
On Constructing a Byzantine Linearizable SWMR Atomic
Register from SWSR Atomic Registers

Ajay D. Kshemkalyani

University of Illinois Chicago

Chicago, United States

ajay@uic.edu

Manaswini Piduguralla

Indian Institute of Technology Hyderabad

Hyderabad, India

cs20resch11007@iith.ac.in

Sathya Peri

Indian Institute of Technology Hyderabad

Hyderabad, India

sathya_p@cse.iith.ac.in

Anshuman Misra

Purdue University Fort Wayne

Fort Wayne, United States

misra47@pfw.edu

ABSTRACT
The SWMR atomic register is a fundamental building block in

shared memory distributed systems and implementing it from

SWSR atomic registers is an important problem. While this prob-

lem has been solved in crash-prone systems, it has received less

attention in Byzantine systems. Recently, Hu and Toueg gave such

an implementation of the SWMR register from SWSR registers.

While their definition of register linearizability is consistent with

the definition of Byzantine linearizability of a concurrent history

of Cohen and Keidar, it has several drawbacks.

In this paper, we give a stronger definition of a Byzantine lineariz-

able register that overcomes these drawbacks. The construction of

a Byzantine linearizable SWMR atomic register from SWSR reg-

isters that meets our stronger definition is given in the full arxiv

report. The construction is correct when 𝑛 > 3𝑓 , where 𝑛 is the

number of readers, 𝑓 is the maximum number of Byzantine readers,

and the writer can also be Byzantine. The construction relies on a

public-key infrastructure.
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1 INTRODUCTION
Implementing shared registers from weaker types of registers is a

fundamental problem in distributed systems and has been exten-

sively studied [2, 3, 5, 6, 8, 13, 14, 17–22]. We consider the prob-

lem of implementing a single-writer multi-reader register (SWMR)

from single-writer single-reader (SWSR) registers in a system with

Byzantine processes. This SWMR register in a Byzantine setting is

of great importance in recent research. For example, Mostefaoui

et al. [16] prove that in message-passing systems with Byzantine

failures, there is a 𝑓 -resilient implementation of a SWMR register

if and only if 𝑓 < 𝑛/3 processes are faulty, where 𝑓 is the number

of Byzantine processes and 𝑛 is the total number of processes. It

was the first to give the definition of a linearizable SWMR register

in the presence of Byzantine processes and [4] generalized it to

objects of any type. Aguilera et al. [1] use atomic SWMR registers

to solve some agreement problems in hybrid systems subject to

Byzantine process failures. Cohen and Keidar [4] give 𝑓 -resilient

implementations of three objects – asset transfer, reliable broadcast,

atomic snapshots – using atomic SWMR registers in systems with

Byzantine failures where at most 𝑓 < 𝑛/2 processes are faulty.

Their implementations were based on their definition of Byzantine

linearizability of a concurrent history.

In other relatedwork, a SWMR register was built above amessage-

passing system where processes communicate using send/receive

primitives with the constraint that 𝑓 < 𝑛/3 [11, 16]. These works
do not use signatures. Unbounded history registers were required

in [11] whereas [16] used 𝑂 (𝑛2) messages per write operation.

Although building SWMR registers over SWSR registers or over

message-passing systems is equivalent as SWSR registers can be

emulated over send/receive and vice versa, this is a round-about

and expensive solution. A similar problem for the client-server

paradigm in message-passing systems was solved in [15] using

cryptography.

1.1 Motivation
The SWMR atomic register is seen to be a basic building block

in shared memory distributed systems and implementing it from

SWSR atomic registers is an important problem. While this problem

has been solved in crash-prone systems, it has received recent

attention in Byzantine systems. Recently, Hu and Toueg gave such

an implementation of the SWMR register from SWSR registers
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[9, 10]. While their definition of register linearizability is consistent

with the definition of Byzantine linearizability of a concurrent

history of Cohen and Keidar [4], both [4, 9, 10] as well as [11, 16]

have the following drawbacks.

(1) If the writer is Byzantine, the register is vacuously lineariz-

able no matter what values the correct readers return. Reads

by correct processes can return any value whatsoever includ-

ing the initial value while the register meets their definition

of linearizability. In particular, there is no view consistency.

