
DAG-based Efficient Parallel Scheduler for Blockchains:
Hyperledger Sawtooth as a Case Study

Manaswini Piduguralla Saheli Chakraborty Parwat Singh Anjana
Sathya Peri

Euro-Par 2023

01 September 2023

Table of Contents

1 Research Objective and Introduction

2 Sawtooth Introduction

3 Motivation

4 Framework design and implementation

5 Results

6 Conclusion and Future Work

7 Related Work

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 1 / 33

Table of Contents

1 Research Objective and Introduction

2 Sawtooth Introduction

3 Motivation

4 Framework design and implementation

5 Results

6 Conclusion and Future Work

7 Related Work

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 1 / 33

Research Objective

The objective is to develop an Efficient Distributed and Secure
framework for the Execution of Smart Contracts in Blockchains.

Develop framework for concurrent execution of transactions.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 2 / 33

Blockchain

Blockchain is a decentralized distributed immutable ledger shared
among untrusted parties1.

Block-1

T1 T2 T3 T4

Block-2

T1 T2 T3

Each block contains a set of transactions.

1Nakamoto:Bitcoin:2009.
Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 3 / 33

Blockchain

Blockchain is a decentralized distributed immutable ledger shared
among untrusted parties1.

Block-1

T1 T2 T3 T4

Block-2

T1 T2 T3

Each block contains a set of transactions.

1Nakamoto:Bitcoin:2009.
Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 3 / 33

Smart Contracts

Smart contracts (SCs) are self executing contracts with agreement
between two or more parties that are written in the form of computer
code.

Smart contracts are like a ‘class’ that encapsulates data and methods.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 4 / 33

Smart Contracts

Smart contracts (SCs) are self executing contracts with agreement
between two or more parties that are written in the form of computer
code.

Smart contracts are like a ‘class’ that encapsulates data and methods.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 4 / 33

Introduction: Blockchain High Level Design

Blockchain nodes form a peer-to-peer system.

Clients (external to the system) wishing to execute transactions,
contact a peer of the system.

Figure: Clients send Transaction T1, T2 and T3 to block producer (Peer4)2

2Parwat+:Netys:2020.
Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 5 / 33

Introduction: Blockchain High Level Design

Blockchain nodes form a peer-to-peer system.

Clients (external to the system) wishing to execute transactions,
contact a peer of the system.

Figure: Clients send Transaction T1, T2 and T3 to block producer (Peer4)2

2Parwat+:Netys:2020.
Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 5 / 33

Introduction: Blockchain High Level Design

Figure: Block producer forms a block B4 and computes final state (FS)
sequentially

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 6 / 33

Introduction: Blockchain High Level Design

Figure: Block producer broadcasts the block B4

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 7 / 33

Introduction: Blockchain High Level Design

Peer1

Peer2

Peer3

B1 B2 B3

B1 B2 B3B1 B2 B3

B4

B4

B4

T1 T2 T3 FS
Hash of the

Previous
Block

T1 T2 T3 FS
Hash of the

Previous
Block

T1 T2 T3 FS
Hash of the

Previous
Block

Compute CS

Compute CS Compute CS

Figure: Validators (Peer 1, 2, and 3) compute current state (CS) sequentially

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 8 / 33

Introduction: Blockchain High Level Design

Peer1

Peer2

Peer3

B1 B2 B3

B1 B2 B3B1 B2 B3

B4

B4

B4

T1 T2 T3 FS
Hash of the

Previous
Block

T1 T2 T3 FS
Hash of the

Previous
Block

T1 T2 T3 FS
Hash of the

Previous
Block

CS == FS
 Reject Block B4

No Yes Agree on
Block B4

CS == FS
Reject Block B4

No Agree on
Block B4

Yes
CS == FS Agree on

Block B4
No

Reject Block B4

Yes

Figure: Validators verify the FS and reach the consensus protocol

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 9 / 33

Introduction: Blockchain High Level Design

Peer1

Peer2

Peer3

Peer4

B1 B2 B3

B1 B2 B3B1 B2 B3

B1 B2 B3 B4

B4

B4

B4

Figure: Block B4 successfully added to the blockchain

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 10 / 33

Table of Contents

1 Research Objective and Introduction

2 Sawtooth Introduction

3 Motivation

4 Framework design and implementation

5 Results

6 Conclusion and Future Work

7 Related Work

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 10 / 33

Hyperledger Sawtooth

Hyperledger Sawtooth3 is a modular platform for building,
deploying, and running distributed ledgers.

The modular property of sawtooth, enables enterprises and
consortiums to make decisions about their blockchain applications for
themselves.

