
Noname manuscript No.
(will be inserted by the editor)

Achieving Starvation-Freedom in Multi-Version
Transactional Memory Systems?

Ved Prakash Chaudhary · Chirag Juyal ·
Sandeep Kulkarni · Sweta Kumari · Sathya
Peri??

Received: date / Accepted: date

Abstract Software Transactional Memory systems (STMs) have garnered significant
interest as an elegant alternative for addressing synchronization and concurrency issues
with multi-threaded programming in multi-core systems. Client programs use STMs
by issuing transactions. STM ensures that transaction either commits or aborts. A
transaction aborted due to conflicts is typically re-issued with the expectation that it
will complete successfully in a subsequent incarnation. However, many existing STMs
fail to provide starvation freedom, i.e., in these systems, it is possible that concurrency
conflicts may prevent an incarnated transaction from committing. To overcome this
limitation, we systematically derive a novel starvation free algorithm for multi-version
STM. Our algorithm can be used either with the case where the number of versions
is unbounded and garbage collection is used or where only the latest K versions are
maintained, KSFTM. We have demonstrated that our proposed algorithm performs
better than existing state-of-the-art STMs.

Keywords Software Transactional Memory System · Concurrency Control ·
Starvation-Freedom · Opacity · Local Opacity ·Multi-Version
? A preliminary version of this paper appeared in 8th International Conference On Networked Systems

(NETYS 2019). A part of this work was submitted in IIT Hyderabad, India towards the fulfillment of Ph.D.
thesis requirement by an author Sweta Kumari.

?? Author sequence follows the lexical order of last names.

Ved Prakash Chaudhary
Department of CSE, Indian Institute of Technology, Hyderabad E-mail: cs14mtech11019@iith.ac.in

Chirag Juyal
Department of CSE, Indian Institute of Technology, Hyderabad E-mail: cs17mtech11014@iith.ac.in

Sandeep Kulkarni
Department of Computer Science, Michigan State University, USA E-mail: sandeep@cse.msu.edu

Sweta Kumari
Department of Computer Science, Technion, Israel E-mail: sweta@cs.technion.ac.il

Sathya Peri
Department of CSE, Indian Institute of Technology, Hyderabad E-mail: sathya p@cs.iith.ac.in

2 Ved Prakash Chaudhary et al.

1 Introduction

STMs [16, 28] are a convenient programming interface for a programmer to access
shared memory without worrying about consistency issues. STMs often use an opti-
mistic approach for concurrent execution of transactions (a piece of code invoked by
a thread). In optimistic execution, each transaction reads from the shared memory, but
all write updates are performed on local memory. On completion, the STM system
validates the reads and writes of the transaction. If any inconsistency is found, the
transaction is aborted, and its local writes are discarded. Otherwise, the transaction is
committed, and its local writes are transferred to the shared memory. A transaction
that has begun but has not yet committed/aborted is referred to as live.

A typical STM is a library which exports the following methods: stm-begin which
begins a transaction, stm-read which reads a transactional object or t-object, stm-write
which writes to a t-object, stm-tryC which tries to commit the transaction. Typical
code for using STMs is as shown in Algorithm 1 which shows how an insert of a
concurrent linked-list library is implemented using STMs.
Correctness: Several correctness-criteria have been proposed for STMs such as
opacity [13], local opacity [21, 22]. All these correctness-criteria require that all the
transactions including the aborted ones appear to execute sequentially in an order
that agrees with the order of non-overlapping transactions. Unlike the correctness-
criteria for traditional databases, such as serializability, strict-serializability [25], the
correctness-criteria for STMs ensure that even aborted transactions read correct values.
This ensures that programmers do not see any undesirable side-effects due to the reads
by transaction that get aborted later such as divide-by-zero, infinite-loops, crashes
etc. in the application due to concurrent executions. This additional requirement on
aborted transactions is a fundamental requirement of STMs which differentiates STMs
from databases as observed by Guerraoui & Kapalka [13]. Thus in this paper, we focus
on optimistic executions with the correctness-criterion being local opacity [22].
Algorithm 1 Insert(LL, e): Invoked by a thread to insert an element e into a linked-list
LL. This method is implemented using transactions.