For example, in the Hu-Toueg algorithm, consider a scenario

where a Byzantine writer writes a different data value asso-

ciated with the same counter value to the various readers’

SWSR registers. The correct readers will return different data

values associated with the same counter value, thus having

inconsistent views. An example application where this is

a problem is collaborative editing for a document hosted

on a single server. Another reason why this is problematic

is that it violates the agreement clause of the well-known

consensus/Byzantine agreement problem, which requires

that all non-faulty processes must agree on the same value

even if the source is Byzantine. We require view consistency.

(2) Their definition of register linearizability does not factor in,

or ignores, those values written by a Byzantine writer, by

honestly following the writer protocol for those values. We

need a stronger notion of a correct write operation that factors
in such values as being written correctly. Also, note that the

Byzantine writer is in control of the execution both above

and below the SWMR register interface and hence the value

that it writes in a correct write operation can be assumed

to be the value intended to be written (correctly) and not

altered by Byzantine behavior.

(3) Their definition of register linearizability allows a value writ-

ten by a Byzantine writer to just a single reader’s SWSR

register to be returned by a correct process. In order to vali-

date that the writer intended to write that value honestly, we

would like a minimum threshold number of readers’ SWSR

registers to be written that same value to enable that value to

become eligible for being returned to a correct reader. This

validates the intention of the Byzantine writer to write that

particular value.

(4) In their definition of register linearizability, their notion of a

“current” value returned by a correct reader is not related to

the most recent value written by a correct write operation

of a Byzantine writer. We need a more up to date version

of the value that can be returned by a correct reader. This

helps give a stronger guarantee of progress from the readers’

perspective.

Our definition of a Byzantine linearizable register is stronger than

not just that of [4, 9, 10] but also that of [11, 15, 16] and overcomes

the above drawbacks. Further, we are interested in implementing

the SWMR register over SWSR registers directly in the shared

memory model.

1.2 Contributions
(1) In this paper, we give a stronger definition of a Byzantine

linearizable register that overcomes all the above drawbacks

of [4, 9, 10] and [11, 15, 16]. We introduce the concept of

a correct write operation by a Byzantine writer as one that

conforms to the write protocol. We also introduce the no-

tion of a pseudo-correct write operation by a Byzantine writer,
which has the effect of a correct write operation. Only cor-

rect and pseudo-correct writes may be returned by correct

readers. The correct and pseudo-correct writes are totally

ordered and this order is the total order in which the writes

are performed.

(2) The construction of a Byzantine linearizable SWMR atomic

register from SWSR atomic registers that meets our stronger

definition is given in [12]. The construction is correct when

𝑛 > 3𝑓 , where 𝑛 is the number of readers, 𝑓 is the maximum

number of Byzantine readers, and the writer can also be

Byzantine. The construction relies on a public-key infras-

tructure (PKI).

The construction develops the idea of the readers validating

the logical timestamp of the writing of the values set aside

for them by the writer. A sufficient number of correct readers

will validate this consistently, and that forms the basis of the

total order used to ensure Byzantine register linearizability.

As compared to the algorithm in [9, 10] which can tolerate

any number of Byzantine readers, our algorithm requires

𝑓 < 𝑛/3. Also, in the algorithm in [9, 10], a reader that stops

reading also stops taking implementation steps whereas our

algorithm requires a reader helper thread to take infinitely

many steps even if it has no read operation to apply. The

algorithm in [9, 10] as well as our algorithm use a PKI.

2 MODEL AND PRELIMINARIES
2.1 Model Basics
We consider the shared memory model of a distributed system. The

system contains a set 𝑃 of asynchronous processes. These processes

access some shared memory objects. All inter-process communi-

cation is done through an API exposed by the objects. Processes

invoke operations that return some response to the invoking pro-

cess. We assume reliable shared memory but allow for an adversary

to corrupt up to 𝑓 processes in the course of a run. A corrupted pro-

cess is defined as being Byzantine and such a process may deviate

arbitrarily from the protocol. A non-Byzantine process is correct
and such a process follows the protocol and takes infinitely many

steps.

