
Enhancing QR Decomposition: A GPU-based
Approach to Parallelizing the Householder

Algorithm with CUDA Streams

Uppu Eshwar, Soumyajit Chatterjee, and Sathya Peri

Indian Institute Of Technology Hyderabad, Telangana 502285, India
{ch21btech11034,ai22mtech02005}@iith.ac.in

sathya_p@cse.iith.ac.in

Abstract. Linear algebra algorithms, such as the Householder QR de-
composition, are pivotal in various applications including signal process-
ing, optimization, and numerical solutions to systems of linear equa-
tions. Traditional sequential implementations of the Householder algo-
rithm face significant limitations in terms of performance and scalability
when applied to large matrices. To overcome these constraints, this paper
explores the parallelization of the Householder QR algorithm on Graph-
ics Processing Units (GPUs) using CUDA, a parallel computing plat-
form and programming model developed by NVIDIA. Our method en-
sures the availability of critical intermediate data, distinguishing it from
standard libraries like cuSOLVER, which modify the processing order
and often discard important intermediate computations. By leveraging
CUDA streams, we achieve enhanced parallelism without compromising
the integrity of the algorithm’s sequence or the accessibility of interme-
diate data. Our performance analysis reveals that our implementation
achieves efficiency comparable to cuSOLVER, making it a viable option.
This study not only presents a novel implementation but also extends
the potential for GPU-accelerated linear algebra procedures to benefit a
wider range of scientific and engineering applications

Keywords: QR Decomposition · Parallel Computing · General Purpose
GPU programming · CUDA streams.

1 Introduction

The goal of any constrained optimization method is to find the values of the de-
cision variables that optimize the objective function while adhering to the given
constraints[16][24]. The solution obtained must satisfy both the optimization
objective and the constraints simultaneously.

Techniques to solve constrained optimization problems include mathemat-
ical programming, linear programming[17], quadratic programming[13], non-
linear programming[22], and more specialized methods such as interior point
methods[21] and evolutionary algorithms[23]. Numerical methods like Sequential
Quadratic Programming (SQP)[2] solve non-linear programming problems with



2 F. Author et al.

both equality and inequality constraints and has been widely applied in various
fields, including engineering design, optimal control, and operations research. It
is effective for solving non-linear programming problems with moderate-sized
dimensions and smooth objective functions and constraints.

However when solving optimization problems using Sequential Quadratic
Programming (SQP) involving high dimensional data, the computational com-
plexities can become significant. Some challenges and associated complexities
include:

– High-dimensional decision variables: As the number of decision variables in-
creases, the size of the quadratic programming sub-problem grows quadratic-
ally. The computational complexity of solving a quadratic programming
problem is generally O(n3) where n represents the number of decision vari-
ables.

– Storage requirements: Large-scale optimization problems may require sub-
stantial memory for storing matrices and vectors used in the quadratic pro-
gramming sub-problem. As the dimensionality increases, the memory re-
quirements can become a limiting factor, especially if the problem involves
dense matrices.

– Evaluation of gradients and Hessians: Computing gradients and Hessians
of the objective function and constraint functions is essential for solving
the quadratic programming subproblem. In large-scale problems, evaluating
these derivatives can be time-consuming, particularly if the derivatives need
to be computed numerically or if the functions are complex and computa-
tionally expensive.

– Numerical stability: The numerical stability of SQP can become an issue
in large-scale problems due to the accumulation of rounding errors and ill-
conditioning of the matrices involved. This can lead to numerical instabilities,
convergence issues, and inaccurate results.

– Scalability: The scalability of SQP in terms of both computation time and
memory usage can become problematic with large-scale dimensions. The
time required for each iteration may be quite large, and memory limitations
can prevent the use of direct methods for solving the quadratic programming
sub-problem.

Prior works like [11] suggests mathematical variations on the standard SQP
iteration with [15] proposing a further improvement to it which leads to a faster
rate of convergence. While works like [19] suggest alternative methods for the
approximation of Quasi-Newton matrices, works like [5] and [8] tackle the storage
requirements for computing the Hessian in large scale problems. Also methods
like [1] try to effectively utilize the sparsity of high dimensional matrices involved
in the problem.

