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Abstract. Blockchain technology is a distributed, decentralized, and
immutable ledger system. It is the platform of choice for managing smart
contract transactions (SCTs). Smart contracts are of pieces code that
capture business agreement between interested parties and are commonly
implemented using blockchains. A block in a blockchain contains a set
of transactions representing changes to the system and a hash of the
previous block. The SCTs are executed multiple times during the block
production and validation phases across the network. In most of the
existing blockchains, transactions are executed sequentially.
In this work, we propose a parallel direct acyclic graph (DAG) based
scheduler module for concurrent execution of SCTs. This module can be
seamlessly be integrated into the blockchain framework and the SCTs
in a block can be executed e�ciently resulting in higher throughput.
The dependencies among the SCTs of a block are represented as DAG
data structure which enables parallel execution of the SCTs. Further-
more, the DAG data structure is shared with block validators, allowing
resource conservation for DAG creation across the network. To ensure
secure parallel execution, we design a secure validator capable of validat-
ing and identifying incorrect DAGs shared by malicious block producers.
For evaluation, our framework is implemented in Hyperledger Sawtooth
V1.2.6. The performance across multiple smart contract applications is
measured for the various schedulers. We observed that our proposed ex-
ecutor exhibits a 1.58 times performance improvement on average over
serial execution.

Keywords: Smart Contract Executions, Blockchains, Hyperledger Saw-
tooth, Parallel Scheduler.

1 Introduction

Blockchain platforms help establish and maintain a decentralized and distributed
ledger system between untrusting parties [15]. The blockchain is a collection of

? Funded by Meity India: No.4(4)/2021-ITEA & 4(20)/2019-ITEA. This is part of the
National (Indian) Blockchain Framework Project.
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immutable blocks, typically in the form of a chain. Each block points to its previ-
ous block by storing its hash. A block in the blockchain consists of several smart
contract transactions (SCTs), which are self-executing contracts of agreement
between two or more parties that are written in the form of computer code.
These help in the execution of agreements among untrusted parties without the
necessity for a common trusted authority to oversee the execution. The devel-
opment and deployment of smart contracts on blockchain platforms is growing
rapidly.

A blockchain network usually consists of several nodes (ranging from thou-
sands to millions depending on the blockchain), each of which stores the entire
contents of the blockchain. Any node in the blockchain can act as a block pro-
ducer. A producer node selects transactions from a pool of available transactions
and packages them into a block. The proposed block is then broadcast to other
nodes in the network. A node receiving the block acts as a validator. It validates
the transactions in the block by executing them one after another. Thus a node
can act as a producer while producing the block and as a validator for blocks
produced by other nodes in the network.

Agreement on the proposed block by the nodes of the blockchain is performed
through various consensus mechanisms, like proof of work (PoW) [15], proof of
stake (PoS) [18], proof of elapsed time (PoET) [13], etc. For a block to be added
to the blockchain, the transactions of the block are processed in two contexts:
(a) �rst time by the block producer when the block is produced; (b) then by
all the block validators as a part of the block validation. Thus the SCT code is
executed multiple times by the producer and the validators.

The majority of blockchain technologies execute the SCTs in a block serially
during the block creation and validation phases. This is one of the bottlenecks for
higher throughput and scalability of blockchain models [10]. The throughput of
the blockchain can be improved by concurrent execution of transactions. In order
to enable concurrent transaction processing, it is crucial to ensure the avoidance
of running interdependent transactions simultaneously. Moreover, when execut-
ing transactions concurrently at each validator, they must yield an identical end
state in the database.

This work proposes a framework for executing transactions concurrently
on producers and validators. We have implemented our framework in Hyper-
ledger Sawtooth 1.2.6. [2]. We have chosen Sawtooth (explained in Section 2)
as our platform of choice due to its existing support for parallel execution of
SCTs, which provides us with an ideal environment to compare and test against
both serial and parallel schedulers. This approach could be implemented in any
blockchain with an order-execute blockchain model [4]. The major contributions
of the paper are as follows:

� We introduced two important modules: a parallel scheduler and a secure val-
idator are introduced in this work. The parallel scheduler module is respon-
sible for identifying transaction dependencies within a block and scheduling
them for con�ict-free execution using a directed acyclic graph (DAG). The
DAG is shared along with the block and validated by the secure validator
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Figure. 1: Structure of a Hyperledger Sawtooth block.

module, which helps detect any malicious block producers. Section 3 provides
a comprehensive explanation of the framework.