We also assume a PKI. Using this, each process has a public-

private key pair used to sign data and verify signatures of other

processes. A values 𝑣 signed by process 𝑝 is denoted ⟨𝑣⟩𝑝 .
We give an algorithm that emulates an object 𝑂 , viz., a SWMR

register from SWSR registers. We assume that there is adequate

access control such that a SWSR register can be accessed only by

the single writer and the single reader between whom the register

is set up, and that another (Byzantine) process cannot access it. The

algorithm is organized as methods of 𝑂 . A method execution is a

sequence of steps. It begins with the invoke step, goes through steps

that access lower-level objects, viz., SWSR registers, and ends with

a return step. The invocation and response delineate the method’s

execution interval. In an execution 𝜎 , each correct process invokes

methods sequentially, and steps of different processes are inter-

leaved. Byzantine processes take arbitrary steps irrespective of
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the protocol. The history 𝐻 of an execution 𝜎 is the sequence of

high-level invocation and response events of the emulated SWMR

register in 𝜎 . A history 𝐻 defines a partial order ≺𝐻 on operations.

𝑜𝑝1 ≺𝐻 𝑜𝑝2 if the response event of 𝑜𝑝1 precedes the invocation

event of 𝑜𝑝2 in 𝐻 . 𝑜𝑝1 is concurrent with 𝑜𝑝2 if neither precedes

the other.

In our algorithm, we assume that each reader process has a

helper thread that takes infinitely many steps even if the reader

stops reading the implemented register. These steps are outside the

invocation-response intervals of the readers’ own operations. Also,

the linearization point of a pseudo-correct write operation may

fall after the invocation-response interval. These are non-standard

features of our shared memory model.

2.2 Linearizability of a Concurrent History
Linearizability, a popular correctness condition for concurrent ob-

jects, is defined using an object’s sequential specification.

Definition 1. (Linearization of a concurrent history:) A lineariza-

tion of a concurrent history 𝐻 of object 𝑜 is a sequential history 𝐻 ′

such that:
(1) After removing some pending operations from 𝐻 and complet-

ing others by adding matching responses, it contains the same
invocations and responses as 𝐻 ′,

(2) 𝐻 ′ preserves the partial order ≺𝐻 , and
(3) 𝐻 ′ satisfies 𝑜’s sequential specification.

A SWMR register as well as a SWSR register expose the read
and write operations. The sequential specification of a SWMR and a

SWSR register states that a read operation from register 𝑅𝑒𝑔 returns

the value last written to 𝑅𝑒𝑔. Following Cohen and Keidar [4], we

manage Byzantine behavior in a way that provides consistency to

correct processes. This is achieved by linearizing correct processes’

operations and offering a degree of freedom to embed additional

operations by Byzantine processes.

Let 𝐻 |𝑐𝑜𝑟𝑟𝑒𝑐𝑡 denote the projection of history 𝐻 to all correct

processes. History 𝐻 is Byzantine linearizable if 𝐻 |𝑐𝑜𝑟𝑟𝑒𝑐𝑡 can be

augmented by (some) operations of Byzantine processes such that

the completed history is linearizable. Thus, there is another his-

tory with the same operations by correct processes as in 𝐻 , and

additional operations by at most 𝑓 Byzantine processes.

Definition 2. (Byzantine linearization of a concurrent history
[4]:) A history 𝐻 is Byzantine linearizable if there exists a history 𝐻 ′

such that 𝐻 ′ |𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝐻 |𝑐𝑜𝑟𝑟𝑒𝑐𝑡 and 𝐻 ′ is linearizable.

An object supports Byzantine linearizable executions if all of

its executions are Byzantine linearizable. SWMR registers support

Byzantine linearizable executions because before every read from

such a register, invoked by a correct process, one can add a corre-

sponding Byzantine write.

2.3 Linearizability of Register Implementations
Hu and Toueg defined register linearizability in a system with

Byzantine processes as follows [9, 10]. They let 𝑣0 be the initial

value of the implemented register and 𝑣𝑘 be the value written by

the 𝑘th write operation by the writer𝑤 of the implemented register.

