardwaj, Ayaz Ahmed, Dr. Sathya Peri
Indian Institute of Technology, Hyderabad.

1

NETYS 2024

This project is funded by SERB Project CRG/2022/009391.

Content

● Background

● Motivation

● Graph Data Structure

● Graph ADT operations

● Memory Reclamation

● Results

Sec 1/7 2/45

Graphs
● Graphs provide a visual representation of relationships and connections in data, making complex

structures easier to understand.

● Graphs are ideal for modeling various relationships such as social networks, web links, and

dependencies between tasks.

● Graphs allow for flexible data representation, enabling the modeling of diverse scenarios and

real-world interactions.

Sec 2/7 3/45

Concurrent Graphs:
● In applications like social media analytics

and network monitoring, concurrent

graphs enable real-time analysis of

dynamic data.

● Concurrent graphs are essential in

large-scale systems, ensuring scalability

and efficient processing of data in parallel.

● Concurrent graphs optimize resource

utilization in multi-core processors,

enhancing the performance of graph-based

algorithms.

Sec 2/7 4/45

Correctness (Consistency)
● The ADT operations implemented by the data structure are represented by their invocation and

return steps.

● For an arbitrary concurrent execution of a set of ADT operations should satisfy the consistency

framework Linearizability.

Sec 3/7 5/45

Linearizability
● Assign an atomic step as a linearization point (LP) inside the execution interval of each of the

operations and show that the data structure invariants are maintained across the LPs.

● An arbitrary concurrent execution is equivalent to a valid sequential execution obtained by ordering

the operations by their LPs.

Sec 3/7 6/45

Linearizability Example

Sec 3/7 7/45

Non-Blocking Progress Condition
An execution is said to be Non-Blocking if it doesn't blocks the execution of other threads.

● Obstruction Free: A thread is guaranteed to finish in a finite number of steps in isolation.

● Lock-Freedom: Atleast one thread should be able to finish in the finite number of steps.

● Wait-Freedom: All threads should be able to finish in a finite number of steps.

Sec 3 /7 8/45

Related Work
● Chatterjee et al.a

○ Proposed a Lock-Free dynamic unbounded unweighted graph.
○ Used Lock-Free Linked Lists to store vertices and edges.
○ Used obstruction free method to perform the partial snapshot on the graph.

● Chatterjee et al.b
○ Extended the previous work for speed up.
○ Proposed a Lock-Free dynamic unbounded weighted graph.
○ Used Lock-Free Hash Tables to store vertices and Binary Search tree to store edges.
○ Used obstruction free method to perform the partial snapshot on the graph.

● Bhardwaj et al.c
○ Extended the previous work with a wait-free snapshot operation.
○ Used wait-free snapshot algorithm to perform the complete snapshot of the graph.
○ Snapshot of the graph is used to perform the graph analytics operation.

a “A Simple and Practical Concurrent Non-blocking Unbounded Graph with Reachability Queries”, Bapi Chatterjee, Sathya Peri, Muktikanta Sa, Nandini
Singhal in the 20th International Conference on Distributed Computing and Networking (ICDCN), Bangalore, India, January 2019.

b “Non-blocking dynamic unbounded graphs with worst-case amortized bounds”, Bapi Chatterjee, Sathya Peri, Muktikanta Sa, Manogana In: International
Conference on Principles of Distributed Systems (2021)

c “Non-blocking Dynamic Unbounded Graphs with Wait-Free Snapshot”, Gaurav Bhardwaj, Sathya Peri, and Pratik Shetty: 25th International Symposium on
Stabilization, Safety, and Security (2023)

Sec 3/7 9/45

Drawback:
● Current Literature supports obstruction free partial snapshot or wait-free

complete snapshot.
● As a result, a partial snapshot operation may continuously get interrupted

○ Hence may never terminate.

● Complete Snapshot is costly as compared to the partial snapshot.
○ Graph analytics operation which requires partial snapshot still has to undergo complete

snapshot.

Sec 3/7 10/45

Motivation

● To Construct a wait-free partial Snapshot for an Unbounded graph while allowing

concurrent non-blocking (lock-free) update methods.

Sec 3/7 11/45

Multiversioning:
● A multiversion object maintains its previous versions, so threads can have

access to the history of the object.
● Widely used in:

○ Database
○ STM
○ Concurrent Data structure

● Threads can have access to the history of the object.
● Allows to update the data structure without hindering the snapshot.

Sec 4/7 12/45

Graph Data Structure:
● Each vertex in the graph is stored as Vnode in a concurrent lock-free resizable hash

table.
● Each Vnode has a key and a pointer to the vertex version list.
● Each node (Vnode_version) in the vertex version list contains the pointer to the

corresponding edge list stored in a lock-free linked list.
● Each Vnode_version node contains the insert timestamp and a delete timestamp.

Sec 4/7 13/45

Graph Data Structure:

● Each edge is stored as Enode in a concurrent lock-free linked list (edge list)
associated with each version node.

● Enode stores the key of the destination vertex and the pointer to the edge version
list.

● Each node (Enode_version) in the edge version list contains weight, insert
timestamp and delete timestamp.

● Enode_version points to the next version and also stores the reference to the
destination Vnode_version.

