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Graphs
● Graphs provide a visual representation of relationships and connections in data, making complex 

structures easier to understand.

● Graphs are ideal for modeling various relationships such as social networks, web links, and 

dependencies between tasks.

● Graphs allow for flexible data representation, enabling the modeling of diverse scenarios and 

real-world interactions.
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Concurrent Graphs:
● In applications like social media analytics 

and network monitoring, concurrent 

graphs enable real-time analysis of 

dynamic data.

● Concurrent graphs are essential in 

large-scale systems, ensuring scalability 

and efficient processing of data in parallel.

● Concurrent graphs optimize resource 

utilization in multi-core processors, 

enhancing the performance of graph-based 

algorithms.
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Correctness (Consistency)
● The ADT operations implemented by the data structure are represented by their invocation and 

return steps.

● For an arbitrary concurrent execution of a set of ADT operations should satisfy the consistency 

framework Linearizability.
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Linearizability
● Assign an atomic step as a linearization point (LP) inside the execution interval of each of the 

operations and show that the data structure invariants are maintained across the LPs.

● An arbitrary concurrent execution is equivalent to a valid sequential execution obtained by ordering 

the operations by their LPs.
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Linearizability Example
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Non-Blocking Progress Condition
An execution is said to be Non-Blocking if it doesn't blocks the execution of other threads.

● Obstruction Free: A thread is guaranteed to finish in a finite number of steps in isolation.

● Lock-Freedom:  Atleast one thread should be able to finish in the finite number of steps.

● Wait-Freedom: All threads should be able to finish in a finite number of steps.
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Related Work
● Chatterjee et al.a 

○ Proposed a Lock-Free dynamic unbounded unweighted graph.
○ Used Lock-Free Linked Lists to store vertices and edges.
○ Used obstruction free method to perform the partial snapshot on the graph.

● Chatterjee et al.b 
○ Extended the previous work for speed up.
○ Proposed a Lock-Free dynamic unbounded weighted graph.
○ Used Lock-Free Hash Tables to store vertices and Binary Search tree to store edges.
○ Used obstruction free method to perform the partial snapshot on the graph.

● Bhardwaj et al.c 
○ Extended the previous work with a wait-free snapshot operation.
○ Used wait-free snapshot algorithm to perform the complete snapshot of the graph.
○ Snapshot of the graph is used to perform the graph analytics operation.

a “A Simple and Practical Concurrent Non-blocking Unbounded Graph with Reachability Queries”, Bapi Chatterjee, Sathya Peri, Muktikanta Sa, Nandini 
Singhal in the 20th International Conference on Distributed Computing and Networking (ICDCN), Bangalore, India, January 2019.

b  “Non-blocking dynamic unbounded graphs with worst-case amortized bounds”,  Bapi Chatterjee, Sathya Peri, Muktikanta Sa, Manogana In: International 
Conference on Principles of Distributed Systems (2021)

c “Non-blocking Dynamic Unbounded Graphs with Wait-Free Snapshot”,  Gaurav Bhardwaj, Sathya Peri, and Pratik Shetty:  25th International Symposium on 
Stabilization, Safety, and Security (2023)
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Drawback:
● Current Literature supports obstruction free partial snapshot or wait-free 

complete snapshot.
● As a result, a partial snapshot operation may continuously get interrupted

○ Hence may never terminate. 

● Complete Snapshot is costly as compared to the partial snapshot.
○ Graph analytics operation which requires partial snapshot still has to undergo complete 

snapshot.
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Motivation

● To Construct a wait-free partial Snapshot for an Unbounded graph while allowing 

concurrent non-blocking (lock-free) update methods.
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Multiversioning:
● A multiversion object maintains its previous versions, so threads can have 

access to the history of the object. 
● Widely used in:

○ Database
○ STM
○ Concurrent Data structure 

● Threads can have access to the history of the object.
● Allows to update the data structure without hindering the snapshot.
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Graph Data Structure:
● Each vertex in the graph is stored as Vnode in a concurrent lock-free resizable hash 

table.
● Each Vnode has a key and a pointer to the vertex version list.
● Each node (Vnode_version) in the vertex version list contains the pointer to the 

corresponding edge list stored in a lock-free linked list.
● Each Vnode_version node contains the insert timestamp and a delete timestamp. 
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Graph Data Structure:

● Each edge is stored as Enode in a concurrent lock-free linked list (edge list) 
associated with each version node.

● Enode stores the key of the destination vertex and the pointer to the edge version 
list.

● Each node (Enode_version) in the edge version list contains weight, insert 
timestamp and delete timestamp.

● Enode_version points to the next version and also stores the reference to the 
destination Vnode_version.