Sawtooth Key Features:

Modular

Permissioned as well as permissionless infrastructure

Parallel transaction execution

Pluggable consensus algorithms

Multi language support

Dynamic consensus

Sawtooth

3sawtooth:url.
Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 11 / 33

Hyperledger Sawtooth

Hyperledger Sawtooth3 is a modular platform for building,
deploying, and running distributed ledgers.

The modular property of sawtooth, enables enterprises and
consortiums to make decisions about their blockchain applications for
themselves.

Sawtooth Key Features:

Modular

Permissioned as well as permissionless infrastructure

Parallel transaction execution

Pluggable consensus algorithms

Multi language support

Dynamic consensus

Sawtooth
3sawtooth:url.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 11 / 33

Table of Contents

1 Research Objective and Introduction

2 Sawtooth Introduction

3 Motivation

4 Framework design and implementation

5 Results

6 Conclusion and Future Work

7 Related Work

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 11 / 33

Motivation

Smart contract in blockchain are executed in two different contexts :

While block producers are composing the blocks.

Figure: Block producer create the block and broadcast it to others

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 12 / 33

Motivation

Smart contract in blockchain are executed in two different contexts :

While block producers are composing the blocks.

Figure: Block producer create the block and broadcast it to others

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 12 / 33

Motivation

Smart contract in blockchain are executed in two different contexts :

While block producers are composing the blocks.

While nodes/peers are validating the blocks.

Peer1

Peer2

Peer3

B1 B2 B3

B1 B2 B3B1 B2 B3

B4

B4

B4

T1 T2 T3 FS
Hash of the

Previous
Block

T1 T2 T3 FS
Hash of the

Previous
Block

T1 T2 T3 FS
Hash of the

Previous
Block

Compute CS

Compute CS Compute CS

Figure: Validators (Peer 1, 2, and 3) compute current state (CS) sequentially

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 13 / 33

Motivation

Smart contract in blockchain are executed in two different contexts :

While block producers are composing the blocks.

While nodes/peers are validating the blocks.

Peer1

Peer2

Peer3

B1 B2 B3

B1 B2 B3B1 B2 B3

B4

B4

B4

T1 T2 T3 FS
Hash of the

Previous
Block

T1 T2 T3 FS
Hash of the

Previous
Block

T1 T2 T3 FS
Hash of the

Previous
Block

Compute CS

Compute CS Compute CS

Figure: Validators (Peer 1, 2, and 3) compute current state (CS) sequentially

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 13 / 33

Motivation

In both stages, the transactions in the block are executed serially in most
blockchains4:

Not utilizing the multi-core processors efficiently.

Results in lower throughput.

Solution: Concurrent execution of SCTs

4Dickerson+:ACSC:PODC:2017.
Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 14 / 33

Motivation

In both stages, the transactions in the block are executed serially in most
blockchains4:

Not utilizing the multi-core processors efficiently.

Results in lower throughput.

Solution: Concurrent execution of SCTs

4Dickerson+:ACSC:PODC:2017.
Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 14 / 33

Concurrent Execution Challenges (1/3)

Validator may incorrectly reject a valid block proposed by the block
producer. We call such error as False Block Rejection (FBR)
error5,6.

5Dickerson+:ACSC:PODC:2017.
6Parwat+:Netys:2020.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 15 / 33

Concurrent Execution Challenges (1/3)

Validator may incorrectly reject a valid block proposed by the block
producer. We call such error as False Block Rejection (FBR) error.

Solution: The concurrent execution is always conflict equivalent to a
serial schedule.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 15 / 33

Contributions of this work

We have proposed a concurrent transaction execution framework for
blockchains.

The proposed approach has been thoroughly tested in Hyperledger
Sawtooth 1.2.6.

It is flexible enough for implementation in any blockchain that follows
the order-execute paradigm.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 16 / 33

Table of Contents

1 Research Objective and Introduction

2 Sawtooth Introduction

3 Motivation

4 Framework design and implementation

5 Results

6 Conclusion and Future Work

7 Related Work

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 16 / 33

Framework Design

Block Producer

Parallel Scheduler

DAG
Creation

Transaction
Execution

Block Validator

Secure Validator

DAG
Verification

Transaction
Execution

Batches
Trans.

Block + DAG

Network of Nodes
Node Acting as
Block Producer

Node Acting as
Block Validator

Figure: Proposed framework in the blockchain

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 17 / 33

Proposed Parallel Scheduler using DAG

The parallel scheduler performs the operations of DAG creation and
conflict-free transaction execution.