1: retry = 0;
2: while (true) do
3: id = stm-begin (retry);
4: ...
5: v = stm-read(id, x); . reads value of x as v
6: ...
7: stm-write(id, x, v′); . writes a value v′ to

x

8: ...
9: ret = stm-tryC(id); . stm-tryC can

return commit or abort
10: if (ret == commit) then break;
11: else retry++;
12: end if
13: end while

Starvation Freedom: In the execution shown in Algorithm 1, there is a possibility
that the transaction which a thread tries to execute gets aborted again and again. Every
time, it executes the transaction, say Ti, Ti conflicts with some other transaction and
hence gets aborted. In other words, the thread is effectively starved because it is not
able to commit Ti successfully.

A well known blocking progress condition associated with concurrent program-
ming is starvation-freedom [18, chap 2], [17]. In the context of STMs, starvation-freedom
ensures that every aborted transaction that is retried infinitely often eventually commits.
It can be defined as: an STM system is said to be starvation-free if a thread invoking a
transaction Ti gets the opportunity to retry Ti on every abort (due to the presence of a

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 3

A3

C1

w3(y, 15)

A2

w1(z, 7)

w2(x, 10) w2(z, 10)

T1

T2

T3

r1(y, 0)r1(x, 0)

Fig. 1: Limitation of Single-version Starvation Free Algorithm
fair underlying scheduler with bounded termination) and Ti is not parasitic, i.e., Ti

will try to commit given a chance then Ti will eventually commit. Parasitic transactions
[4] will not commit even when given a chance to commit possibly because they are
caught in an infinite loop or some other error.

Wait-freedom is another interesting progress condition for STMs in which every
transaction commits regardless of the nature of concurrent transactions and the un-
derlying scheduler [17]. But it was shown by Guerraoui and Kapalka [4] that it is not
possible to achieve wait-freedom in dynamic STMs in which data sets of transactions
are not known in advance. So in this paper, we explore the weaker progress condition
of starvation-freedom for transactional memories while assuming that the data sets of
the transactions are not known in advance.

Related work on the starvation-free STMs: Starvation-freedom in STMs has been
explored by a few researchers such as Gramoli et al. [12], Waliullah and Stenstrom [30],
Spear et al. [29]. Most of these systems work by assigning priorities to transactions.
In case of a conflict between two transactions, the transaction with lower priority
is aborted. They ensure that every aborted transaction, on being retried a sufficient
number of times, will eventually have the highest priority and hence will commit. We
denote such an algorithm as single-version starvation-free STM or SV-SFTM.

Although SV-SFTM guarantees starvation-freedom, it can still abort many trans-
actions spuriously. Consider the case where a transaction Ti has the highest priority.
Hence, as per SV-SFTM, Ti cannot be aborted. But if it is slow (for some reason), then
it can cause several other conflicting transactions to abort and hence, bring down the
efficiency and progress of the entire system.

Fig 1 illustrates this problem. Consider the execution: r1(x, 0)r1(y, 0)w2(x, 10)w2

(z, 10)w3(y, 15)w1(z, 7). It has three transactions T1, T2 and T3. Let T1 have the high-
est priority. After reading y, suppose T1 becomes slow. Next T2 and T3 want to write
to x, z and y respectively and commit. But T2 and T3’s write operations are in conflict
with T1’s read operations. Since T1 has higher priority and has not committed yet, T2

and T3 have to abort. If these transactions are retried and again conflict with T1 (while
it is still live), they will have to abort again. Thus, any transaction with priority lower
than T1 and conflicts with it has to abort. It is as if T1 has locked the t-objects x, y and
does not allow any other transaction, write to these t-objects and to commit.

Multi-version starvation-free STM: A key limitation of single-version STMs is
limited concurrency. As shown above, it is possible that one long transaction conflicts
with several transactions causing them to abort. This limitation can be overcome by
using multi-version STMs where we store multiple versions of the data item (either
unbounded versions with garbage collection, or bounded versions where the oldest
version is replaced when the number of versions exceeds the bound).