●
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Graph Data Structure

Sec 4/7    15/45



ADT: 
● AddVertex(𝑘) 
● RemoveVertex(𝑘) 
● AddEdge(𝑖, 𝑗,𝑤) 
● RemoveEdge(𝑖, 𝑗) 
● ContainsVertex(𝑘)
● ContainsEdge(𝑖, 𝑗)
● BFS(𝑣) 
● SSSP(𝑣)
● Snapshot()
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Addvertex(10) : Case-1
● Vnode 10 doesn’t Exists
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Addvertex(10) : Case-1
● Vnode 10 is inserted with insert_ts initialized to -1
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Addvertex(10) : Case-1
● Insert timestamp is set to current global timestamp
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Addvertex(15) : Case-2
● Case2: When Vnode exists but there is no active version.
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Addvertex(15) : Case-2
● A new Vnode_version is added on the top of the list with insert timestamp as -1
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Addvertex(15)  : Case-2
● Insert timestamp is set to current global timestamp
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Addvertex(18)  : Case-3
● Already exists.
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Remove Vertex(15) : Case-1
● Active version_vertex exists.
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Remove Vertex(15)  : Case-1
● Set the delete timestamp to - 1.
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Remove Vertex(15) : Case-1
● Set the delete timestamp to current global timestamp.
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Remove Vertex(15)  : Case-2
● Set TS if -1.
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Remove Vertex(15) : Case-2
● Set the delete timestamp to current global timestamp.
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Remove Vertex(15) : Case-3
● Delete Timestamp of the vertex is already set
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Add Edge(10,15) : Case-1
Case1: Vertex 15 doesn’t exists.
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Add Edge(10,15) : Case-2
Case2: Enode(10,15) doesn’t exists.
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Add Edge(10,15)  : Case-2
Case2: New Enode is created with insert timestamp as -1.
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Add Edge(10,15)
Case2: Set insert timestamp to current timestamp.
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Add Edge(10,15)  : Case-3
Case3: Adding a new Edge Version.
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Add Edge(10,15)  : Case-3
Case3: Adding a new Edge Version.
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Add Edge(10,15) :  Case-3
Case3: Adding a new Edge Version.
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BFS(vertex 10) with TS 16
Current Partial 

Snapshot

Sec 5/7    37/45



BFS(vertex 10) with TS 16
Current Partial 

Snapshot

Sec 5/7    38/45



● Step-1: Capture the smallest active snapshot timestamp among all the threads, say T.
● Step-2: Iterate the complete data structure and pass all the edge nodes having timestamp smaller than or 

equal to T-1 to DEBRA.
● Step-3: After removing all the reference to vertex nodes from edge nodes in step-2, re-iterate the complete 

data structure and remove all the vertex nodes having timestamp smaller than or equal to T-1 to DEBRA.

Memory Reclamation
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● Workload Distribution : The distribution is over the following ordered set of Operations (AddVertex, 
RemoveVertex, ContainsVertex, AddEdge, RemoveEdge, ContainsEdge, and Critical 
Operation(Snapshot/BFS/Betweenness Centrality).

○ Read Heavy Workload : 3%, 2%, 44%, 3%, 2%, 44% , 2% 
○ Update Heavy Workload: 13%, 12%, 24%, 13%, 12%, 24% , 2%

● Algorithms :  We compare our implementation to Obstruction-free and wait-free implementations of same 
operations namely

○ Obst-Free: “A Simple and Practical Concurrent Non-blocking Unbounded Graph with Reachability Queries”, Bapi Chatterjee, Sathya 
Peri, Muktikanta Sa, Nandini Singhal in the 20th International Conference on Distributed Computing and Networking (ICDCN), Bangalore, India, 
January 2019.

○ PANIGRAHAM: “Non-blocking dynamic unbounded graphs with worst-case amortized bounds”,  Bapi Chatterjee, Sathya Peri, 
Muktikanta Sa, Manogana In: International Conference on Principles of Distributed Systems (2021)

○ Graph_Iterator: “Non-blocking Dynamic Unbounded Graphs with Wait-Free Snapshot”,  Gaurav Bhardwaj, Sathya Peri, and Pratik 
Shetty:  25th International Symposium on Stabilization, Safety, and Security (2023)

○ LIGRA

Results and Analysis :
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Results: Point Operation
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Results: Snapshot
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Results: BFS
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Result: SSSP

Sec 7/7   44/45
Update Heavy Workload Read Heavy Workload



Conclusion:
● First algorithm which supports partial wait-free snapshot for the graph.
● Significant improvement in the performance when compared to its 

counterparts.
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