DAG (Direct Acyclic Graph)
to represent the
dependencies among the
transactions:

The nodes of the graph
will be the transactions in
the block.
An edge represents the
dependency between two
transactions.

T1

T5

T6

T3

T2

T4

T8

T7

Figure: DAG representation of
dependencies in the block.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 18 / 33

Proposed Parallel Scheduler using DAG

The parallel scheduler performs the operations of DAG creation and
conflict-free transaction execution.

DAG (Direct Acyclic Graph)
to represent the
dependencies among the
transactions:

The nodes of the graph
will be the transactions in
the block.

An edge represents the
dependency between two
transactions.

T1

T5

T6

T3

T2

T4

T8

T7

Figure: DAG representation of
dependencies in the block.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 18 / 33

Proposed Parallel Scheduler using DAG

The parallel scheduler performs the operations of DAG creation and
conflict-free transaction execution.

DAG (Direct Acyclic Graph)
to represent the
dependencies among the
transactions:

The nodes of the graph
will be the transactions in
the block.
An edge represents the
dependency between two
transactions.

T1

T5

T6

T3

T2

T4

T8

T7

Figure: DAG representation of
dependencies in the block.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 18 / 33

Proposed Parallel Scheduler using DAG

Dependency:
When two transactions are
accessing the same data
while at least one of which is
modifying it.

T1 : View(A)
T5: Send(B, A, 10)

T1

T5

T6

T3

T2

T4

T8

T7

Figure: DAG representation of
dependencies in the block.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 19 / 33

Proposed Parallel Scheduler using DAG

Scheduling:

Transactions with zero
indegree are not
dependent on current set
of executing transactions.
These transactions can be
scheduled for execution.

T1

T5

T6

T3

T2

T4

T8

T7

Figure: DAG representation of
dependencies in the block.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 20 / 33

Proposed Parallel Scheduler using DAG

Scheduling:

The out edges are
removed of the
transactions that have
completed execution.

T1

T5

T6

T3

T2

T4

T8

T7

Figure: DAG representation of
dependencies in the block.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 21 / 33

Framework Design

Block Producer

Parallel Scheduler

DAG
Creation

Transaction
Execution

Block Validator

Secure Validator

DAG
Verification

Transaction
Execution

Batches
Trans.

Block + DAG

Network of Nodes
Node Acting as
Block Producer

Node Acting as
Block Validator

Figure: Proposed framework in the blockchain

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 22 / 33

Concurrent Execution Challenges (2/3)

The Malicious block producer can send an incorrect Block Graph to
harm the blockchain, missing some edges, to cause double spending.
We call such error as Edge Missing BG (EMB) error7.

7Parwat+:Netys:2020.
Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 23 / 33

Concurrent Execution Challenges (2/3)

The Malicious block producer can send an incorrect Block Graph to
harm the blockchain, missing some edges, to cause double spending.
We call such error as Edge Missing BG (EMB) error.

Solution: We propose a Secure Multi-threaded Validator (SMV) to detect
EMB error and rejects the corresponding blocks.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 23 / 33

Concurrent Execution Challenges (3/3)

The Malicious block producer can send an incorrect Block Graph with
extra edges, to intentionally slow the validation process. We call such
error as Extra Edge BG (EEB) error.

Solution: We propose a Secure Multi-threaded Validator (SMV) to detect
EEB error and rejects the corresponding blocks.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 24 / 33

Concurrent Execution Challenges (3/3)

The Malicious block producer can send an incorrect Block Graph with
extra edges, to intentionally slow the validation process. We call such
error as Extra Edge BG (EEB) error.

Solution: We propose a Secure Multi-threaded Validator (SMV) to detect
EEB error and rejects the corresponding blocks.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 24 / 33

Secure Validator

Address 1

Read List

Address 2 Address 3

T1 T2

T3

T3 T5
........

Write List

Figure: Linked list address data for secure validator

Edge Validation: There should be an edge connecting each
transaction in the read list to every transaction in the write list.

An edge should also connect any two transactions within the write list.

In-degree validation: We track the in-degree of each transaction
during edge validation and cross check it with DAG in-degree.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 25 / 33

Secure Validator

Address 1

Read List

Address 2 Address 3

T1 T2

T3

T3 T5
........

Write List

Figure: Linked list address data for secure validator

Edge Validation: There should be an edge connecting each
transaction in the read list to every transaction in the write list.

An edge should also connect any two transactions within the write list.