Definition 3. (Register Linearizability [9, 10]:) In a system with
Byzantine process failures, an implementation of a SWMR register

is linearizable if and only if the following holds. If the writer is not
malicious, then:

• (Reading a “current” value) If a read operation R by a process
that is not malicious returns the value 𝑣 then:
– there is a write 𝑣 operation that immediately precedes R or
is concurrent with R, or

– 𝑣 = 𝑣0 (the initial value) and no write operation precedes R.
• (No “new-old” inversion) If two read operations R and R’ by
processes that are not malicious return values 𝑣𝑘 and 𝑣𝑘 ′ , re-
spectively, and R precedes R’, then 𝑘 ≤ 𝑘′.

Note that Hu-Toueg specified this register linearizability only if

the writer is non-malicious. While this definition of register lineariz-

ability is consistent with the definition of a Byzantine linearization

of a concurrent history (Definition 2), in the sense that both are

concerned only with correct processes’ views, it is not ideal for the

reasons given in Section 1.1. Therefore the register should meet

stronger criteria of a linearizable register, in the face of Byzantine

processes, to accommodate the behavior of the Byzantine writer

when it is behaving (writing) correctly. We term such a register

as a Byzantine linearizable register. In this paper, we first define

a Byzantine linearizable register, and then solve the problem of

constructing a Byzantine linearizable SWMR register from SWSR

registers.

3 CHARACTERIZATION OF BYZANTINE
REGISTER LINEARIZABILITY

The object SWMR register supports Byzantine linearizable execu-

tions [4]. However, we need to construct a SWMR register from

SWSR registers. Here we characterize the requirements for such

a construction, culminating in Definition 7 of Byzantine Register

Linearizability. The writer as well as the reader processes can be

Byzantine. As a Byzantine reader can return any value whatso-

ever, the linearizability specification is based on values that correct

readers return.

In general, when an object 𝑂1, denoted a high-level object (HLO)
is simulated or constructed using objects of another type 𝑂2, de-

noted a low-level object (LLO), there are two interfaces. A process

interacts with the HLO through a high-level interface (HLI) through
alternating invocations and matching responses. Between such a

pair of matching invocation and response, the process interacts

with the LLO through a low-level interface (LLI) using alternating
invocations and responses. Such interactions are in software.

For our problem, the HLO is the Byzantine-tolerant SWMR

atomic register and the HLI is the read and write operation. The

LLO is the SWSR atomic register and the LLI is also the read and

write operation. We term the program code executed below the

HLI and above the LLI for a single invocation of a write/read at

the HLI as the code or protocol for the (HLI) write operation/read

operation, respectively.

In the face of Byzantine readers as well as a Byzantine writer,

we need to define a correct write operation. In the sequel, we use 𝑢

or 𝑣 to refer to the actual data value written. A𝑤𝑟𝑖𝑡𝑒 (𝑣) invocation
at the HLI may be converted at a Byzantine writer into possibly

multiple operation invocations for different𝑤𝑟𝑖𝑡𝑒 (𝑣 ′) at the LLI to
all or some subset of the various instances of the LLO. If a𝑤𝑟𝑖𝑡𝑒 (𝑣)
invocation at the HLI is converted by a Byzantine writer into an
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invocation of𝑤𝑟𝑖𝑡𝑒 (𝑣 ′) and it executes the protocol exactly for this
value 𝑣 ′, it is considered as a correct write operation because that

can be taken to be the value the writer writes or intended to write.

Likewise if the𝑤𝑟𝑖𝑡𝑒 (𝑣) at the HLI is converted into multiple serial

invocations of𝑤𝑟𝑖𝑡𝑒 (𝑣 ′) (for different values of 𝑣 ′) and the protocol
for each of these 𝑣 ′ is correctly followed, these various𝑤𝑟𝑖𝑡𝑒 (𝑣 ′)
are considered correct write operations because that sequence of

write operations can be taken to be the values the writer writes

or intended to write. This is because the invocation/response at

the HLI is at a Byzantine process which controls the execution of

code above the LLI and above the HLI. In a correct write operation,

the code between the HLI and the LLI is followed correctly by the

Byzantine process.

Definition 4. A correct (write) operation is a (write) operation
that follows the (write) protocol, but possibly with a different value
than that passed down at the HLI.

