
Unleashing Multicore Strength for Efficient
Execution of Blockchain Transactions

Ankit Ravish Akshay Tejwani Piduguralla Manaswini
Sathya Peri

Indian Institute of Technology Hyderabad

21st International Conference on Distributed Computing and
Intelligent Technology

2025

Introduction

Blockchain is a distributed, decentralized database or ledger
of records

Block creator adds the block to the blockchain

Validators validate the blocks added to the blockchain

Example: Bitcoin1, Ethereum2, Hyperledger Sawtooth3.
1Bitcoin (n.d.). Bitcoin.org. url: https://bitcoin.org/.
2Ethereum (n.d.). Ethereum.org. url: https://ethereum.org/.
3Hyperledger Sawtooth Whitepaper (n.d.).

https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/

Hyperledger/Offers/Hyperledger_Sawtooth_WhitePaper.pdf.
2/18

https://bitcoin.org/
https://ethereum.org/
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/Hyperledger/Offers/Hyperledger_Sawtooth_WhitePaper.pdf
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/Hyperledger/Offers/Hyperledger_Sawtooth_WhitePaper.pdf

Motivation

Blockchain adoption faces scalability issues due to consensus
and sequential SCT validation4

Parallel execution improves throughput and responsiveness

Parallel Execution Challenges:

Conflicts between block producer and validators

Potential state discrepancies leading to block rejection

Proposed Solution: Robust mechanisms to synchronize
transactions

4Thomas Dickerson et al. (2017). “Adding Concurrency to Smart
Contracts”. In: PODC ’17. Washington, DC, USA: ACM, pp. 303–312. isbn:
978-1-4503-4992-5.

3/18

Parallel Execution Challenges

Validator nodes may incorrectly reject a valid block proposed by
the block producer. We call such error as False Block Rejection
(FBR) error5,6.

5Thomas Dickerson et al. (2017). “Adding Concurrency to Smart
Contracts”. In: PODC ’17. Washington, DC, USA: ACM, pp. 303–312. isbn:
978-1-4503-4992-5.

6Parwat Singh Anjana et al. (2020). “Efficient Concurrent Execution of
Smart Contracts in Blockchains Using Object-Based Transactional Memory”.
In: Networked Systems - 8th International Conference, NETYS. vol. 12129.
Springer, pp. 77–93.

4/18

Proposed Framework

Multi-Bin Parallel Scheduler (MBPS)

MBPS Framework: Leverages multicore systems for parallel
SCT execution

Three Variants:
1 Standard MBPS: Barrier-based.
2 Assisted MBPS: Barrier-based with helper threads.
3 Lockfree MBPS: No barriers, uses atomic operations.

Comparison:

Framework Barrier Free Helper Threads

Standard MBPS × ×
Assisted MBPS × ✓
Lockfree MBPS ✓ ✓

5/18

MBPS Framework Architecture

Key Stages:

Conflict Detection: Identifies transaction conflicts
(read-write, write-write)
Bin Creation: Groups non-conflicting transactions for parallel
execution
Execution: Executes bins sequentially while maintaining
parallelism within bins

6/18

MBPS Framework Architecture

Conflict Detection

T1, T2, T3. . . ,T7 are the list of
transactions in the block

Data items accessed by these
transactions - A, B, C, D, E, F, G

T1 reads A and writes B
T2 reads C and writes A
T3 writes C and reads D
T4 reads E
T5 writes D,G and reads A,F
T6 writes F
T7 writes G

conflict[T1]= []

conflict[T2]= [T1]

conflict[T3]= [T2]

conflict[T4]= []

conflict[T5]= [T2,T3]

conflict[T6]= [T5]

conflict[T7]= [T5]

7/18

MBPS Framework Architecture

Key Stages:

Conflict Detection: Identifies transaction conflicts
(read-write, write-write)
Bin Creation: Groups non-conflicting transactions for parallel
execution

8/18

MBPS Framework Architecture

Bin Assignment

conflict[T1]= []

conflict[T2]= [T1]

conflict[T3]= [T2]

conflict[T4]= []

conflict[T5]= [T2,T3]

conflict[T6]= [T5]

conflict[T7]= [T5]

bin[1]= [T1,T4]

bin[2]= [T2]

bin[3]= [T3]

bin[4]= [T5]

bin[5]= [T6,T7]

9/18

MBPS Framework Architecture

Key Stages:

Conflict Detection: Identifies transaction conflicts
(read-write, write-write)
Bin Creation: Groups non-conflicting transactions for parallel
execution
Execution: Executes bins sequentially while maintaining
parallelism within bins

10/18

MBPS Framework Architecture

Key Stages:

Conflict Detection: Identifies transaction conflicts
(read-write, write-write)
Bin Creation: Groups non-conflicting transactions for parallel
execution
Execution: Executes bins sequentially while maintaining
parallelism within bins

Figure: Multi Binning Execution

10/18

MBPS Framework Architecture

Key Stages:

Conflict Detection: Identifies transaction conflicts
(read-write, write-write)
Bin Creation: Groups non-conflicting transactions for parallel
execution
Execution: Executes bins sequentially while maintaining
parallelism within bins

Figure: Multi Binning Execution

10/18

MBPS Framework Architecture

Key Stages:

Conflict Detection: Identifies transaction conflicts
(read-write, write-write)
Bin Creation: Groups non-conflicting transactions for parallel
execution
Execution: Executes bins sequentially while maintaining
parallelism within bins

Figure: Multi Binning Execution

10/18

MBPS Framework Architecture

Key Stages:

Conflict Detection: Identifies transaction conflicts
(read-write, write-write)
Bin Creation: Groups non-conflicting transactions for parallel
execution
Execution: Executes bins sequentially while maintaining
parallelism within bins

Figure: Multi Binning Execution

10/18

MBPS Framework Architecture

Standard MBPS:
Uses barriers for controlled synchronization
Phases: Conflict Set Identification and Bin Number
Assignment
Efficient but suffers from synchronization overhead and threads
latency

Assisted MBPS:
Enhances Standard MBPS with helper threads for optimized
execution
Helps when some threads are slow or stuck
Improves efficiency, but still uses barriers

Lockfree MBPS:
No barriers or locks, so threads don’t have to wait
Uses atomic operations and helper threads for faster parallel
execution
Threads crash tolerant

11/18

Experimental Evaluation

2-socket Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz

56 threads (14 cores per socket and 2 threads per core)

Ubuntu 18.04.6 LTS

Varying transactions in a block

Varying threads

Varying conflict%

C++ language

Tested on Hyperledger Sawtooth Blockchain

12/18

Experimental Evaluation

Three distinct experiments to assess the performance:

Baseline Performance
Threads Latency Analysis
Threads Crash Analysis

Three distinct conflict parameters (CP)7 to assess the performance:

CP1: Percentage of transactions having at least one dependency.
CP2: Percentage of dependent transactions in relation to the total
number of transactions.
CP3: Percentage of disjoint transactions relative to the total
number of transactions.

7Manaswini Piduguralla et al. (2023). “DAG-Based Efficient Parallel
Scheduler for Blockchains: Hyperledger Sawtooth as a Case Study”. In:
Euro-Par 2023: Parallel Processing. Ed. by José Cano et al. Cham: Springer
Nature Switzerland, pp. 184–198. isbn: 978-3-031-39698-4.

13/18

Baseline Performance - CP1

200 400 600 800 1000 1200

100

200

300

400

500

No. of Transactions

E
xe
cu

ti
o
n
T
im

e
[s
ec
o
n
d
s]

Baseline - CP1

Serial Tree Adj DAG LL DAG Standard Assisted Lockfree

14/18

Threads Latency - CP2

200 400 600 800 1000 1200

200

400

600

800

1000

1200

No. of Transactions

E
xe
cu

ti
o
n
T
im

e
[s
ec
o
n
d
s]

Delay - CP2

Adj DAG LL DAG Standard Assisted Lockfree

33% delayed threads

15/18

Threads Crash - CP3

0 20 40 60 80 100

10

20

30

40

50

60

Threads Crashing [%]

T
h
ro
u
g
h
p
u
t
[t
xn

s/
s]

Lockfree - CP3

Lockfree

600 transactions

16/18

Conclusion and Future Work

Conclusion:

Proposed MBPS framework (Standard, Assisted, Lockfree) to
parallelize blockchain transactions on multicore systems

Achieved significant performance gains in throughput on
Hyperledger Sawtooth

Future Work:

Furthur study the designed algorithms under varying
conditions

Optimize conflict detection and bin assignment for efficiency

Develop the lock-free proof

17/18

Thank You
Piduguralla Manaswini

Email: cs20resch11007@iith.ac.in

Ankit Ravish
Email: cs21resch11014@iith.ac.in

18/18