� We observed that our proposed executor achieves average speedups of 1.58
times and 1.29 times over Sawtooth's default serial executor and built-in par-
allel executor, respectively. The implementation details, experiment design,
and results are discussed in Section 4.

The overview of the related work aligned with the proposed approach is discussed
in Section 5, while the conclusion and future steps are discussed in Section 6.

2 Background on Hyperledger Sawtooth

The Hyperledger Foundation is an open-source collaboration project by the
Linux Foundation to establish and encourage cross-industry blockchain tech-
nologies. Sawtooth is one of the most popular blockchain technologies being de-
veloped for permissioned and permissionless networks. It is designed such that
transaction rules, permissions, and consensus algorithms can be customized ac-
cording to the particular area of application. Some of the distinctive features
of Sawtooth are modularity, multi-language support, parallel transaction exe-
cution, and pluggable consensus. The modular structure of Sawtooth helps in
modifying particular operations without needing to make changes throughout
the architecture.

In Sawtooth, smart contracts are referred to as transaction families, and the
logic for the contract is present in the respective families' transaction proces-
sors. Modi�cations to the state are performed through transactions, and they
are always wrapped inside a batch. A batch is the atomic unit of change in
the system and multiple batches are combined to form a block (Figure 1). The
node architecture of Sawtooth includes �ve modules that play crucial roles in
blockchain development: global state, journal, transaction scheduler, transac-
tion executor, and transaction processor. The global state containing the data
of transaction families of Sawtooth is stored using a Merkle-Radix tree data
structure. The Journal module contains a block completer, block validator, and
block publishers that deal with creating, verifying, and publishing blocks. It is
the responsibility of the Transaction Scheduler module to identify the dependen-
cies between transactions and schedule transactions that result in con�ict-free
execution. In order to execute a transaction, the transaction executor collects
the context of the transaction.1

1 The detailed architecture is explained in Appendix A of [16].
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Hyperledger Sawtooth architecture includes a parallel transaction scheduler
(tree-scheduler) that uses a Merkle-Radix tree with nodes that are addressable
by state addresses. This tree is called the predecessor tree. Each node in the
tree represents one address in the Sawtooth state, and a read list and write list
are maintained at each node. Whenever an executor thread requests the next
transaction, the scheduler inspects the list of unscheduled transactions and the
status of their predecessors. The drawbacks of the tree scheduler are that the
status of predecessor transactions needs to be checked before a transaction can
be scheduled. The construction of the tree data structure is serial. The number
of addresses accessed in a block is generally higher than the total number of
transactions. A data structure based on addresses typically requires more mem-
ory space compared to a transaction-based data structure. The block producers
and validators both construct the tree at their end instead of the block producer
sharing the tree with the validators.

The proposed framework for transaction execution on the blockchain would
improve the throughput of SCTs by making the block creation and validation
process concurrent. SCTs independent of each other are executed in parallel in
the framework. The dependencies are represented as a DAG based on transaction
inputs and outputs. DAG sharing and secure validator module designs are also
included in the framework to further optimize block validation.

3 Proposed Framework

In this section, the proposed framework for parallel transaction execution in
blockchains through static analysis of the block is detailed. This framework in-
troduces parallel scheduler and secure validator modules into the blockchain
node architecture, as shown in Figure 2. The parallel scheduler (SubSection 3.1)
is responsible for identifying the dependencies among the transactions in the
block and scheduling them for con�ict-free execution. This is done by deter-
mining the dependencies among the transactions. The identi�ed dependencies
are represented by a DAG that is shared along with the block to minimize the
validation time of the blockchain, the idea explored in [6, 7, 10]. DAG shared
along with the blocks are received and validated by the secure validator (Sub-
Section 3.2). Through the validation process, the secure validator determines if
any malicious block producer has shared a graph with some crucial edge (depen-
dency) missing. This section presents pseudo-codes for the modules as well as a
detailed framework.