So far in the literature [4, 9, 10], any behavior of a Byzantine

writer is allowable in the linearizability definition.We accommodate

a Byzantine writer differently and introduce the concept of a pseudo-
correct write operation (Definition 5), which is a Byzantine write

operation that has the effect of a correct write operation, i.e., whose

actions that are visible to correct readers cannot be distinguished

from the actions of a correct write operation by correct readers.

This is first informally motivated as follows. A Byzantine write

operation can, for example,

(1) write multiple values (possibly resulting in multiple pseudo-

correct write operations) or

(2) together with earlier write operations write a single value

(possibly resulting in a pseudo-correct write operation), or

(3) together with earlier write operations that wrote different

values write those values (possibly resulting in multiple

pseudo-correct write operations).

Thus, there is no longer a one-one mapping from write operations

issued to the HLI object interface to values written to the object; it

is a many-many mapping.

Definition 5. A pseudo-correct (write) operaton is a (write)
operation such that whatever steps the (writer) process performs in
it and that results in a value being returned to correct readers, is
indistinguishable to correct readers’ executions below the HLI from
an actual correct (write) operation’s steps.

We now give a stronger definition of a Byzantine linearization of

a concurrent history than Definition 2 of Cohen-Keidar. We tame

the Byzantine behavior in a stronger way to provide consistency to

correct processes. We linearize the correct processes’ operations

and offer a (more) limited degree of freedom by way of embedding

only correct and pseudo-correct write operations by Byzantine

processes. History 𝐻 is Byzantine linearizable if 𝐻 |𝑐𝑜𝑟𝑟𝑒𝑐𝑡 can be

augmented by (some) pseudo-correct and correct operations (and

not any arbitrary operations) of Byzantine processes such that the

completed history is linearizable.

Definition 6. (Byzantine linearization of a concurrent history
(newly proposed definition):) A history 𝐻 is Byzantine linearizable if
there exists a history 𝐻 ′ containing correct and pseudo-correct write
operations by Byzantine processes and writes and reads by correct
processes such that 𝐻 ′ |𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝐻 |𝑐𝑜𝑟𝑟𝑒𝑐𝑡 and 𝐻 ′ is linearizable.

Counter-example: The Hu-Toueg algorithm (Algorithm 2, with

unforgeable signatures) does not have a Byzantine linearization for

concurrent histories as per our Definition 6. Consider the same ex-

ample from Section 1; the Byzantine writer writes ⟨𝑘, 𝑣𝑖 ⟩ and ⟨𝑘, 𝑣 𝑗 ⟩
values with the same counter value 𝑘 to two correct readers 𝑥 and

𝑦’s SWSR registers, respectively. Reader 𝑥 returns 𝑣𝑖 in read oper-

ation 𝑅𝑥,1 after which 𝑦 invokes a read operation 𝑅𝑦,1 which can

return 𝑣 𝑗 . This history cannot be Byzantine linearized; if we insert

the pseudo-correct 𝑤𝑟𝑖𝑡𝑒 (⟨𝑘, 𝑣𝑖 ⟩) before 𝑅𝑥,1, then 𝑤𝑟𝑖𝑡𝑒 (⟨𝑘, 𝑣 𝑗 ⟩)
does not qualify as a pseudo-correct write (to be inserted before

𝑅𝑦,1) because reader 𝑦’s execution below the HLI would see two

values (⟨𝑘, 𝑣𝑖 ⟩ and ⟨𝑘, 𝑣 𝑗 ⟩) with the same counter value 𝑘 – which

could never have been written by correct write operations as per

their writer protocol.

We now present the final definition of the Byzantine linearizable

register using physical time and HLOs. Let 𝑣𝑖 be the value written

by the 𝑖th correct or pseudo-correct write𝑊 𝑖
in a Byzantine lin-

earization of a concurrent history (Definition 6), which is used in

Definition 7, following the notation in [7]. Note that to determine

𝑖 , 𝑣𝑖 and𝑊 𝑖
requires knowing what happened below the HLI and

above the LLI because of the nature of pseudo-correct writes; but

there is actually no need to determine 𝑖 , 𝑣𝑖 , and𝑊 𝑖
.