4 Ved Prakash Chaudhary et al.

Several multi-version STMs have been proposed in the literature [20, 23, 11, 26]
that provide increased concurrency. But none of them provide starvation-freedom.
Suppose the execution shown in Fig 1 uses multiple versions for each t-object. Then
both T2 and T3 create a new version corresponding to each t-object x, z and y and
return commit while not causing T1 to abort as well. T1 reads the initial value of z,
and returns commit. So, by maintaining multiple versions all the transactions T1, T2,
and T3 can commit with equivalent serial history as T1T2T3 or T1T3T2. Thus multiple
versions can help with starvation-freedom without sacrificing on concurrency. This
motivated us to develop a multi-version starvation-free STM system.

Although multi-version STMs provide greater concurrency, they suffer from the
cost of garbage collection. One way to avoid this is to use bounded-multi-version
STMs, where the number of versions is bounded to be at most K. Thus, when
(K + 1)th version is created, the oldest version is removed. Furthermore, achieving
starvation-freedom while using only bounded versions is especially challenging given
that a transaction may rely on the oldest version that is removed. In that case, it would
be necessary to abort that transaction, making it harder to achieve starvation-freedom.

This paper addresses this gap by developing a starvation-free algorithm for
bounded MVSTMs. Our approach is different from the approach used in SV-SFTM
to provide starvation-freedom in single version STMs (the policy of aborting lower
priority transactions in case of conflict) as it does not work for MVSTMs. As part of
the derivation of our final starvation-free algorithm, we consider an algorithm PKTO
(Priority-based K-version Timestamp Order) that considers this approach and show
that it is insufficient to provide starvation freedom.

Contributions of the paper:

– We propose a multi-version starvation-free STM system as K-version starvation-free
STM or KSFTM for a given parameter K. Here K is the number of versions of
each t-object and can range from 1 to∞. To the best of our knowledge, this is
the first starvation-free MVSTM. We develop KSFTM algorithm in a step-wise
manner starting from MVTO [20] (Multi-Version Timestamp Order) as follows:
– First, in Section 3.3, we use the standard idea to provide higher priority to older

transactions. Specifically, we propose priority-based K-version STM algorithm
Priority-based K-version MVTO or PKTO. This algorithm guarantees the
safety properties of strict-serializability and local opacity. However, it is not
starvation-free.

– We analyze PKTO to identify the characteristics that will help us to achieve
preventing a transaction from getting aborted forever. This analysis leads us to
the development of starvation-free K-version TO or SFKTO (Section 3.4), a
multi-version starvation-free STM obtained by revising PKTO. But SFKTO
does not satisfy correctness, i.e., strict-serializability, and local opacity.

– Finally, we extend SFKTO to develop KSFTM (Section 3.5) that preserves
the starvation-freedom, strict-serializability, and local opacity. Our algorithm
works on the assumption that any transaction that is not deadlocked, terminates
(commits or aborts) in a bounded time.

– Our experiments (Section 4) show that KSFTM gives an average speedup on the
worst-case time to commit of a transaction by a factor of 1.22, 1.89, 23.26, and

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 5

13.12 times over PKTO, SV-SFTM, NOrec STM [8] and ESTM [10] respectively
for counter application. KSFTM performs 1.5 and 1.44 times better than PKTO
and SV-SFTM but 1.09 times worse than NOrec for low contention KMEANS
application of STAMP [24] benchmark whereas KSFTM performs 1.14, 1.4, and
2.63 times better than PKTO, SV-SFTM and NOrec for LABYRINTH application
of STAMP benchmark which has high contention with long-running transactions.
Summary of Differences with Chaudhary et. al [6]:

– We perform a few more experiments (see Section 4 and Appendix A.9) to
analyze the performance of proposed KSFTM with state-of-the-art STMs. We
have analyzed the following:
• Max-time analysis on low contention for counter application.
• Identify the optimal value of K and C for KSFTM and PKTO.
• Average time analysis on STAMP benchmark.
• Calculates the number of aborts on low as well as high contention.
• Average time analysis and memory consumption on the variants of PKTO

and KSFTM.
– We have included the detailed related work section in Appendix A.2 (due to

lack of space).
– We rigorously prove the safety and liveness of our proposed KSFTM in Ap-

pendix A.7 and Appendix A.8, respectively.