3.1 Parallel Scheduler

The parallel scheduler module is part of the block producer in the proposed
framework. It performs the operations of DAG creation and con�ict-free trans-
action execution. Both processes are multi-threaded for higher throughput.
DAG Creation: The DAG creation is initiated when the block producer creates
the next block in the blockchain. In blockchains like Sawtooth, the addresses that
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the transactions read from, and write to, are present in the transaction header.
Using this information, we can derive the addresses based on the transaction
details without having to execute the transaction. By examining the input (read)
and output (write), the parallel scheduler calculates the dependencies among
transactions, as described in the following explanation.

On receiving a block (from the block publisher module), the producer de-
ploys multiple threads to generate the DAG. Firstly, a unique id is assigned to
the transactions based on their order in the block (T1, T2, T3...) using a global
atomic counter as shown in the Algorithm 1, Line 3. The input addresses of the
transaction (Ta) are compared with all the output addresses of transactions (e.g.,
Tb) with a higher ID. Correspondingly, the output addresses of Ta are compared
with the input and output addresses of Tb as shown in Algorithm 1 from Line 10
to Line 24. If there are any common addresses identi�ed in the above checks,
an edge is added from Ta to Tb in the DAG. An adjacency matrix data struc-
ture is implemented for representing the graph, and an atomic array is used to
maintain the indegree count of the vertices. We have also implemented a module
with a concurrent linked list structure, as shown in Figure 4. The pseudo-code
is detailed in Algorithm 1, and one can refer to appendix C in [16] for an in-
depth explanation. We have also proved the safety of our proposed framework
for concurrent execution, available in Appendix B in [16].
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Algorithm 1 Multi-threaded createDAG():m threads concurrently create DAG

1: procedure createDAG(block) . The block to be produced or validated is the input
2: while true do

3: Ti ← txnCounter.get&inc() . Claim the next transaction available
4: if Ti > txn_count then
5: txnCounter.dec()
6: return . Return if all the transactions are processed
7: end if

8: Graph_Node ∗txn = new Graph_Node
9: DAG→add_node(Ti, txn) . adding the node to the graph
10: for Tj = Ti + 1 to txn_count do . �nding dependent transactions
11: flagEdge=false
12: if Ti.readList ∩ Tj .writeList then . Checking for RW and WW con�icts
13: flagEdge=True
14: end if

15: if Ti.writeList ∩ Tj .readList then
16: flagEdge=True
17: end if

18: if Ti.writeList ∩ Tj .writeList then
19: flagEdge=True
20: end if

21: if flagEdge then

22: DAG→add_edge(Ti, Tj)
23: end if

24: end for

25: end while

26: end procedure . Threads join when the DAG is complete

Algorithm 2 Multi-threaded selectTxn(): threads concurrently search DAG for
the next transaction to execute
27: procedure selectTxn(DAG)
28: for Ti = pos To txn_count do . iterate over until all transactions to �nd transaction for

execution
29: if Ti.indeg == 0 then . Checking for txn with zero indegree
30: if Ti.indeg.CAS(0,−1) then
31: pos← Ti . store the last position for fast parsing
32: return Ti

33: end if

34: end if

35: end for

36: for Ti = 0 To pos do . iterate over until all transactions to �nd transaction for execution
37: if Ti.indeg == 0 then . Checking for txn with zero indegree
38: if Ti.indeg.CAS(0,−1) then
39: pos← Ti . store the last position for fast parsing
40: return Ti

41: end if

42: end if

43: end for

44: return −1 . Threads returns when a transaction is selected or all transactions are executed.
45: end procedure

Transaction Execution: Once the dependency DAG is constructed, the block
producer proceeds to execute the transactions within the block in parallel. It ini-
tiates multiple threads to process the transactions. Each thread selects a trans-
action for execution using the indegree array like in Line 30 of Algorithm 2. If
the indegree of a transaction is zero, it indicates that the transaction does not
have any predecessor-dependent transactions and can be executed (T1, T3, and
T2 in Figure 3). If no such transactions are available, the threads wait until one is
available or end execution if all the transactions have completed execution. Upon
selecting a transaction, it is executed, and the indegrees of all the outgoing edge
transactions (T5 and T6 for T1) are decremented by 1. Then, the next transaction
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Figure. 5: Example scenario of smart validator proposed by Anjana et al. in [6]

with zero indegree is searched for. This search can be optimized by initiating the
search from the last transaction ID selected. The last transaction ID selected is
stored in the variable pos in the Algorithm 2 and is used in Line 28 and Line 36.
This further reduces the time it takes to �nd the next transaction as the search
starts from pos as shown in the Algorithm 2 Line 28. The pseudo-code for the
execution of each thread while selecting a transaction is present in Algorithm 2.