●

Sec 4/7 14/45

Graph Data Structure

Sec 4/7 15/45

ADT:
● AddVertex(𝑘)
● RemoveVertex(𝑘)
● AddEdge(𝑖, 𝑗,𝑤)
● RemoveEdge(𝑖, 𝑗)
● ContainsVertex(𝑘)
● ContainsEdge(𝑖, 𝑗)
● BFS(𝑣)
● SSSP(𝑣)
● Snapshot()

Sec 4/7 16/45

Addvertex(10) : Case-1
● Vnode 10 doesn’t Exists

Sec 5/7 17/45

Addvertex(10) : Case-1
● Vnode 10 is inserted with insert_ts initialized to -1

Sec 5/7 18/45

Addvertex(10) : Case-1
● Insert timestamp is set to current global timestamp

Sec 5/7 19/45

Addvertex(15) : Case-2
● Case2: When Vnode exists but there is no active version.

Sec 5/7 20/45

Addvertex(15) : Case-2
● A new Vnode_version is added on the top of the list with insert timestamp as -1

Sec 5/7 21/45

Addvertex(15) : Case-2
● Insert timestamp is set to current global timestamp

Sec 5/7 22/45

Addvertex(18) : Case-3
● Already exists.

Sec 5/7 23/45

Remove Vertex(15) : Case-1
● Active version_vertex exists.

Sec 5/7 24/45

Remove Vertex(15) : Case-1
● Set the delete timestamp to - 1.

Sec 5/7 25/45

Remove Vertex(15) : Case-1
● Set the delete timestamp to current global timestamp.

Sec 5/7 26/45

Remove Vertex(15) : Case-2
● Set TS if -1.

Sec 5/7 27/45

Remove Vertex(15) : Case-2
● Set the delete timestamp to current global timestamp.

Sec 5/7 28/45

Remove Vertex(15) : Case-3
● Delete Timestamp of the vertex is already set

Sec 5/7 29/45

Add Edge(10,15) : Case-1
Case1: Vertex 15 doesn’t exists.

Sec 5/7 30/45

Add Edge(10,15) : Case-2
Case2: Enode(10,15) doesn’t exists.

Sec 5/7 31/45

Add Edge(10,15) : Case-2
Case2: New Enode is created with insert timestamp as -1.

Sec 5/7 32/45

Add Edge(10,15)
Case2: Set insert timestamp to current timestamp.

Sec 5/7 33/45

Add Edge(10,15) : Case-3
Case3: Adding a new Edge Version.

Sec 5/7 34/45

Add Edge(10,15) : Case-3
Case3: Adding a new Edge Version.

Sec 5/7 35/45

Add Edge(10,15) : Case-3
Case3: Adding a new Edge Version.

Sec 5/7 36/45

BFS(vertex 10) with TS 16
Current Partial

Snapshot

Sec 5/7 37/45

BFS(vertex 10) with TS 16
Current Partial

Snapshot

Sec 5/7 38/45

● Step-1: Capture the smallest active snapshot timestamp among all the threads, say T.
● Step-2: Iterate the complete data structure and pass all the edge nodes having timestamp smaller than or

equal to T-1 to DEBRA.
● Step-3: After removing all the reference to vertex nodes from edge nodes in step-2, re-iterate the complete

data structure and remove all the vertex nodes having timestamp smaller than or equal to T-1 to DEBRA.

Memory Reclamation

Sec 6/7 39/45

● Workload Distribution : The distribution is over the following ordered set of Operations (AddVertex,
RemoveVertex, ContainsVertex, AddEdge, RemoveEdge, ContainsEdge, and Critical
Operation(Snapshot/BFS/Betweenness Centrality).

○ Read Heavy Workload : 3%, 2%, 44%, 3%, 2%, 44% , 2%
○ Update Heavy Workload: 13%, 12%, 24%, 13%, 12%, 24% , 2%

● Algorithms : We compare our implementation to Obstruction-free and wait-free implementations of same
operations namely

○ Obst-Free: “A Simple and Practical Concurrent Non-blocking Unbounded Graph with Reachability Queries”, Bapi Chatterjee, Sathya
Peri, Muktikanta Sa, Nandini Singhal in the 20th International Conference on Distributed Computing and Networking (ICDCN), Bangalore, India,
January 2019.

○ PANIGRAHAM: “Non-blocking dynamic unbounded graphs with worst-case amortized bounds”, Bapi Chatterjee, Sathya Peri,
Muktikanta Sa, Manogana In: International Conference on Principles of Distributed Systems (2021)

○ Graph_Iterator: “Non-blocking Dynamic Unbounded Graphs with Wait-Free Snapshot”, Gaurav Bhardwaj, Sathya Peri, and Pratik
Shetty: 25th International Symposium on Stabilization, Safety, and Security (2023)

○ LIGRA

Results and Analysis :

Sec 7/7 40/45

Results: Point Operation

Sec 7/7 41/45
Update Heavy Workload Read Heavy Workload

Results: Snapshot

Sec 7/7 42/45
Update Heavy Workload Read Heavy Workload

Results: BFS

Sec 7/7 43/45
Update Heavy Workload Read Heavy Workload

Result: SSSP

Sec 7/7 44/45
Update Heavy Workload Read Heavy Workload

Conclusion:
● First algorithm which supports partial wait-free snapshot for the graph.
● Significant improvement in the performance when compared to its

counterparts.

Sec 7/7 45/45

46