2 System Model and Preliminaries

Following [14, 22], we assume a system of n processes/threads, p1, . . . , pn that ac-
cess a collection of transactional objects (or t-objects) via atomic transactions. Each
transaction has a unique identifier. Within a transaction, processes can perform trans-
actional operations or methods: stm-begin() that begins a transaction, stm-write(x, v)
operation that updates a t-object x with value v in its local memory, the stm-read(x)
operation tries to read x, stm-tryC() that tries to commit the transaction and returns
commit C if it succeeds. Otherwise, stm-tryA() that aborts the transaction and returns
abort A . For the sake of presentation simplicity, we assume that the values taken as
arguments by stm-write() are unique.

Operations stm-read() and stm-tryC() may return A , in which case we say that
the operations forcefully abort. Otherwise, we say that the operations have successfully
executed. Each operation is equipped with a unique transaction identifier. A transaction
Ti starts with the first operation and completes when any of its operations return A
or C . We denote any operation that returns A or C as terminal operations. Hence,
operations stm-tryC() and stm-tryA() are terminal operations. A transaction does
not invoke any further operations after terminal operations.

For a transaction Tk, we denote all the t-objects accessed by its read operations
as rsetk and t-objects accessed by its write operations as wsetk. We denote all the
operations of a transaction Tk as Tk.evts or evtsk.
History: A history is a sequence of events, i.e., a sequence of invocations and re-
sponses of transactional operations. The collection of events is denoted as H.evts.
For simplicity, we only consider sequential histories here: the invocation of each
transactional operation is immediately followed by a matching response. Therefore,

6 Ved Prakash Chaudhary et al.

we treat each transactional operation as one atomic event, and let <H denote the
total order on the transactional operations incurred by H . With this assumption, the
only relevant events of a transaction Tk is of the types: rk(x, v), rk(x,A), wk(x, v),
stm-tryCk(C) (or ck for short), stm-tryCk(A), stm-tryAk(A) (or ak for short).
We identify a history H as tuple 〈H.evts,<H〉.

Let H|T denote the history consisting of events of T in H , and H|pi denote the
history consisting of events of pi in H . We only consider well-formed histories here,
i.e., no transaction of a process begins before the previous transaction invocation has
completed (either commits or aborts). We also assume that every history has an
initial committed transaction T0 that initializes all the t-objects with value 0.

The set of transactions that appear in H is denoted by H.txns. The set of commit-
ted (resp., aborted) transactions in H is denoted by H.committed (resp., H.aborted).
The set of incomplete or live transactions in H is denoted by H.incomp = H.live =
(H.txns−H.committed−H.aborted).

For a history H , we construct the completion of H , denoted as H , by inserting
stm-tryAk(A) immediately after the last event of every transaction Tk ∈ H.live.
But for stm-tryCi of transaction Ti, if it released the lock on first t-object successfully
that means updates made by Ti is consistent so, Ti will immediately return commit.
Transaction orders: For two transactions Tk, Tm ∈ H.txns, we say that Tk precedes
Tm in the real-time order of H , denote Tk ≺RT

H Tm, if Tk is complete in H and
the last event of Tk precedes the first event of Tm in H . If neither Tk ≺RT

H Tm nor
Tm ≺RT

H Tk, then Tk and Tm overlap in H . We say that a history is t-sequential
if all the transactions are ordered by this real-time order. Note that from our earlier
assumption all the transactions of a single process are ordered by real-time.

Sub-history: A sub-history (SH) of a history (H) denoted as 〈SH.evts, <SH〉 and
is defined as: (1) <SH⊆<H ; (2) SH.evts ⊆ H.evts; (3) If an event of a transaction
Tk ∈ H.txns is in SH then all the events of Tk in H should also be in SH .

For a history H , let R be a subset of transactions of H.txns. Then H.subhist(R)
denotes the sub-history of H that is formed from the operations in R.
Valid and legal history: A successful read rk(x, v) (i.e., v 6= A) in H is said to be
valid if there exist a transaction Tj that wrote v to x and committed before rk(x, v).
Formally, 〈rk(x, v) is valid⇔ ∃Tj : (cj <H rk(x, v))∧(wj(x, v) ∈ Tj .evts)∧(v 6=
A)〉. The history H is valid if all its successful read operations are valid.

