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Introduction

Blockchain is a distributed, decentralized database or ledger
of records

Block creator adds the block to the blockchain

Validators validate the blocks added to the blockchain

Example: Bitcoin1, Ethereum2, Hyperledger Sawtooth3.
1Bitcoin (n.d.). Bitcoin.org. url: https://bitcoin.org/.
2Ethereum (n.d.). Ethereum.org. url: https://ethereum.org/.
3Hyperledger Sawtooth Whitepaper (n.d.).

https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/

Hyperledger/Offers/Hyperledger_Sawtooth_WhitePaper.pdf.
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Motivation

Blockchain adoption faces scalability issues due to consensus
and sequential SCT validation4

Parallel execution improves throughput and responsiveness

Parallel Execution Challenges:

Conflicts between block producer and validators

Potential state discrepancies leading to block rejection

Proposed Solution: Robust mechanisms to synchronize
transactions

4Thomas Dickerson et al. (2017). “Adding Concurrency to Smart
Contracts”. In: PODC ’17. Washington, DC, USA: ACM, pp. 303–312. isbn:
978-1-4503-4992-5.
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Parallel Execution Challenges

Validator nodes may incorrectly reject a valid block proposed by
the block producer. We call such error as False Block Rejection
(FBR) error5,6.

5Thomas Dickerson et al. (2017). “Adding Concurrency to Smart
Contracts”. In: PODC ’17. Washington, DC, USA: ACM, pp. 303–312. isbn:
978-1-4503-4992-5.

6Parwat Singh Anjana et al. (2020). “Efficient Concurrent Execution of
Smart Contracts in Blockchains Using Object-Based Transactional Memory”.
In: Networked Systems - 8th International Conference, NETYS. vol. 12129.
Springer, pp. 77–93.
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Proposed Framework

Multi-Bin Parallel Scheduler (MBPS)

MBPS Framework: Leverages multicore systems for parallel
SCT execution

Three Variants:
1 Standard MBPS: Barrier-based.
2 Assisted MBPS: Barrier-based with helper threads.
3 Lockfree MBPS: No barriers, uses atomic operations.

Comparison:

Framework Barrier Free Helper Threads

Standard MBPS × ×
Assisted MBPS × ✓
Lockfree MBPS ✓ ✓
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MBPS Framework Architecture

Key Stages:

Conflict Detection: Identifies transaction conflicts
(read-write, write-write)
Bin Creation: Groups non-conflicting transactions for parallel
execution
Execution: Executes bins sequentially while maintaining
parallelism within bins
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MBPS Framework Architecture

Conflict Detection

T1, T2, T3. . . ,T7 are the list of
transactions in the block

Data items accessed by these
transactions - A, B, C, D, E, F, G

T1 reads A and writes B
T2 reads C and writes A
T3 writes C and reads D
T4 reads E
T5 writes D,G and reads A,F
T6 writes F
T7 writes G

conflict[T1]= [ ]

conflict[T2]= [T1]

conflict[T3]= [T2]

conflict[T4]= [ ]

conflict[T5]= [T2,T3]

conflict[T6]= [T5]

conflict[T7]= [T5]
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MBPS Framework Architecture

Bin Assignment

conflict[T1]= [ ]

conflict[T2]= [T1]

conflict[T3]= [T2]

conflict[T4]= [ ]

conflict[T5]= [T2,T3]

conflict[T6]= [T5]

conflict[T7]= [T5]

bin[1]= [T1,T4]

bin[2]= [T2]

bin[3]= [T3]

bin[4]= [T5]

bin[5]= [T6,T7]
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MBPS Framework Architecture

Standard MBPS:
Uses barriers for controlled synchronization
Phases: Conflict Set Identification and Bin Number
Assignment
Efficient but suffers from synchronization overhead and threads
latency

Assisted MBPS:
Enhances Standard MBPS with helper threads for optimized
execution
Helps when some threads are slow or stuck
Improves efficiency, but still uses barriers

Lockfree MBPS:
No barriers or locks, so threads don’t have to wait
Uses atomic operations and helper threads for faster parallel
execution
Threads crash tolerant
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Experimental Evaluation

2-socket Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz

56 threads (14 cores per socket and 2 threads per core)

Ubuntu 18.04.6 LTS

Varying transactions in a block

Varying threads

Varying conflict%

C++ language

Tested on Hyperledger Sawtooth Blockchain
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Experimental Evaluation

Three distinct experiments to assess the performance:

Baseline Performance
Threads Latency Analysis
Threads Crash Analysis

Three distinct conflict parameters (CP)7 to assess the performance:

CP1: Percentage of transactions having at least one dependency.
CP2: Percentage of dependent transactions in relation to the total
number of transactions.
CP3: Percentage of disjoint transactions relative to the total
number of transactions.

7Manaswini Piduguralla et al. (2023). “DAG-Based Efficient Parallel
Scheduler for Blockchains: Hyperledger Sawtooth as a Case Study”. In:
Euro-Par 2023: Parallel Processing. Ed. by José Cano et al. Cham: Springer
Nature Switzerland, pp. 184–198. isbn: 978-3-031-39698-4.
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Baseline Performance - CP1
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Threads Latency - CP2
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33% delayed threads
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Threads Crash - CP3
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Conclusion and Future Work

Conclusion:

Proposed MBPS framework (Standard, Assisted, Lockfree) to
parallelize blockchain transactions on multicore systems

Achieved significant performance gains in throughput on
Hyperledger Sawtooth

Future Work:

Furthur study the designed algorithms under varying
conditions

Optimize conflict detection and bin assignment for efficiency

Develop the lock-free proof
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