3.2 Secure Validator

DAG sharing and smart multi-threaded validation have been explored in [6] by
Anjana et al. Two important computation errors discussed in [6] are False Block
Rejection (FBR), where a valid block is incorrectly rejected by a validator, and
Edge Missing BG (EMB), where an edge is removed from DAG before sharing by
a malicious block producer. The solution proposed for the issue of EMB by An-
jana et al. in [6] focuses on identifying missing edges between transactions only
when they are executed concurrently. However, when a validator executes trans-
actions sequentially, the block may still be accepted. Consequently, a parallel
validator would reject the block, while a serial validator would accept it as de-
picted in the Figure 5. This discrepancy can potentially result in inconsistencies
in the �nal states of the blockchain across di�erent nodes, which is undesirable.
To address this issue without sacri�cing concurrent block execution, we propose
a solution.

A malicious block producer can add extra edges to slow the validator by forc-
ing it to serially execute the block transaction. This case of malicious behaviour
is not considered by Anjana et al. [6]. We have denoted the condition as Extra
edge BG (EEB). In this work, we propose a solution overcoming the drawbacks
of the previous solution in resolving FBR and EMB while addressing EEB error.

DAG Validation: The DAG created by the block producer in the blockchain
network is shared with the validators in the network. This helps validators save
on the time taken for DAG creation. In order to address the issues caused by
FBR, EMB, and EEB errors due to DAG sharing, we have proposed secure
validator for verifying DAGs which is described in Algorithm 3. The secure
validator checks for missing edges and extra edges present in the DAG shared.
This is performed by multiple threads for swift graph veri�cation. For all the
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Figure. 6: Linked list address data for secure validator.

Algorithm 3 Multi-threaded secureValidator(): m threads concurrently verify
the DAG shared
46: procedure secureValidator(DAG)
47: while !mBlockProducer do

48: Adds← addsCounter.get&inc() . Claim the next address for analyzing
49: if Adds > adds_count then
50: addsCounter.dec()
51: return . Return if all the address are processed
52: end if

53: for i = 0 To lenght(Adds.readList) do . procedure for checking for missing edges
54: Ti ← Adds.readList[i]
55: for j = 0 To lenght(Adds.writeList) do . read-write dependencies
56: Tj ← Adds.writeList[j]
57: if !checkEdge(Ti, Tj) then
58: mBlockProducer ← True
59: return
60: end if

61: incDeg(Ti, Tj) . Increment the indegree of lower txn and mark the edge
62: end for

63: end for

64: for i = 0 To lenght(Adds.writeList) do
65: Ti ← Adds.writeList[i]
66: for j = 0 To lenght(Adds.writeList) do . write-write dependencies
67: Tj ← Adds.writeList[j]
68: if !checkEdge(Ti, Tj) then
69: mBlockProducer ← True
70: return
71: end if

72: incDeg(Ti, Tj) . Increment the indegree of lower txn and mark the edge
73: end for

74: end for

75: for i = 0 to txn_count do . procedure for checking for extra edges
76: if Ti.inDeg 6= Ti.calDeg then . if shared indegree is equal to calculated indegree
77: mBlockProducer ← True
78: return
79: end if

80: end for

81: end while

82: end procedure

addresses accessed in the block, a read list and a write list are maintained as
shown in the Figure 6. By parsing the transactions in the block, transaction IDs
are added to the read and write lists of respective addresses. First, check for
missing edges is performed by making sure that transactions in the write list
of an address have an edge with all transactions present in the respective read
and write lists as shown in Algorithm 3 Line 57. A failed check indicates that
the DAG shared has a missing edge. During the check, the number of outgoing
edges is calculated for each transaction as in Line 72 Algorithm 3.
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From Line 75 to Line 80, we compare the sum of the outgoing edges ob-
tained in the above operation with the in-degree array shared along the block.
This function identi�es if any extra edges are present in the DAG. As a result,
the secure validator veri�es the DAG and recognizes malicious block producers
(if any). The procedure to handle such nodes depends on the type and func-
tionalities of blockchain technology. This way, we eliminate the FBR, EMB, and
EEB errors and validate the DAG shared. Detailed algorithms with extensive
explanations can be obtained by referring to appendix C in [16].