In our work we tackle the problem of scalability by optimizing the QR fac-
torization subroutine which is used in iterations of the SQP algorithm where QR
decomposition is utilized to transform the equality constraints into an orthogonal
form, which simplifies the formulation and solution of the Karush-Kuhn-Tucker



Title Suppressed Due to Excessive Length 3

(KKT)[4] system of equations. QR decomposition is also used to determine the
active set of constraints at each iteration of SQP. By decomposing the con-
straint Jacobian matrix using QR factorization, the linear independence of the
constraints can be assessed. The active set, which includes the constraints that
are most likely to be active at the solution, can be identified based on the QR fac-
torization. This information helps in constructing the working set of constraints
and updating the constraint active set efficiently. QR decomposition can also be
used in Hessian approximation and its inverse or in reduced Hessian approxima-
tion methods[3] to approximate only the portion of the Hessian matrix relevant
to the current iteration of SQP.

Our contribution proposes improvements to the QR factorization kernel used
in the Sequential Least Squares Quadratic Programming (SLSQP) [14] algorithm
implemented in NLopt[12], a widely used open source software package, using
parallel GPU programming methods.

2 Background

QR factorisation is an essential algorithm in linear algebra that decomposes
a matrix of any size into the product of two matrices, Q and R, where Q is
unitary[9], and R is upper triangular[9]. This technique is widely used in solving
several problems such as systems of linear equations, least squares approxima-
tions, eigenvalue computation, matrix rank determination, orthogonalisation etc.
Hence, developing an efficient solution for QR factorisation can benefit these ap-
plications.

The algorithm used in the NLopt [12] library to perform QR factorization is
Householder Transformation as given in the Algorithm 1 below.

Algorithm 1 HouseHolder Transform
1: for pivot = 0 to m do
2: (x, y, z) = update_pivot(pivot row in mat)
3: mat[pivot][pivot] = x
4: for j = 1 to pivot-1 do
5: sm = dot_product(jth row, pivot row)
6: if sm ̸= 0 then
7: for k = pivot+1 to n do
8: mat[j][k] += sm * mat[pivot][k]
9: end for

10: end if
11: end for
12: end for

The implementation of the Householder transformation within the library ac-
cepts a matrix of arbitrary size as input and transforms it into an upper triangu-
lar matrix in-place. The computational process within the for loop can be divided



4 F. Author et al.

into two primary subroutines: the update_pivot kernel and the dot_product
kernel. The update_pivot kernel is responsible for processing the pivot row and
updating the pivot element. The pivot row is the row utilized to update all
other rows, excluding itself, during a single iteration of the for loop in Line 1 of
Algorithm 1. The pivot element corresponds to the first element of the pivot
row in the initial iteration, the second element in the subsequent iteration, and
so forth. This is because, in each iteration of the for loop, not only is each row
sequentially selected as the pivot in the matrix, beginning with the first row,
but one column is also skipped after each iteration. The remaining submatrix is
then used for further computations in the subsequent iterations.

After processing the pivot row and updating its pivot element, the algo-
rithm proceeds to compute the dot product between the pivot row and each
of the remaining rows in the matrix. The scalar value obtained from the dot
product between the pivot row and any other row is then utilized to update
the corresponding row in the matrix, as illustrated in Line 8 of Algorithm 1.
The algorithm concludes once the last row of the matrix has been processed
as the pivot row and its corresponding pivot element has been updated. Since
no rows remain after the final row, no further computations occur following the
processing of the last pivot row.

The algorithm exhibits a sequential nature due to the presence of two crit-
ical dependencies. The first dependency occurs within the same iteration: the
algorithm cannot proceed to update the other rows until the pivot row has been
fully processed. The second dependency spans across iterations: a row cannot
be updated in the current iteration until its update from the previous iteration
is complete, as each iteration’s matrix update relies on the matrix produced in
the prior iteration. These inter-dependencies present a significant challenge when
attempting to parallelize the Householder Algorithm, as described in Algorithm
1

3 Methodology

3.1 Introduction to Parallel GPU Programming and CUDA

The advent of Graphics Processing Units (GPUs) has revolutionized computa-
tional methods in fields such as scientific computing and optimization. Unlike
Central Processing Units (CPUs), which excel at sequential processing, GPUs
are designed with numerous smaller cores capable of parallel thread execution.
This architecture is ideal for data-parallel tasks, where the same operation is per-
formed across multiple data elements simultaneously[18]. CUDA (Compute Uni-
fied Device Architecture) by NVIDIA extends C/C++ to harness GPU power,
offering fine-grained control over thread hierarchy, memory access, and synchro-
nization. In CUDA’s model, threads are organized into blocks (up to 1024 threads
each) and further into grids, enabling scalable parallel computations[25].
Linear algebra is fundamental to many optimization techniques, including Se-
quential Least Squares Quadratic Programming (SLSQP), which requires ef-
ficient matrix operations like QR decomposition and matrix multiplications.