Definition 7. (Byzantine Linearizable Register). In a system with
Byzantine process failures, an implementation of a SWMR register is
linearizable if and only if the following two properties are satisfied in
a Byzantine linearization of a concurrent history.

(1) Reading a current value: When a read operation R by a
non-Byzantine process returns the value 𝑣 :

(a) if 𝑣 = 𝑣0 then no correct or pseudo-correct write operation
precedes R

(b) else if 𝑣 ≠ 𝑣0 then 𝑣 was written by the correct or pseudo-
correct write operation that immediately precedes R.

(2) No “new-old” inversions: If read operations R and R’ by
non-Byzantine processes return values 𝑣𝑖 and 𝑣 𝑗 , respectively,
and R precedes R’, then 𝑖 ≤ 𝑗 .

A pseudo-correct (write) operation looks like a correct write

operation to correct readers; however the writer may still not follow

the write protocol exactly. Taming a Byzantine write and making

visible what a Byzantine write does as part of a pseudo-correct

write is done by correct readers in their steps below the HLI and

above the LLI. As the Byzantine writer may exit its write protocol

prematurely, the linearization point of a pseudo-correct write may

be after the invocation-response interval(s) of the HLI operations

that triggered the pseudo-correct write. In fact, a pseudo-correct

write by a Byzantine process is not defined to have any invocation-

response operations.

3.1 Towards an Algorithm
We assumeWLOG that there are𝑛 SWSR registers𝑅_𝑖𝑛𝑖𝑡𝑤𝑖 writable

by the single writer𝑤 and readable by reader 𝑖 ∈ [𝑖, 𝑛]. The Byzan-
tine writer can behave anyhow and can write different values to

the SR registers, or write different values to different subsets of SR

registers while not writing to some of them at all, or write multiple

different values over time to the same some or all SR registers, as

part of the same write operation. 𝑡 of the 𝑛 readers are Byzantine.
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The writer writes (𝑘,𝑢), where 𝑘 is a monotonically increasing

sequence number and 𝑢 is a data value, to the various 𝑅_𝑖𝑛𝑖𝑡𝑤𝑖 .

Although there is a many-many mapping from write operations

issued to the HLI object interface to values written to the object,

this does not pose any ambiguity as the different values that are

returned to the correct readers have different logical timestamps 𝑘 .

Correct write operations are totally ordered in time. This total

order is also the logical time ordering of their timestamps. To be
indistinguishable to correct readers below the HLI from correct write
operations (to satisfy Definition 5), write operations whose values can
be returned should be totally ordered along with the set of correct
write operations, by their logical timestamps. Based on this above

principle, we proceed to define pseudo-correct write operations.

Definition 8. A potential pseudo-correct write operation of
value (𝑘, 𝑣) is a write operation, timestamped 𝑘 , that may not follow
the write protocol but

(1) there is a quorum of size ≥ 𝑛 − 2𝑡 indices 𝑖 of correct readers
such that (𝑘, 𝑣) was written to 𝑅_𝑖𝑛𝑖𝑡𝑤𝑖 , and

(2) 𝑘 > 𝑘′ for all (𝑘′, 𝑣 ′) already read from these 𝑅_𝑖𝑛𝑖𝑡𝑤𝑖 .

Definition 9. A write operation stabilizes if its value can be
returned by a correct reader.

A correct write operation always stabilizes whereas a potential

pseudo-correct write may stabilize, depending on run-time dynamic

data races due to the asynchronous readers, steps of Byzantine

readers and the Byzantine writer, and the algorithm. Only all write

operations that stabilize have a linearization point.

Definition 10. A pseudo-correct write operation is a potential
pseudo-correct write operation that stabilizes.

Definition 11. (Monotonicity/Total Order of stabilized write

operation timestamps Property:) The set of write operation times-
tamps that stabilize is totally ordered.

The algorithm we have designed [12] satisfies this property.

Only correct and pseudo-correct writes may be returned by correct

readers. A correct reader cannot distinguish between a correct and

a pseudo-correct write operation.

