
Unleashing Multicore Strength for Efficient
Execution of Blockchain Transactions

Ankit Ravish1[0009−0009−7355−8455], Akshay Tejwani1[0009−0000−4732−8685],
Piduguralla Manaswini1[0000−0002−6295−0445], and Sathya

Peri1[0000−0002−3471−7929]

Indian Institute of Technology Hyderabad, Telangana, India
{cs21resch11014,cs21mtech12015,cs20resch11007}@iith.ac.in,

sathya_p@cse.iith.ac.in

Abstract. Blockchain technology is characterized by its distributed, de-
centralized, and immutable ledger system which serves as a fundamen-
tal platform for managing smart contract transactions (SCTs). However,
these SCTs undergo sequential validation within a block which introduces
performance bottlenecks in blockchain. In response, this paper introduces
a framework called the Multi-Bin Parallel Scheduler (MBPS) designed
for parallelizing blockchain smart contract transactions to leverage the
capabilities of multicore systems. Our proposed framework facilitates
concurrent execution of SCTs, enhancing performance by allowing non-
conflicting transactions to be processed simultaneously while preserving
deterministic order. The framework comprises of three vital stages: con-
flict detection, bin creation, and execution. We conducted an evaluation
of our MBPS framework in Hyperledger Sawtooth v1.2.6, revealing sub-
stantial performance enhancements compared to existing parallel SCT
execution frameworks across various smart contract applications. This
research contributes to the ongoing optimization efforts in blockchain
technology demonstrating its potential for scalability and efficiency in
real-world scenarios.

Keywords: Blockchain · Smart Contracts · Parallel Execution · Conflict
Detection.

1 Introduction

Blockchain [7] is a decentralized digital ledger offering secure and tamper-resistant
record-keeping, with applications in finance, supply chain, and identity verifica-
tion. Despite its advantages, blockchain scalability remains a challenge due to
sequential smart contract execution. To address this, we propose the Multi-Bin
Parallel Scheduler (MBPS) framework, enabling parallel smart contract execu-
tion to improve throughput and reduce transaction execution times.MBPS ad-
dresses the issue of transaction conflicts that can arise from parallel processing,
ensuring consistent block validation across participants.

2 A. Ravish et al.

Numerous strategies have been explored to improve the efficiency of blockchain
technology, particularly in terms of scalability, security, and consensus mecha-
nisms. Sharding is a notable approach, dividing the blockchain network into
smaller units or shards, which handle transactions independently to increase
throughput by allowing concurrent transaction execution across shards. Dicker-
son et al. [5] proposed a speculative parallel execution model for miners and val-
idators, utilizing software transactional memory to allow non-conflicting trans-
actions to execute concurrently in a deterministic fork-join program. Similarly,
Saraph et al. [10] introduced a concurrent execution model in Ethereum, dividing
transactions into bins for parallel and serial processing based on their read and
write sets. Optimistic Software Transactional Memory systems have also been
leveraged for concurrent smart contract execution, demonstrating performance
gains over sequential execution [2,3]. A direct acyclic graph (DAG)-based paral-
lel scheduler has been proposed to enhance blockchain performance by improving
the parallelism in smart contract execution [8]. Liu et al. [6] introduced an ar-
chitecture where consensus nodes are separated from execution nodes, support-
ing asynchronous transaction ordering and parallel execution. The DiPETrans
framework by Baheti et al. [4] enables distributed transaction execution with a
collaborative PoW approach. Additionally, Yan et al. [11] presented an SCC-VS
algorithm, optimizing concurrency within shards based on transaction charac-
teristics like execution time and conflict rate. This paper presents three MBPS
variations (Standard, Assisted, and Lockfree) and analyzes their effectiveness in
improving throughput and preserving transaction order.