Title Suppressed Due to Excessive Length 5

GPUs, with their parallel architecture, are well-suited for these tasks [10]. Li-
braries like cuBLAS and cuSOLVER optimize these computations for GPUs,
with cuBLAS providing accelerated BLAS routines [6] and cuSOLVER offering
solvers for linear systems, eigenvalue problems, and matrix factorizations. As
a GPU extension of LAPACK, cuSOLVER simplifies the integration of GPU-
optimized solvers into existing codebases.[7].

3.2 Limitations of Traditional QR Factorization in cuSOLVER

cuSOLVER’s QR factorization algorithm is highly optimized for parallel exe-
cution on GPUs, using batched operations to maximize memory efficiency and
computational throughput. It designed as an extension of the LAPACK library
for GPUs and typically employs a "left-looking" approach for general-purpose
QR decomposition[20], which updates the matrix in-place, focusing on the left-
most columns first. This method is efficient for batch processing but may not
align well with algorithms requiring iterative updates with preserved interme-
diate states. This inherent limitation is why direct application of cuSOLVER’s
QR routines might not be suitable for the optimization context discussed in this
research, where maintaining and utilizing intermediate values is critical.

To account for the limitations of cuSOLVER’s QR decomposition routines,
particularly its inability to preserve the iteration order and intermediate values
required for iterative algorithms, we propose a novel approach that leverages the
parallel processing capabilities of GPUs while maintaining intermediate states
essential for iterative computations

3.3 Parallelization Strategy for QR Factorization

The sequential QR factorization algorithm, as previously described, involves two
primary computations: (1) updating the pivot element of the pivot row and (2)
computing the dot product of each row below the pivot row with the pivot
row, followed by updating each row using the scalar value obtained from the
dot product. Our approach to QR factorization centres on exploiting potential
parallelism within the existing sequential code. Since each scalar product calcu-
lation of each row is independent of the others, these operations can be executed
concurrently across multiple GPU processing elements. This parallel execution
significantly reduces the overall computational time. Furthermore, the update
for a next iteration’s pivot element does not depend on the completion of all row
updates in the current iteration. Instead, the update for the next pivot element
can commence as soon as the scalar product involving the immediate next row is
completed. This overlapping of computations enables a seamless transition be-
tween iterations, minimizing idle time on GPU processing units. To implement
this, we utilized CUDA streams, which allow for asynchronous execution of these
operations.

To efficiently parallelize these computations on a GPU, we divided the algo-
rithm into two distinct CUDA kernels.



6 F. Author et al.

3.4 Kernel Design for Pivot Element Update

Algorithm 2 UpdatePivotElement Kernel

1: Kernel UpdatePivotElement(Matrix, PivotRow, NumCols)
2: Shared TempArray[512], SumOfSquares
3: Initialize TempArray[ThreadIndex] ← 0
4: Initialize SumOfSquares ← 0
5: Synchronize Threads
6: Compute Iterations ← (NumCols + BlockDim - 1) / BlockDim
7: for each iteration it from 0 to Iterations-1 do
8: Calculate ColumnIndex ← it * BlockDim + ThreadIndex + PivotRow

9: if ColumnIndex < NumCols then
10: Load Matrix[PivotRow * NumCols + ColumnIndex] into TempValue
11: TempArray[ThreadIndex] ← TempValue2
12: end if
13: Synchronize Threads

/*Before performing the reduction, ensure that the shared memory is fully
loaded */

14: Perform Reduction of TempArray to SumOfSquares
15: end for
16: Synchronize Threads