In-degree validation: We track the in-degree of each transaction
during edge validation and cross check it with DAG in-degree.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 25 / 33

DAG Implementations

We have developed two
implementations for the
proposed DAG scheduler:

Linked List
Adjacency Matrix

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 26 / 33

Transaction Families

We implemented four transaction families to test the performance of our
approach:

IntKey Transaction Family

SmallBank Transaction Family

Voting Transaction Family

Insurance Transaction Family

Mixed block containing all three

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 27 / 33

Transaction Families

We implemented four transaction families to test the performance of our
approach:

IntKey Transaction Family

SmallBank Transaction Family

Voting Transaction Family

Insurance Transaction Family

Mixed block containing all three

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 27 / 33

Table of Contents

1 Research Objective and Introduction

2 Sawtooth Introduction

3 Motivation

4 Framework design and implementation

5 Results

6 Conclusion and Future Work

7 Related Work

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 27 / 33

Experiment 1: Varying the Number of Blocks

Voting Transaction Family

Y-axis: Time in seconds
X-axis: Number of blocks
Number of threads: 56
Degree of dependency:
50% CP3
Number of txns: 1000

Figure: Experiment one: Voting

Curves: Serial Scheduler, Tree Parallel Scheduler, LLDAG Scheduler, Adj
DAG Scheduler.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 28 / 33

Experiment 2: Varying the Number of Transactions

SimpleWallet Transaction
Family

Y-axis: Time in seconds
X-axis: Number of
transactions per block
Number of threads: 56
Degree of dependency:
50% CP2
Number of blocks: 20

Figure: Experiment two:
SimpleWallet

Curves: Serial Scheduler, Tree Parallel Scheduler, LLDAG Scheduler, Adj
DAG Scheduler.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 29 / 33

Experiment 3: Varying the Dependency

SimpleWallet Transaction
Family

Y-axis: Time in seconds
X-axis: Number of
transactions per block
Number of threads: 56
Number of blocks: 20
Number of txns: 1000

Figure: Experiment three: Mixed
Block

Curves: Serial Scheduler, Tree Parallel Scheduler, LLDAG Scheduler, Adj
DAG Scheduler.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 30 / 33

Experiment 2: Varying the Number of Transactions

Dependency data structure
creation or validation time
for SimpleWallet
Transaction Family

Y-axis: Time in seconds
X-axis: Number of
transactions per block
Number of threads: 56
Degree of dependency:
50% CP2
Number of blocks: 20 Figure: Comparison of data structure

creation time.

Curves: Tree Parallel Scheduler, LLDAG Scheduler, Adj DAG Scheduler,
Secure Validator

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 31 / 33

Table of Contents

1 Research Objective and Introduction

2 Sawtooth Introduction

3 Motivation

4 Framework design and implementation

5 Results

6 Conclusion and Future Work

7 Related Work

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 31 / 33

Conclusion

We have introduced a concurrent transaction execution framework for
blockchain systems.

Rigorous testing of our approach has taken place within Hyperledger
Sawtooth 1.2.6.

Our adaptable framework is compatible with any blockchain adhering
to the order-execute paradigm.

The artifact of our framework is evaluated and is available in Figshare
repository8.

8Piduguralla:artifact:2023.
Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 32 / 33

Conclusion

We have introduced a concurrent transaction execution framework for
blockchain systems.

Rigorous testing of our approach has taken place within Hyperledger
Sawtooth 1.2.6.

Our adaptable framework is compatible with any blockchain adhering
to the order-execute paradigm.

The artifact of our framework is evaluated and is available in Figshare
repository8.

8Piduguralla:artifact:2023.
Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 32 / 33

Future Work

Optimize the framework by improving DAG creation and secure
validation is our immediate next step.

We will be exploring enhancing the fault tolerance and scalability for
each blockchain node.

Euro-Par 2023 Enhanced Sawtooth IIT Hyderabad 33 / 33

Thank you

Thank you to ACM-W and Google for sponsoring my attendance and paper
presentation at this conference

Extras

Transaction Families

Intro

Consensus

The journal is the group of validator subcomponents that work
together to handle batches and proposed blocks.

The Block Completer initially receives the blocks and batches.
It guarantees that all dependencies for the blocks have been satisfied.

Completed batches go to the Block Publisher for batch validation
and inclusion in a block.

Completed blocks go to the Block Validator for validation and fork
resolution.

Intro

Sawtooth architecture

Journal

Transaction Scheduler

Transaction Executor

Transaction Processor

Global State

Intro

Life Cycle of a Sawtooth Transaction

Intro

Journal

Block Completer:
Receives the blocks and
batches from the network

Journal

Block Publisher: Creation
of blocks after validation

Journal

Block Validator: Performs
validation and fork
resolution for transactions in
the block

Sawtooth Parallel Scheduler

Sawtooth tree structure to
keep track of dependencies
using merkle tree.