2 Proposed Framework

This section presents the design of our proposed Multi-Bin Parallel Scheduler
(MBPS) framework, detailing its architecture and key components. The pro-
posed MBPS framework facilitates parallel transaction execution while preserv-
ing a deterministic order, thereby leveraging the capabilities of multicore systems
to enhance the efficiency of blockchain ecosystems. This framework introduces
three distinct versions to address specific aspects of smart contract execution in
blockchain ecosystems: Standard MBPS, Assisted MBPS, and Lockfree MBPS.

Each MBPS framework undergoes three crucial stages: Conflict Detection,
Bin Assignment, and Transaction Execution. In Conflict Detection, conflicts
between transactions Ti and Tj are identified if one transaction reads a data
item that the other writes, or if both write to the same data item, as detailed in
the paper [9]. During Bin Assignment, transactions are assigned to bins such
that transactions within the same bin are independent, ensuring no conflicts
within bins. The procedure for compact bin allocation is outlined in Algorithm
1. Finally, in Transaction Execution, non-conflicting transactions in each bin
are executed sequentially, bin by bin, starting from Bin 1. All algorithms related
to the frameworks discussed above are detailed in the paper [9].

The Standard MBPS framework employs synchronization barriers for par-
allel smart contract execution, comprising two phases: conflict set identification

Unleashing Multicore Strength for Efficient Execution of Transactions 3

and bin number assignment. During conflict set identification, transactions are
grouped based on conflicts (write-write, read-write, write-read) through input
and output address analysis, allowing each transaction to be allocated to a con-
flict set in parallel. Subsequently, bin numbers are assigned to ensure that con-
flicting transactions are placed in separate bins, facilitating parallel execution.
The Assisted MBPS enhances blockchain transaction execution by incorporat-
ing a barrier mechanism and helper threads to boost efficiency, particularly dur-
ing thread crashes or latency. Similar to the Standard MBPS, it consists of con-
flict set identification and bin number assignment phases, augmented by helper
threads to further optimize performance. In contrast, the Lockfree MBPS
framework advances blockchain transaction parallelism by utilizing lock-free data
structures, circumventing traditional synchronization methods like mutexes and
barriers. This framework also includes the conflict set identification and bin
number assignment phases, where helper threads and atomic operations create
a lock-free environment. Algorithm 1 illustrates the bin assignment process us-
ing helper threads, enabling each thread to independently claim transactions,
detect conflicts, and assign bins in parallel, thereby enhancing scalability and
performance in blockchain execution.

3 Analysis of Experiments

In this section, we analyze the experiments conducted to evaluate our frame-
work’s performance with the Hyperledger Sawtooth blockchain [1]. We selected
Sawtooth due to its parallelism support and inbuilt parallel scheduler. Although
Sawtooth is Python-based, we implemented our multi-threaded MBPS frame-
work in C++ for its low-level control over parallelism through threads, mutexes,
and atomic operations. We conducted the experiments on an x86_64 machine
with 56 CPUs, 2 threads per core, and 14 cores per socket (Intel Xeon CPU
E5-2690 v4 @ 2.60GHz). Our MBPS framework’s performance was compared
with Sawtooth’s parallel tree and serial schedulers, as well as the ADJ_DAG
and LL_DAG frameworks [8]. Three experiment types were conducted: Base-
line Performance Evaluation, Threads Latency Impact Analysis, and Threads
Crash Resilience Analysis. The baseline performance evaluation compares exe-
cution times and throughput across frameworks, establishing standard metrics.
The threads latency impact analysis explores how thread delays influence perfor-
mance. Additionally, the threads crash resilience analysis focuses on performance
under thread crashes, with particular attention to the lockfree bin scheduler, as
it uniquely supports threads crash-handling compared to other schedulers. For
these experiments, we used three conflict parameters (CP) defined in [8].