//Only a single thread writes into the shared variable to avoid race conditions

17: if ThreadIndex == 0 then
18: PivotValue ← sqrt(SumOfSquares)
19: if Matrix[PivotRow * NumCols + PivotRow] > 0 then
20: PivotValue ← -1 ∗ PivotValue
21: end if
22: Update Matrix[PivotRow * NumCols + PivotRow] ← PivotValue
23: Store Matrix[PivotRow * NumCols + PivotRow] - PivotValue in Updat-

edPivot
24: end if

The first kernel is designed to update the pivot element by calculating the
sum of squares of the matrix row elements. This computation is executed using
a single block of threads, with the number of threads dynamically determined
based on the matrix row size. The kernel loads the elements from the global
memory and stores the squared values in shared memory, which is a faster on-
chip memory space accessible by all threads within a block. Given that the block
size may be smaller than the row size of the matrix, the kernel processes the row
in chunks, iterating through each chunk, since a single block of threads is used
to avoid atomics. After loading and squaring the elements, the kernel performs a



Title Suppressed Due to Excessive Length 7

reduction sum on the shared memory array to compute the total sum of squares
for the row. This value is then used to update the pivot element by taking
its square root. The design of this kernel allows for efficient memory access
and minimizes the number of global memory transactions, thereby enhancing
performance.

3.5 Kernel Design for Row Update via Dot Product Computation

The second kernel focuses on the computation of the dot product between the
pivot row and the remaining rows, followed by updating the rows using the dot
product. This kernel is designed, keeping in mind the two-dimensional structure
of thread blocks. Each block processes a fixed number of rows and columns, where
the y-dimension handles rows and the x-dimension handles columns as shown in
figure 1 . By allocating multiple blocks along the y-dimension in the grid, the
kernel exploits the independence of row updates among the rows which allows
rows to be processed in chunks avoiding the need for explicit synchronization or
atomic operations.

Algorithm 3 UpdateMatrix Kernel

1: Kernel UpdateMatrix(Matrix, PivotRow, NumRows, NumCols)
2: /* ThreadX - runs from 0 to ColsPerBlock
3: ThreadY - runs from 0 to RowsPerBlock*/
4:
5: Shared PivotValues[ColsPerBlock]
6: Shared TempResults[RowsPerBlock][ColsPerBlock]
7: Shared RowSums[RowsPerBlock]
8: Initialize TempResults[ThreadY][ThreadX] ← 0
9: Initialize RowSums[ThreadY] ← 0

10: Synchronize Threads
11:
12: RowIndex ← PivotRow + BlockIdxY * BlockDimY + ThreadY + 1
13: if RowIndex ≥ NumRows then
14: Exit Kernel
15: end if

The algorithm begins by storing pivot row elements in shared memory for
rapid access by all threads within a block. The kernel then calculates the dot
product between the pivot row and each remaining row below the pivot row, by
iterating column-wise with each thread computing the product of corresponding
elements. These results are stored in shared memory, followed by a reduction
sum to obtain the final dot product for each row, which is then used to update
the rows. This efficient use of shared memory and thread/block organization
minimizes latency and maximizes GPU throughput.



8 F. Author et al.

Algorithm 3 UpdateMatrix Kernel CONTD.

1: Iterations ← (NumCols - PivotRow + ColsPerBlock - 1) / ColsPerBlock
2: for it = 0 to Iterations - 1 do
3: Compute ColStart ← PivotRow + it * BlockDimX
4: if ThreadY == 0 and ColStart + ThreadX < NumCols then
5: PivotValues[ThreadX]← Matrix[(PivotRow ) * NumCols + ColStart +

ThreadX]
6: end if
7: Synchronize Threads
8: if ColStart + ThreadX < NumCols then
9: TempResults[ThreadY][ThreadX] ← Matrix[RowIndex * NumCols +

ColStart + ThreadX] * PivotValues[ThreadX]
10: else
11: TempResults[ThreadY][ThreadX] ← 0
12: end if
13: Synchronize Threads
14: Reduce TempResults[ThreadY] to RowSums[ThreadY]
15: Synchronize Threads
16: end for
17:
18: if ThreadX == 0 then
19: RowSums[ThreadY] ← RowSums[ThreadY] + Matrix[RowIndex * Num-

Cols + PivotRow] * UpdatedPivot[PivotRow ]
20: if RowSums[ThreadY] ̸= 0 then
21: ScalingFactor ← 1 / RowSums[ThreadY]
22: Matrix[RowIndex * NumCols + PivotRow - 1] ← Matrix[RowIndex *