4 CONCLUSIONS
This paper studied Byzantine tolerant construction of a SWMR

atomic register from SWSR atomic registers. It is the first to propose

a definition of Byzantine register linearizability by non-trivially tak-

ing into account Byzantine behavior of the writer and readers, and

by overcoming the drawbacks of the definition used by previous

works. We introduced the concept of a correct write operation by a

Byzantine writer. We also introduced the notion of a pseudo-correct

write operation by a Byzantine writer, which has the effect of a cor-

rect write operation. Only correct and pseudo-correct writes may be

returned by correct readers. The correct and pseudo-correct writes

are totally ordered by their linearization points and this order is the

total order in logical time in which the writes were performed. An

algorithm to construct a Byzantine tolerant SWMR atomic register

from SWSR atomic registers that meets our definition of Byzantine

register linearizability is given in the full version [12].

REFERENCES
[1] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J. Marathe,

and Igor Zablotchi. 2019. The Impact of RDMA on Agreement. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, Peter Robinson
and Faith Ellen (Eds.). ACM, 409–418. https://doi.org/10.1145/3293611.3331601

[2] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Memory Robustly

in Message-Passing Systems. J. ACM 42, 1 (1995), 124–142. https://doi.org/10.

1145/200836.200869

[3] James E. Burns and Gary L. Peterson. 1987. Constructing Multi-reader Atomic

Values From Non-atomic Values. In Proceedings of the Sixth Annual ACM Sym-
posium on Principles of Distributed Computing, Fred B. Schneider (Ed.). ACM,

222–231. https://doi.org/10.1145/41840.41859

[4] Shir Cohen and Idit Keidar. 2021. Tame the Wild with Byzantine Linearizability:

Reliable Broadcast, Snapshots, and Asset Transfer. In 35th International Sympo-
sium on Distributed Computing, DISC 2021 (LIPIcs, Vol. 209), Seth Gilbert (Ed.).

18:1–18:18. https://doi.org/10.4230/LIPICS.DISC.2021.18

[5] Sibsankar Haldar and K. Vidyasankar. 1995. Constructing 1-Writer Multireader

Multivalued Atomic Variable from Regular Variables. J. ACM 42, 1 (1995), 186–203.

https://doi.org/10.1145/200836.200871

[6] Maurice Herlihy. 1991. Wait-Free Synchronization. ACM Trans. Program. Lang.
Syst. 13, 1 (1991), 124–149. https://doi.org/10.1145/114005.102808

[7] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming.
Morgan-Kaufmann.

[8] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness

Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (1990),
463–492. https://doi.org/10.1145/78969.78972

[9] Xing Hu and Sam Toueg. 2022. On Implementing SWMR Registers from SWSR

Registers in Systems with Byzantine Failures. In 36th International Symposium
on Distributed Computing, DISC 2022, October 25-27, 2022, Augusta, Georgia, USA
(LIPIcs, Vol. 246), Christian Scheideler (Ed.). Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 36:1–36:19. https://doi.org/10.4230/LIPICS.DISC.2022.36

[10] Xing Hu and Sam Toueg. 2024. On implementing SWMR registers from SWSR

registers in systems with Byzantine failures. Distributed Comput. 37, 2 (2024),
145–175. https://doi.org/10.1007/S00446-024-00465-5

[11] Damien Imbs, Sergio Rajsbaum, Michel Raynal, and Julien Stainer. 2016. Read-

/write shared memory abstraction on top of asynchronous Byzantine message-

passing systems. J. Parallel Distributed Comput. 93-94 (2016), 1–9. https:

//doi.org/10.1016/J.JPDC.2016.03.012

[12] Ajay D. Kshemkalyani, Manaswini Piduguralla, Sathya Peri, and Anshuman

Misra. 2024. Construction of a Byzantine Linearizable SWMR Atomic Register

from SWSR Atomic Registers. CoRR abs/2405.19457 (2024). https://doi.org/10.

48550/ARXIV.2405.19457 arXiv:2405.19457

[13] Leslie Lamport. 1986. On Interprocess Communication. Part I: Basic Formalism.

Distributed Comput. 1, 2 (1986), 77–85. https://doi.org/10.1007/BF01786227

[14] Leslie Lamport. 1986. On Interprocess Communication. Part II: Algorithms.