4 A. Ravish et al.

Algorithm 1 Bin Number Assignment Algorithm - Helper Threads
1: function BinNumAssignHelper
2: processedTxns← 0
3: localCount← 0
4: flag ← 0
5: while processedTxns < |Txns| do
6: i← atomicFetchAdd(i2, 1) mod |Txns|
7: if initialBin[i] = −1 then
8: localCount← 0
9: if flag = 1 then

10: atomicFetchAdd(threadCounter2,−1)
11: end if
12: allotedBin← CalculateBinHelper(i)
13: if allotedBin = −1 then
14: continue
15: end if
16: localV al← allotedBin
17: set<int> ∗ copy1, ∗copy2, ∗tempCopy
18: repeat
19: copy1← binArray[allotedBin]
20: if copy1 = NULL then
21: (∗tempCopy).insert(i)
22: copy2← tempCopy
23: else
24: if i ∈ ∗copy1 then
25: break
26: end if
27: for a ∈ ∗copy1 do
28: (∗copy2).insert(a)
29: end for
30: (∗copy2).insert(i)
31: end if
32: until binArray[allotedBin].CAS(copy1, copy2)
33: temp1← −1
34: if initialBin[i].CAS(temp1, localV al) then
35: atomicFetchAdd(processedTxns, 1)
36: end if
37: else
38: localCount← localCount+ 1
39: if localCount = |Txns| and flag = 0 then
40: flag ← 1
41: atomicFetchAdd(threadCounter2, 1)
42: end if
43: end if
44: if (threadCounter2 = numThreads) or (localCount = |Txns|) then
45: atomicStore(processedTxns, |Txns|)
46: end if
47: end while
48: end function

Unleashing Multicore Strength for Efficient Execution of Transactions 5

200 400 600 800 100
0
120

0

200

400

No. of Transactions

E
x
ec

u
ti

o
n

T
im

e
[s

ec
o
n
d
s]

(a) CP1

200 400 600 800 100
0
120

0

50

55

60

65

No. of Transactions

T
h
ro

u
g
h
p
u
t

[t
x
n
s/

s]

(b) CP2

Serial Tree Adj_DAG LL_DAG Standard Assisted Lockfree

0 20 40 60 80 100
40

50

60

70

Dependency Percentage

T
h
ro

u
g
h
p
u
t

[t
x
n
s/

s]

(c) CP3

Graph 1: Simple Wallet Smart Contracts - Baseline Performance Analysis

0 20 40 60 80

200

400

600

800

Delayed Threads [%]

E
x
ec

u
ti

o
n

T
im

e
[s

ec
o
n
d
s]

(a) 600 txns, CP1

200 400 600 800 100
0
120

0

500

1000

No. of Transactions

E
x
ec

u
ti

o
n

T
im

e
[s

ec
o
n
d
s]

(b) 33% delay ratio, CP2

Adj_DAG LL_DAG Standard Assisted Lockfree

0 20 40 60 80

20

40

60

Delayed Threads [%]

T
h
ro

u
g
h
p
u
t

[t
x
n
s/

s]

(c) 600 txns, CP3

Graph 2: Simple Wallet Smart Contracts - Threads Latency Analysis

0 20 40 60 80 100

200

400

600

800

1000

Threads Crashing [%]

E
x
ec

u
ti

o
n

T
im

e
[s

ec
o
n
d
s]

(a) 600 txns, CP1

200 400 600 800 100
0
120

0

200

400

600

800

1000

No. of Transactions

E
x
ec

u
ti

o
n

T
im

e
[s

ec
o
n
d
s]

(b) 33% crash ratio, CP2

Lockfree

0 20 40 60 80 100

20

40

60

Threads Crashing [%]

T
h
ro

u
g
h
p
u
t

[t
x
n
s/

s]

(c) 600 txns, CP3

Graph 3: Simple Wallet Smart Contracts - Threads Crashing Analysis

6 A. Ravish et al.

4 Conclusion and Future Work

This paper introduces the MBPS framework for parallelizing blockchain smart
contract transactions on multicore systems, featuring three variants: Standard,
Assisted, and Lockfree MBPS. Each variant optimizes transaction execution
while ensuring deterministic ordering. Experimental results on Hyperledger Saw-
tooth show notable improvements in throughput and execution time. Lockfree
MBPS proved resilient to thread crashes, while Assisted MBPS effectively re-
duced latency via helper threads. Our future objective is to extend MBPS to
distributed environments, addressing challenges like network latency, communi-
cation overhead, and synchronization. We also aim to optimize conflict detection
and bin assignment to enhance efficiency.