NumCols + PivotRow ] + ScalingFactor * UpdatedPivot[PivotRow ]
23: end if
24: end if
25: Synchronize Threads
26:
27: for it = 0 to Iterations - 1 do
28: Compute ColIndex ← it * BlockDimX + ThreadX + PivotRow
29: if ColIndex < NumCols then
30: Matrix[RowIndex * NumCols + ColIndex]← Matrix[RowIndex * Num-

Cols + ColIndex] + RowSums[ThreadY] * Matrix[(PivotRow ) * Num-
Cols + ColIndex]

31: end if
32: end for

3.6 Host Function and Streams-Based Execution

In our parallelized QR factorization implementation, the host function is inte-
gral in managing the execution flow across multiple CUDA streams, ensuring



Title Suppressed Due to Excessive Length 9

Iteration 1 Iteration 2 Iteration 3

Block 1

Block 2

R
ow

s
pr

oc
es

se
d

in
pa

ra
lle

l

Columns processed in chunks

Columns (X-Axis)

R
ow

s
(Y

-A
xi

s)

Fig. 1: Illustration of Algorithm 3: Parallel row processing with iterative column
processing in chunks. Blocks process rows in parallel, with columns processed in
chunks over multiple iterations.

efficient parallel processing. This function is responsible for memory allocation,
data transfer between host and device, and synchronization of the various com-
putational tasks executed by the GPU. By leveraging CUDA streams, we achieve
concurrent kernel execution, significantly reducing idle time and enhancing over-
all computational efficiency.

Algorithm 4 Stream-based Execution of Kernels for Matrix Update
1: Input: Matrix A, Number of rows m, Number of columns n
2: Initialize: CUDA streams: Stream 1, Stream 2
3: Initialize: CUDA events: Event 1, Event 2
4: // Kernel 1 stands for update pivot element kernel and kernel 2 stands for

update matrix kernel
5: // parameters for kernel 1 are Matrix, PivotRow, NumCols
6: // parameters for kernel 2 are Matrix, PivotRow, NumRows, NumCols
7: // Initial kernel launch to update the first pivot element
8: kernel1<<<gridDim,BlockDim,stream>>>(A, 0, n) on default

stream
9: cudaDeviceSynchronize()



10 F. Author et al.

The implementation strategically utilizes two CUDA streams—designated as
Stream 1 and Stream 2—to orchestrate the execution of the two kernels. Stream
1 is tasked with executing the kernel that updates the pivot element, along with
executing the kernel responsible for processing the row immediately following
the pivot row. Concurrently, Stream 2 handles the updates for the remaining
rows, specifically excluding the row next to pivot row which is getting updated
concurrently in the Stream 1.

Algorithm 4 Stream-based Execution of Kernels for Matrix Update CONTD.
1: for lpivot = 1 to m do
2: if lpivot == 1 then
3: // Stream 1 processes the next row after the pivot row
4: kernel2<<<gridDim,BlockDim,stream>>>(A,lpivot,m,n) on

Stream 1
5: // Stream 2 processes the remaining rows
6: /* compute grid computes the number of blocks required to process

(m - lpivot - 1) rows in y-direction and n-lpivot coloumns in x-direction
for a fixed number of threads per block in x and y directions*/

7: gridDim = computeGrid(m− lpivot− 1)
8: kernel2<<<gridDim,BlockDim,stream>>>(A, lpivot, m, n) on

Stream 2
9: cudaEventRecord(Event 2, Stream 2)

10: kernel1<<<gridDim,BlockDim,stream>>>(A, lpivot+1, m, n) on
Stream 1

11: cudaEventRecord(Event 1, Stream 1)
12: else
13: // wait for events to complete to ensure correct execution order
14: cudaStreamWaitEvent(Stream 1, Event 2, 0)
15: kernel2<<<gridDim,BlockDim,stream>>>(A, lpivot, m, n) on

Stream 1
16: cudaStreamWaitEvent(Stream 2, Event 1, 0)
17: kernel2<<<gridDim,BlockDim,stream>>>(A, lpivot, m, n) on

Stream 2
18: cudaEventRecord(Event 2, Stream 2)
19: kernel1<<<gridDim,BlockDim,stream>>>(A, lpivot+1, m, n) on