Distributed Comput. 1, 2 (1986), 86–101. https://doi.org/10.1007/BF01786228

[15] Dahlia Malkhi and Michael K. Reiter. 1998. Secure and Scalable Replication in

Phalanx. In The Seventeenth Symposium on Reliable Distributed Systems, SRDS 1998,
West Lafayette, Indiana, USA, October 20-22, 1998, Proceedings. IEEE Computer

Society, 51–58. https://doi.org/10.1109/RELDIS.1998.740474

[16] Achour Mostéfaoui, Matoula Petrolia, Michel Raynal, and Claude Jard. 2017.

Atomic Read/Write Memory in Signature-Free Byzantine AsynchronousMessage-

Passing Systems. Theory Comput. Syst. 60, 4 (2017), 677–694. https://doi.org/10.

1007/S00224-016-9699-8

[17] Gary L. Peterson. 1983. Concurrent Reading While Writing. ACM Trans. Program.
Lang. Syst. 5, 1 (1983), 46–55. https://doi.org/10.1145/357195.357198

[18] Gary L. Peterson and James E. Burns. 1987. Concurrent Reading While Writing

II: The Multi-writer Case. In 28th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society, 383–392. https://doi.org/10.1109/SFCS.1987.15

[19] Ambuj K. Singh, James H. Anderson, and Mohamed G. Gouda. 1987. The Elusive

Atomic Register Revisited. In Proceedings of the Sixth Annual ACM Symposium
on Principles of Distributed Computing, Fred B. Schneider (Ed.). ACM, 206–221.

https://doi.org/10.1145/41840.41858

[20] K. Vidyasankar. 1988. Converting Lamport’s Regular Register to Atomic Register.

Inf. Process. Lett. 28, 6 (1988), 287–290. https://doi.org/10.1016/0020-0190(88)

90175-5

[21] K. Vidyasankar. 1991. A Very Simple Construction of 1-Writer Multireader

Multivalued Atomic Variable. Inf. Process. Lett. 37, 6 (1991), 323–326. https:

//doi.org/10.1016/0020-0190(91)90149-C

[22] Paul M. B. Vitányi and Baruch Awerbuch. 1986. Atomic Shared Register Access

by Asynchronous Hardware (Detailed Abstract). In 27th Annual Symposium
on Foundations of Computer Science. IEEE Computer Society, 233–243. https:

//doi.org/10.1109/SFCS.1986.11

https://doi.org/10.1145/3293611.3331601
https://doi.org/10.1145/200836.200869
https://doi.org/10.1145/200836.200869
https://doi.org/10.1145/41840.41859
https://doi.org/10.4230/LIPICS.DISC.2021.18
https://doi.org/10.1145/200836.200871
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/78969.78972
https://doi.org/10.4230/LIPICS.DISC.2022.36
https://doi.org/10.1007/S00446-024-00465-5
https://doi.org/10.1016/J.JPDC.2016.03.012
https://doi.org/10.1016/J.JPDC.2016.03.012
https://doi.org/10.48550/ARXIV.2405.19457
https://doi.org/10.48550/ARXIV.2405.19457
https://arxiv.org/abs/2405.19457
https://doi.org/10.1007/BF01786227
https://doi.org/10.1007/BF01786228
https://doi.org/10.1109/RELDIS.1998.740474
https://doi.org/10.1007/S00224-016-9699-8
https://doi.org/10.1007/S00224-016-9699-8
https://doi.org/10.1145/357195.357198
https://doi.org/10.1109/SFCS.1987.15
https://doi.org/10.1145/41840.41858
https://doi.org/10.1016/0020-0190(88)90175-5
https://doi.org/10.1016/0020-0190(88)90175-5
https://doi.org/10.1016/0020-0190(91)90149-C
https://doi.org/10.1016/0020-0190(91)90149-C
https://doi.org/10.1109/SFCS.1986.11
https://doi.org/10.1109/SFCS.1986.11

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Model and Preliminaries
	2.1 Model Basics
	2.2 Linearizability of a Concurrent History
	2.3 Linearizability of Register Implementations

	3 Characterization of Byzantine Register Linearizability
	3.1 Towards an Algorithm

	4 Conclusions
	References