4 Experiments Analysis

4.1 Implementation Details

We have chosen Hyperledger Sawtooth as our testing platform since it has good
support for parallelism and already has an inbuilt parallel scheduler. To incorpo-
rate the DAG framework into the Sawtooth architecture, we have to modify the
current parallel scheduler module. Due to the modular nature of Sawtooth, any
modi�cations made to a module can be restricted within the module itself with-
out impacting the remaining modules of the architecture. Ensuring this however
requires that the modi�cations to modules are performed with great care.

We have now implemented the DAG sharing and secure validator modules
in Sawtooth 1.2.6. Our modules are in CPP language while the Sawtooth core
was developed in both Rust and Python. We have chosen CPP for its e�cient
support for concurrent programming. For DAG sharing, we have modi�ed the
block after the block producer has veri�ed that all the transactions in the block
are valid. In Sawtooth 1.2.6 we used the input and output addresses present
in the transaction structure. Every transaction in the DAG is represented by a
graph node and the outgoing edges indicate dependent transactions. In order to
ensure e�cient validation, the DAG is also stored in the block [5, 6, 10] and shared
across the blockchain network. We have used the dependencies list component
of the transaction structure (in Sawtooth) to incorporate DAG into the block.

Initially, we implemented the DAG using a linked list data structure. This is
ideal when the size of the graph is unknown and the graph needs to be dynamic.
Given that the number of transactions in a block does not change and the limit to
the number of transactions a block can contain, we have designed an adjacency
matrix implementation for DAG. The results have shown further improvement
over the linked list implementation. This is because the adjacency matrix is direct
access whereas the linked list implementation would require traversal across the
list to reach the desired node.

In Sawtooth 1.2.6 block validators, the secure validator is implemented. The
DAG is recreated using the dependencies list provided in the transaction by the
block producer. This saves the time taken to create the DAG for concurrent
execution again in the validators. The secure validator performs various checks
for missing edges that should have been present in the DAG shared by the block
producer as explained in SubSection 3.2.
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Transaction Families: We implemented four transaction families to test the
performance of our approach: (a) SimpleWallet, (b) Intkey, (c) Voting and (d) In-
surance. In SimpleWallet one can create accounts, deposit, withdraw and transfer
money. In Intkey clients can increment and decrement values stored in di�erent
variables. In Voting, the operations are `create parties', `add voters' and the
voters can `vote' one of the parties. The insurance family is a data storage trans-
action family where user details like ID, name, and address details are stored
and manipulated.2 To control the percentage of con�icts between transactions,
one must have control over the keys created. We have modi�ed the batch cre-
ation technique in these transaction families to allow the user to submit multiple
transactions in a batch. This way we can not only just control the number of
transactions in a batch but also the con�icts among the transactions in a batch.
We individually observed each transaction family behaviour under various ex-
periments and a mix of all four types of transactions in a block.

4.2 Experiments

We have conducted several experiments to extensively test our proposed frame-
work. In order to assess the framework's performance across di�erent scenarios,
we have devised three con�ict parameters (CP) that indicate the level of de-
pendency among the transaction. The con�ict parameters, CP1, CP2, and CP3,
are metrics used to assess di�erent aspects of a DAG representing transactions.
CP1, measures the proportion of transactions in the DAG that have at least one
dependency. It indicates how interconnected the transactions are, with higher
values suggesting a greater level of dependencies. CP2, represents the ratio of de-
pendencies to the total number of transactions in the DAG. It provides insights
into the density of dependencies within the graph. A higher CP2 value indicates
a higher density of dependencies among transactions. CP3, quanti�es the degree
of parallelism in the DAG by calculating the number of disjoint components,
which are subgraphs without interconnections. A lower CP3 value suggests a
higher level of parallelism, indicating that transactions can be executed inde-
pendently in separate components. By evaluating these con�ict ratios, one can
gain a deeper understanding of the interdependencies and parallelizability of
transactions within the DAG.