Stream 1
20: cudaEventRecord(Event 1, Stream 1)
21: end if
22: end for

During the initial iteration, Streams 1 and 2 function independently. How-
ever, as factorization advances, inter-stream dependencies are established to en-
sure data consistency through CUDA event synchronization mechanisms, such



Title Suppressed Due to Excessive Length 11

as cudaEventRecord and cudaStreamWaitEvent. This synchronization prevents
Stream 2 from initiating operations until the required computation in Stream
1 is complete, and vice versa as shown in figure 2 . Given that the kernel in
Algorithm 3 is sufficiently large to achieve 100 % GPU occupancy, the decision
to limit the implementation to two streams optimizes GPU utilization while mit-
igating resource contention and operational complexity. Although incorporating
additional streams could theoretically enhance parallelism, it would also intro-
duce greater complexity and diminish cache efficiency. Therefore, the use of two
streams represents an optimal balance between performance and complexity.

Iteration 1

Stream 1:
Kernel 1

Update Pivot
Element

Kernel 2
Update Row Next

Kernel 1
Update Pivot

Element for Iter 2

Stream 2:
Kernel 2
Update

Other Rows

Iteration 2

Stream 1:
Kernel 2

Update Row Next

Kernel 1
Update Pivot

Element for Iter 3

Stream 2:
Kernel 2
Update

Other Rows

Fig. 2: Workflow of Host Function Using Two CUDA Streams: Dependencies
Across Iterations. Stream 1 handles the pivot element and updating the next
row, while Stream 2 concurrently processes the remaining rows. The streams
synchronize using events recorded at the end of their execution.



12 F. Author et al.

4 Results

In this section, we present the results of our experiments, which were designed to
optimize the kernel in Algorithm 3. We conducted four key experiments: first,
we explored the optimal configuration of threads per block for Algorithm 3;
second, we investigated the trade-offs between block dimensions in a 2D thread
structure; third, we compared the performance of our approach with optimised
configuration against the cuSOLVER library across varying matrix sizes; and
finally we demonstrate the improvements in the original SLSQP algorithm[14]
of the NLopt Library[12], using our proposed method.

4.1 Experimental Setup

The experiments were conducted on an Nvidia Quadro RTX 5000 GPU server,
equipped with 48 Streaming Multiprocessors (SMs) supporting CUDA Compute
Capability 7.5. Each multiprocessor can handle up to 1024 threads, distributed
across multiple blocks, with a maximum of 64 active warps per SM. The server
also includes 16 GB of GDDR6 memory, providing substantial bandwidth to
support high-performance computation.

4.2 Experiment 1

In the first experiment, we aimed to identify the optimal number of threads per
block for Algorithm 3 by varying the thread count and observing its effect on
GPU performance. For the experiment , we perform QR decomposition on a
matrix of size 1024 x 1024 using our proposed approach. Figure 3 presents the
performance metrics for different thread configurations.

0 64 128 256 512 1,024
0

20

40

60

80

100

Number of Threads

E
xe

cu
ti

on
T

im
e

(m
s)

Fig. 3: Execution Time vs. Number of Threads



Title Suppressed Due to Excessive Length 13

Our experiment demonstrated that utilizing the maximum number of threads
per block i.e. 1024 was optimal, achieving 100% utilization of the GPU. It is im-
portant to note that while a block size of 512 threads allowed two active blocks
per multiprocessor, the 1024-thread configuration resulted in only one active
block per multiprocessor. However, the performance was not solely dictated by
the number of active blocks. Despite the reduction in active blocks, the config-
uration with 1024 threads per block yielded better performance. This suggests
that other factors, such as reduced scheduling overhead and improved memory
bandwidth utilization, played a significant role in optimizing Algorithm 3’s ex-
ecution. Therefore, we concluded that 1024 threads per block is the optimal
configuration for Algorithm 3 in our setup.

4.3 Experiment 2

In this experiment, we focused on further optimizing the kernel in Algorithm
3. Building on the results from the previous experiment, we kept the number of
threads per block as 1024 and explored variations in the distribution of threads
across the X and Y directions while performing the QR decomposition. Figure
4 presents the performance metrics for different configurations.