Each data location has read
and write lists that contain
the ID of the transactions
that are accessing them.

David, Daniel, Dylan.

Transaction Executor

The executor obtains the
next transaction from the
sceduler.

Acquires context reference
from context manager and
state.

Combines transaction and
context for transaction
processor.

The Executor updates the
sceduler with the
transactions’s result with the
updated context using locks.

Sawtooth Global State

Sawtooth uses an
addressable Radix Merkle
tree to store data for
transaction families.

Merkle tree : stores
successive node hashes from
leaf-to-root.

Radix tree: addresses
uniquely identify the paths
to leaf nodes.

An address is a hex-encoded
string of 35 bytes, each node
has 28 possible children.

Key places for optimization in Hyperledger Sawtooth

Sawtooth architecture uses tree with addresses as nodes to represent
the dependencies.

(Total number of addresses � Transactions in a block)

The construction of the tree is done serially.

Status of all the dependent transactions is checked before scheduling
a transaction.

(This generates a delay in scheduling the transaction)

The available transaction are searched from the start of the array
each time a transaction is scheduled.

Locks are used to update transaction status.

DAG Implementations

We have developed two
implementations for the
proposed DAG scheduler:

Linked List
Ajacency Matrix

DAG Implementations

For DAG scheduling the
function “Next transaction”
is modified.

Transactions are selected for
scheduling using the DAG
created.

In selecting a transaction
there are multiple C++
modules initiated by python
threads.

DAG Implementations

For DAG creation we have
modified the “add batch”
function in Sawtooth
scheduler.

The creation of DAG is done
through multiple threads in
C++ module.

Validators

Secure
Validator

Block
Producer

Sceptic
Validator

Trusting
Validator

1. Verfies the DAG
2. Validates Block

1. Trusts the Block Producer
2. Validates Block

1. Recreates the DAG
2. Validates Block

D
A

G
+

B
lo

ck

DAG
+

BlockDAG
+

Blo
ck

Figure: Possible validators in the blockchain

Related Work

Consensus protocols and transaction throughput are the two significant
bottlenecks of blockchain performance.
Consensus:

Proof of Stake (PoS)9

Proof of Elapsed Time (PoET)10

Practical Byzantine Fault Tolerance (PBFT)11

9Vasim:2014:Blackcoin.
10sawtooth:url.
11Castro:2002:ACM.

Related Work

Consensus protocols and transaction throughput are the two significant
bottlenecks of blockchain performance.
Sharding:

Network Sharding12

State Sharding13

Transaction Sharding14

12DiPETrans:CPE:2022.
13Zheng+:IEEE:TII:2022.
14Dang+:SIGMOD:2019.

Table of Contents

1 Research Objective and Introduction

2 Sawtooth Introduction

3 Motivation

4 Framework design and implementation

5 Results

6 Conclusion and Future Work

7 Related Work

Related Work

Consensus protocols and transaction throughput are the two significant
bottlenecks of blockchain performance.

Transaction throughput:

STMs

Block Graph (BG)15

BG + Smart Validator16

BlockSTM17

15Dickerson+:ACSC:PODC:2017.
16Parwat+:Netys:2020.
17blockSTM:2022.

Related Work

Consensus protocols and transaction throughput are the two significant
bottlenecks of blockchain performance. Transaction throughput:

STMs

Block Graph (BG)15

BG + Smart Validator16

BlockSTM17

15Dickerson+:ACSC:PODC:2017.
16Parwat+:Netys:2020.
17blockSTM:2022.

DAG Implementations

We have developed two
implementations for the
proposed DAG scheduler:

Linked List
Adjacency Matrix

Adjacency Matrix

0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


In-Degree Matrix[

0 0 0 1 2 1 1 2
]

conflict parameters

In order to assess the framework’s performance across different scenarios,
we have devised three conflict parameters (CP):

CP1 measures the proportion of transactions in the DAG that have at
least one dependency

CP2 represents the ratio of dependencies to the total number of
transactions in the DAG

CP3 quantifies the number of disjoint components, which are
subgraphs without interconnections in the DAG.

Experiment Design

Parameter that we can change in Sawtooth architecture:

Number of blocks

Number of transactions in a block

Metric for degree of dependency

Number of threads

	Research Objective and Introduction
	Sawtooth Introduction
	Motivation
	Framework design and implementation
	Results
	Conclusion and Future Work
	Extras
	Related Work