We have designed four experiments, each varying one parameter while the rest
of the parameters are constant. The four parameters are (1) the number of blocks,
(2) the number of transactions in the block, (3) the degree of dependency, and (4)
the number of threads. The experimental setup is named one to four, respectively.
We have named the adjacency matrix implementation of our proposed framework
as Adj_DAG and linked list implementation as LL_DAG. The Sawtooth inbuilt
parallel scheduler uses a tree data structure; accordingly, we have named it as
Tree and serial execution output as Serial in our results. We have observed
that due to the presence of global lock in Python, the change in the number of

2 The transaction family code can be accessed here:
https://github.com/PDCRL/ConcSawtooth
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Figure. 7: Detailed analysis of our proposed framework performance with both adja-
cency matrix and linked list implementations in Sawtooth 1.2.6.

threads has not impacted the performance signi�cantly. Due to this, we have not
presented the results of the experiment (4) in this work.

It can be observed from Figure 7 that the adjacency matrix and linked list
implementation of our proposed framework perform signi�cantly better than
the tree-based parallel scheduling and serial execution. We have illustrated here
some of the experiments we have conducted, and the rest can be found in the
associated technical report [16] (Appendix D). Figure 7 (a), (d), and (g) illustrate
the impact of change in the number of blocks on various schedulers. On average
the speedup of Adj_DAG over Serial is 1.58 times and LL_DAG is 1.43 times,
while Tree is 1.22 times. The average speedup of Adj_DAG over Tree is 1.29
and LL_DAG is 1.17 times.

Experiment (2) results are depicted in Figure 7 (b), (e), and (h). We can
observe that the gap between serial and parallel schedulers increases with an in-
crease in the number of transactions in the block. We observe that the higher the
number of transactions greater the scope for concurrency. For Experiment (3),
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Figure. 8: Comparison of data structure creation time for all the parallel schedulers

we have varied the degree of dependency between the transactions and measured
its impact on the transactions per second (TPS). The dependency among the
transactions is increased by making multiple transactions access the same ac-
counts/addresses. Ideally, varying the con�ict percentage without changing the
number of transactions should not impact serial execution throughput. However,
a decrease in the number of di�erent memory accesses due to caching improves
the execution time. We can observe this phenomenon in serial execution time in
Figure 7 (c), (f), and (i). Interestingly these opposing e�ects, temporal locality,
and increase in con�icts balance each other, and a steady TPS is maintained for
ADJ_DAG and LL_DAG algorithms. But, in Tree scheduler, the performance
further decreases with increased con�icts as it dominates over the temporal lo-
cality.

Figure 7 (d), (e), and (f) show the Voting transaction family behavior un-
der experiments (1), (2), and (3). Unlike the other transaction families, Serial
execution is faster than Tree scheduler with this family. We discovered that the
reason for this is that the entire list of voters list and parties are accessed for
any transaction (operation) in this family instead of the one particular voter
and party address. This causes higher overheads which leads to the observation
that the design of the transaction family (smart contract) plays a crucial role in
performance optimization. One can observe that the ADJ_DAG and LL_DAG
still perform better as they use transactions to represent the dependency data
structure, unlike Tree scheduler that uses addresses.

The secure validator framework e�ciently veri�es the DAG shared by the
block producer and eliminates the need to reconstruct the DAG at every block
validator. The execution time of the secure validator and adjacency DAG sched-
uler will only vary in the dependency graph creation aspect. To highlight the
savings achieved through secure validator, we analyzed the dependency data
structure creation and veri�cation time for various schedulers in Figure 7. One
can observe that the secure validator takes the least execution time as seen in
the Figure 8 (j), (k), and (l). Figure 8 (l) shows that secure validator is stable
against the variations in the dependency in the graph. Due to lack of space,
the remaining experimental results, including the ones on Intkey and Insurance
transaction families, are described in the technical report [16] (Appendix D).
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5 Related Work

In the past few years, blockchain technology has gained tremendous popular-
ity and is used in a wide variety of �elds. Although blockchains are capable of
o�ering a variety of advantages, one of the most cited concerns is scalability. Con-
sensus protocols and transaction throughput are the two signi�cant bottlenecks
of blockchain performance. In contrast to PoW, alternative consensus proto-
cols like PoS and PoET are introduced to minimize consensus time. However,
transaction throughput continues to be a hindrance to scalability. Exercising
parallel execution of transactions in a block is one of the solutions to optimize
blockchains.