512x2 256x4 128x8 64x16 32x32
0

20

40

60

40.83

32.59 30.3

40.2

59.92

Threads (X direction x Y direction)

E
xe

cu
ti

on
T

im
e

(m
s)

Fig. 4: Scaling with Threads in X and Y Direction for UpdateMatrix Kernel
(1024x1024 Dataset)

Our primary objective was to identify an optimal balance between the num-
ber of blocks, influenced by the thread count in the Y direction, and the num-
ber of iterations each block needs to perform in the X direction to process all
columns. The experimental findings suggest that the optimal thread configura-
tion for the X and Y directions is (128 x 8).



14 F. Author et al.

4.4 Experiment 3

Based on the results obtained from the previous experiments, we conducted
a comparative analysis of the QR decomposition algorithm from libraries like
cuSolver(GPU), LAPACK(CPU) and PLASMA(CPU) against our proposed ap-
proach, across various square matrices of different sizes. The results are illus-
trated in Figure 5.

29 × 29 210 × 210 211 × 211 3 ∗ 211 × 3 ∗ 211 212 × 212

101

102

103

104

Matrix Size (2n × 2n)

T
im

e
(m

s)

Our Approach
CuSolver (GPU)
LAPACK(CPU)
PLASMA(CPU)

Fig. 5: Performance comparison for different matrix sizes

The graphical analysis of the results clearly demonstrates that our approach
outperforms LAPACK (CPU) and PLASMA (CPU), while achieving perfor-
mance comparable to cuSolver within a close margin. Additionally, as the matrix
size increases, our method continues to maintain its efficiency, indicating that it
scales effectively with larger datasets.

4.5 Experiment 4

In this study, we evaluated the performance of our optimized GPU-based method
by integrating it into the SLSQP algorithm in the NLOPT library and comparing
it with the original SLSQP algorithm. The goal was to assess the scalability and
efficiency of our approach in managing large-scale matrices compared to the
original sequential implementation. The experiment consists of measuring the
execution time to complete the entire optimization process for a constrained
non-linear problem. The dimensions of problem involves matrices with sizes:
640, 1250, 1728, and 2240. The results are illustrated in Figure 6



Title Suppressed Due to Excessive Length 15

640 1,250 1,728 2,240

0

200

400

600

800

1,000

1,200

1,400

Data set size

T
im

e
(m

in
)

SLSQP with original QR Algorithm
SLSQP with proposed QR Algorithm

Fig. 6: Performance comparison Between the original SLSQP algorithm and Pro-
posed QR decomposition algorithm on GPU for varying data set sizes

5 Conclusion

Our experimental results show that our approach outperforms LAPACK and
PLASMA, and achieves performance comparable to cuSOLVER. Additionally,
we demonstrate the effectiveness of our algorithm by integrating it into the
SLSQP method in the NLOPT library, where QR factorization is frequently
invoked. Replacing the existing QR factorization kernel with our proposed kernel
results in significant performance improvements over the original algorithm.

References

1. John T Betts and Paul D Frank. A sparse nonlinear optimization algorithm.
Journal of Optimization Theory and Applications, 82:519–541, 1994.

2. Paul T Boggs and Jon W Tolle. Sequential quadratic programming. Acta numerica,
4:1–51, 1995.

3. Paul T Boggs and Jon W Tolle. Sequential quadratic programming. Acta numerica,
4:24–25, 1995.

4. Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge Uni-
versity Press, Cambridge, 2004.

5. Richard H Byrd, Jorge Nocedal, and Robert B Schnabel. Representations of quasi-
newton matrices and their use in limited memory methods. Mathematical Program-
ming, 63(1-3):129–156, 1994.

6. NVIDIA Corporation. The api reference guide for cublas, the cuda basic linear
algebra subroutine library. https://docs.nvidia.com/cuda/cublas/#introduction,
2024.

https://docs.nvidia.com/cuda/cublas/#introduction


16 F. Author et al.

7. NVIDIA Corporation. The api reference guide for cusolver, a gpu acceler-
ated library for decompositions and linear system solutions for both dense
and sparse matrices. https://docs.nvidia.com/cuda/cusolver/index.html#:~:text=
The%20intent%20of,shared%20sparsity%20pattern, 2024.

8. Philip E Gill, Walter Murray, and Michael A Saunders. Snopt: An sqp algorithm
for large-scale constrained optimization. SIAM review, 47(1):99–131, 2005.