References

1. Hyperledger Sawtooth Whitepaper. https://8112310.fs1.
hubspotusercontent-na1.net/hubfs/8112310/Hyperledger/Offers/
Hyperledger_Sawtooth_WhitePaper.pdf

2. Anjana, P.S., Attiya, H., Kumari, S., Peri, S., Somani, A.: Efficient concurrent
execution of smart contracts in blockchains using object-based transactional mem-
ory. In: Networked Systems. pp. 77–93. Springer International Publishing, Cham
(2021)

3. Anjana, P.S., Kumari, S., Peri, S., Rathor, S., Somani, A.: Optsmart: A space effi-
cient optimistic concurrent execution of smart contracts. Distrib Parallel Databases
(2022), https://link.springer.com/article/10.1007/s10619-022-07412-y

4. Baheti, S., Anjana, P.S., Peri, S., Simmhan, Y.: Dipetrans: A framework for dis-
tributed parallel execution of transactions of blocks in blockchain. Concurrency
and Computation: Practice and Experience n/a, e6804 (2022). https://doi.org/
https://doi.org/10.1002/cpe.6804, https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpe.6804

5. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding Concurrency to
Smart Contracts. pp. 303–312. PODC ’17, ACM, New York, NY, USA (2017)

6. Liu, J., Li, P., Cheng, R., Asokan, N., Song, D.: Parallel and asynchronous
smart contract execution. IEEE Trans. Parallel Distrib. Syst. 33(5), 1097–1108
(may 2022). https://doi.org/10.1109/TPDS.2021.3095234, https://doi.org/
10.1109/TPDS.2021.3095234

7. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Cryptography Mail-
ing list at https://metzdowd.com (03 2009)

8. Piduguralla, M., Chakraborty, S., Anjana, P.S., Peri, S.: Dag-based efficient parallel
scheduler for blockchains: Hyperledger sawtooth as a case study. In: Cano, J.,
Dikaiakos, M.D., Papadopoulos, G.A., Pericàs, M., Sakellariou, R. (eds.) Euro-Par
2023: Parallel Processing. pp. 184–198. Springer Nature Switzerland, Cham (2023)

9. Ravish, A., Tejwani, A., Manaswini, P., Peri, S.: Unleashing multicore strength for
efficient execution of transactions (2024), https://arxiv.org/abs/2410.22460

10. Saraph, V., Herlihy, M.: An Empirical Study of Speculative Concurrency in
Ethereum Smart Contracts. Tokenomics ’19 (2019)

11. Yan, W., Li, J., Liu, W., Tan, A.: Efficient concurrent execution of smart contracts
in blockchain sharding. Security and Communication Networks 2021, 1–15 (02
2021). https://doi.org/10.1155/2021/6688168

https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/Hyperledger/Offers/Hyperledger_Sawtooth_WhitePaper.pdf
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/Hyperledger/Offers/Hyperledger_Sawtooth_WhitePaper.pdf
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/Hyperledger/Offers/Hyperledger_Sawtooth_WhitePaper.pdf
https://link.springer.com/article/10.1007/s10619-022-07412-y
https://doi.org/https://doi.org/10.1002/cpe.6804
https://doi.org/https://doi.org/10.1002/cpe.6804
https://doi.org/https://doi.org/10.1002/cpe.6804
https://doi.org/https://doi.org/10.1002/cpe.6804
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6804
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6804
https://doi.org/10.1109/TPDS.2021.3095234
https://doi.org/10.1109/TPDS.2021.3095234
https://doi.org/10.1109/TPDS.2021.3095234
https://doi.org/10.1109/TPDS.2021.3095234
https://arxiv.org/abs/2410.22460
https://doi.org/10.1155/2021/6688168
https://doi.org/10.1155/2021/6688168

	Unleashing Multicore Strength for Efficient Execution of Blockchain Transactions