Dickerson et al. [10] introduced the concept of parallel execution of Ethereum
[1] transactions using Software Transactional Memory (STM). The block pro-
ducer executes transactions in the block using STM, and the serializable con-
current state is discovered. This is then shared with the validators to achieve
deterministic execution. Following this, there have been multiple STM-based
concurrent transaction execution frameworks for blockchains [3, 7, 11]. Besides
the signi�cant overhead associated with executing transactions through STMs,
transactions sometimes fail due to dependencies and must be re-executed. An-
other drawback is that they cannot have operations that cannot be undone,
which is a signi�cant obstacle to smart contract design. During concurrent ex-
ecution, STM-based approaches identify con�icts among transactions dynami-
cally, i.e., during execution. This results in various transactions failing or rolling
back to resolve the con�ict. This has a signi�cant impact on throughput and is
not optimal for blocks with high interdependencies. In general, a dynamic ap-
proach is ideal, but it is not necessary for blockchains whose addresses are either
included in the transactions or are easily inferred. For such systems, we propose
a parallel execution framework for transactions in a block.

Sharding is another popular technique to address scaling issues in blockchains.
In this, the nodes present in the network are categorized into small groups. Each
group processes transactions parallelly with the other groups. Sharding is being
explored earnestly as a solution to scalability issues [8, 9, 12, 14, 17, 19, 20]. The
criteria for sharding are di�erent in each approach. Few are speci�cally designed
for monetary transactions in blockchains [12, 19]. This leads to smart contract
transactions being processed on a single shard leading to an ine�cient distribu-
tion of computational work. The implementation of transactions that span across
smart contracts becomes intricate with sharding. Protocols have to be designed
speci�cally for inter-shard communication, further increasing the complexity of
the design [9].

The Aeolus blockchain [20], is speci�cally tailored for Internet of Things (IoT)
devices that face limitations in executing multiple transactions rapidly. Aeolus
addresses this challenge by harnessing the computing resources available in a
cluster of nodes to reduce the time required for transaction execution, thereby
enhancing the overall performance of the blockchain. The sharding technique
limits the degree of parallelization to the number of shards irrespective of actual
capacity. If the shards are dynamic, in the worst case, the number of shards is
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equal to the number of transactions. Sharding is considered unsuitable for trans-
actions with high inter-dependencies. In contrast, we designed an e�cient par-
allel scheduler for blockchain nodes to execute block transactions concurrently.
Our proposed approach can be implemented on top of the sharding approach to
improve the e�ciency of individual nodes within each shard, where transactions
in a block can be executed in parallel.

6 Conclusion and Future Work

In this paper, we proposed a concurrent transaction execution framework for
blockchains. We proposed a parallel scheduler and a secure validator module for
the blockchain node architecture. The parallel scheduler is responsible for identi-
fying the dependencies among the transactions in the block and scheduling them
for con�ict-free execution. The dependencies are represented by a DAG and are
shared along with the block to minimize the validation time of validating nodes.
DAGs are validated using the secure validator, which determines if a malicious
block producer has shared inaccurate graphs. The proposed approach has been
thoroughly tested in Hyperledger Sawtooth 1.2.6 [2] and is �exible enough to
be implemented in any blockchain that follows the order-execute paradigm [4].
One possible future step would be to extend the implementation of the proposed
approach to di�erent blockchain platforms and compare their performance. Fur-
ther, fault tolerance and scalability for each blockchain node on its own (i.e.,
horizontal scaling of each validator node) can be explored.

Acknowledgements: We would like to express our sincere gratitude to the
paper and artifact reviewers who dedicated their time and expertise to evaluate
our work. We would also like to extend our gratitude to the members of the
MeitY and NBF (National Blockchain Framework) project for their support
throughout the research.