9. G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins Studies in
the Mathematical Sciences. Johns Hopkins University Press, 2013.

10. Ali Asghar Heidari, Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah, Majdi Ma-
farja, and Huiling Chen. Harris hawks optimization: Algorithm and applications.
Future Generation Computer Systems, 97:849–872, 2019.

11. J. N. Herskovits and L. A. V. Carvalho. A successive quadratic programming based
feasible directions algorithm. In A. Bensoussan and J. L. Lions, editors, Analysis
and Optimization of Systems, pages 93–101, Berlin, Heidelberg, 1986. Springer
Berlin Heidelberg.

12. Steven G. Johnson. The NLopt nonlinear-optimization package. https://github.
com/stevengj/nlopt, 2007.

13. Stephen J. Wright Jorge Nocedal. Numerical Optimization. Springer New York,
NY, 2006.

14. Dieter Kraft. Algorithm 733: TOMP–fortran modules for optimal control calcula-
tions. ACM Transactions on Mathematical Software, 20:262–281, 1994.

15. Craig T. Lawrence and André L. Tits. A Computationally Efficient Feasible Se-
quential Quadratic Programming Algorithm. SIAM Journal on Optimization,
11(4):1092–1118, 2001.

16. Joaquim R. R. A. Martins and Andrew Ning. Engineering Design Optimization.
Cambridge University Press, 2021.

17. George Nemhauser and Laurence Wolsey. Linear Programming, chapter I.2, pages
27–49. John Wiley & Sons, Ltd, 1988.

18. John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with cuda. In ACM SIGGRAPH 2008 Classes, SIGGRAPH ’08,
New York, NY, USA, 2008. Association for Computing Machinery.

19. Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics
of computation, 35(151):773–782, 1980.

20. Joe Eaton NVIDIA Corporation. Parallel direct solvers
with cusolver: Batched qr. https://developer.nvidia.com/blog/
parallel-direct-solvers-with-cusolver-batched-qr/#:~:text=cuSOLVER%
20provides%20batch,deliver%20decent%20performance., 2015.

21. Florian A. Potra and Stephen J. Wright. Interior-point methods. Journal of Com-
putational and Applied Mathematics, 124(1):281–302, 2000. Numerical Analysis
2000. Vol. IV: Optimization and Nonlinear Equations.

22. Andrzej Ruszczyński. Nonlinear optimization. Princeton University Press, Prince-
ton, NJ, 2006.

23. Adam Slowik and Halina Kwasnicka. Evolutionary algorithms and their applica-
tions to engineering problems. Neural Computing and Applications, 32(16):12363–
12379, Aug 2020.

24. Wenyu Sun and Ya-Xiang Yuan. Optimization theory and methods: nonlinear
programming, volume 1. Springer Science & Business Media, 2006.

25. Wikipedia contributors. Thread block (cuda programming) — Wikipedia, the free
encyclopedia, 2024. [Online; accessed 24-August-2024].

https://docs.nvidia.com/cuda/cusolver/index.html#:~:text=The%20intent%20of,shared%20sparsity%20pattern 
https://docs.nvidia.com/cuda/cusolver/index.html#:~:text=The%20intent%20of,shared%20sparsity%20pattern 
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
https://doi.org/10.1137/S1052623498344562
https://doi.org/10.1137/S1052623498344562
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118627372.ch2
https://developer.nvidia.com/blog/parallel-direct-solvers-with-cusolver-batched-qr/#:~:text=cuSOLVER%20provides%20batch,deliver%20decent%20performance. 
https://developer.nvidia.com/blog/parallel-direct-solvers-with-cusolver-batched-qr/#:~:text=cuSOLVER%20provides%20batch,deliver%20decent%20performance. 
https://developer.nvidia.com/blog/parallel-direct-solvers-with-cusolver-batched-qr/#:~:text=cuSOLVER%20provides%20batch,deliver%20decent%20performance. 
https://www.sciencedirect.com/science/article/pii/S0377042700004337
https://doi.org/10.1007/s00521-020-04832-8
https://doi.org/10.1007/s00521-020-04832-8

	Enhancing QR Decomposition: A GPU-based Approach to Parallelizing the Householder Algorithm with CUDA Streams