References

1. Ethereum: A Next-Generation Smart Contract and Decentralized Application Plat-
form. https://ethereum.org/

2. Hyperledger Sawtooth. https://sawtooth.hyperledger.org/
3. Amiri, M.J., Agrawal, D., El Abbadi, A.: ParBlockchain: Leveraging Transaction

Parallelism in Permissioned Blockchain Systems. In: 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS). pp. 1337�1347 (2019)

4. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A.,
Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan, S., Murthy,
C., Nguyen, B., Sethi, M., Singh, G., Smith, K., Sorniotti, A., Stathakopoulou, C.,
Vukoli¢, M., Cocco, S.W., Yellick, J.: Hyperledger Fabric: A Distributed Operating
System for Permissioned Blockchains. EuroSys (2018)

5. Anjana, P.S., Kumari, S., Peri, S., Rathor, S., Somani, A.: An E�cient Frame-
work for Optimistic Concurrent Execution of Smart Contracts. In: PDP. pp. 83�92
(2019)



DAG-based E�cient Parallel Scheduler for Blockchains 15

6. Anjana, P.S., Attiya, H., Kumari, S., Peri, S., Somani, A.: E�cient Concurrent Exe-
cution of Smart Contracts in Blockchains Using Object-Based Transactional Mem-
ory. In: Networked Systems - 8th International Conference, NETYS. vol. 12129,
pp. 77�93. Springer (2020)

7. Anjana, P.S., Kumari, S., Peri, S., Rathor, S., Somani, A.: OptSmart: a space e�-
cient Optimistic concurrent execution of Smart contracts. Distributed and Parallel
Databases (May 2022)

8. Baheti, S., Anjana, P.S., Peri, S., Simmhan, Y.: DiPETrans: A framework for Dis-
tributed Parallel Execution of Transactions of Blocks in Blockchains. Concurrency
and Computation: Practice and Experience 34(10), e6804 (2022)

9. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.C., Lin, Q., Ooi, B.C.: Towards
Scaling Blockchain Systems via Sharding. In: Proceedings of the 2019 International
Conference on Management of Data. p. 123�140. SIGMOD '19, Association for
Computing Machinery, New York, NY, USA (2019)

10. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding Concurrency to
Smart Contracts. p. 303�312. PODC '17, Association for Computing Machinery,
New York, NY, USA (2017)

11. Gelashvili, R., Spiegelman, A., Xiang, Z., Danezis, G., Li, Z., Malkhi, D., Xia, Y.,
Zhou, R.: Block-STM: Scaling Blockchain Execution by Turning Ordering Curse
to a Performance Blessing (2022)

12. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Om-
niledger: A secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE
Symposium on Security and Privacy (SP). pp. 583�598 (2018)

13. Kunz, T., Black, J.P., Taylor, D.J., Basten, T.: POET: Target-System Independent
Visualizations of Complex Distributed-Applications Executions. The Computer
Journal 40(8) (1997)

14. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. p. 17�30. CCS '16, Association for Com-
puting Machinery, New York, NY, USA (2016)

15. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.
org/bitcoin.pdf (2008)

16. Piduguralla, M., Chakraborty, S., Anjana, P.S., Peri, S.: An E�cient Framework
for Execution of Smart Contracts in Hyperledger Sawtooth (2023)

17. Valtchanov, A., Helbling, L., Mekiker, B., Wittie, M.P.: Parallel Block Execution
in SoCC Blockchains through Optimistic Concurrency Control. In: 2021 IEEE
Globecom Workshops (GC Wkshps). pp. 1�6 (2021)

18. Vasin, P.: Blackcoin's proof-of-stake protocol v2. URL: https://blackcoin.
co/blackcoin-pos-protocol-v2-whitepaper. pdf 71 (2014)

19. Zamani, M., Movahedi, M., Raykova, M.: RapidChain: Scaling Blockchain via Full
Sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. p. 931�948. CCS '18, Association for Computing
Machinery, New York, NY, USA (2018)

20. Zheng, P., Xu, Q., Luo, X., Zheng, Z., Zheng, W., Chen, X., Zhou, Z., Yan, Y.,
Zhang, H.: Aeolus: Distributed Execution of Permissioned Blockchain Transactions
via State Sharding. IEEE Transactions on Industrial Informatics 18(12), 9227�9238
(2022)