We define rk(x, v)’s lastWrite as the latest commit event ci preceding rk(x, v) in
H such that x ∈ wseti (Ti can also be T0). A successful read operation rk(x, v), is said
to be legal if the transaction containing rk’s lastWrite also writes v onto x: 〈rk(x, v)
is legal⇔ (v 6= A) ∧ (H.lastWrite(rk(x, v)) = ci) ∧ (wi(x, v) ∈ Ti.evts)〉. The
history H is legal if all its successful read operations are legal. From the definitions
we get that if H is legal then it is also valid.
Opacity and Strict Serializability: Two histories H and H ′ are equivalent if they
have the same set of events. Now a history H is said to be opaque [13] if it is valid and
there exists a t-sequential legal history S such that (1) S is equivalent to H and (2) S
respects ≺RT

H , i.e., ≺RT
H ⊂≺RT

S . By requiring S being equivalent to H , opacity treats
all the incomplete transactions as aborted. We call S an (opaque) serialization of H .

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 7

1 2 3 11 12 1397

X

5

rlts val

rlv5 10

rlts val

rlv100

rlval

rlv0

ts

read-list (rl)

version-list

Fig. 2: Data Structures for Maintaining Versions
Along same lines, a valid history H is said to be strictly serializable if H.subhist(H

.committed), only committed transactions of H is opaque. Unlike opacity, strict
serializability does not include aborted or incomplete transactions in the global serial-
ization order. An opaque history H is also strictly serializable.

Serializability is commonly used criterion in databases. But it is not suitable for
STMs as it does not consider the correctness of aborted transactions as shown by
Guerraoui & Kapalka [13]. Opacity, on the other hand, considers the correctness of
aborted transactions as well. But the restrictions of opacity cause the throughput to
decrease substantially. Another correctness-criterion for STMs is local opacity [21, 22]
which achieves very similar goals as opacity but not as restrictive as opacity.
Local opacity: For a history H, we define a set of sub-histories, as H.subhistSet
as follows: (1) For each aborted transaction Ti, we consider a subhist consisting of
operations from all previously committed transactions and including all successful
operations of Ti (i.e., operations which did not return A) while immediately placing
commit after last successful operation of Ti; (2) the last committed transaction Tl

considers all the previously committed transactions including Tl.
A history H is said to be locally-opaque [21, 22] if all the sub-histories in

H.subhistSet are opaque. In local opacity, aborted or live transaction can not cause
another transaction to abort. It was shown that local opacity [21, 22] allows greater
concurrency than opacity. Any history that is opaque is also locally-opaque but not
necessarily the vice-versa. On the other hand, a history that is locally-opaque is also
strict-serializable, but again the vice-versa need not be true.

Another correctness criterion is TMS1 [9, 1], similar to local opacity by consider-
ing multiple sequential histories for correctness of a history. But it differs from local
opacity that the response event could include aborted transactions as well.

3 The Working of KSFTM Algorithm

In this section, we propose K-version starvation-free STM or KSFTM for a given
parameter K. Here K is the number of versions of each t-object and can range from
1 to∞. When K is 1, it boils down to single-version starvation-free STM. If K is
∞, then KSFTM uses unbounded versions and needs a separate garbage collection
mechanism to delete old versions like other MVSTMs proposed in the literature
[20, 23]. We denote KSFTM using unbounded versions as UVSFTM and the version
with garbage collection as UVSFTM-GC.

To explain the intuition behind the KSFTM algorithm, we start with the modi-
fication of MVTO [2, 20] algorithm and then make a sequence of modifications to

8 Ved Prakash Chaudhary et al.

it to arrive at KSFTM algorithm. The rest of the section is organized as follows. In
Section 3.1, we define starvation freedom and identify assumptions made in the paper.
Section 3.2 discusses data structures for all the algorithms developed in this section.
Section 3.3 develops PKTO that adds the approach of providing priority to older trans-
actions in MVTO algorithm. We show why this is insufficient to provide starvation
freedom in multi-version setting. Section 3.4 identifies a key idea that can help in
providing starvation freedom. Unfortunately, using this idea alone is insufficient as it
can violate strict-serializability and consequently local opacity. Section 3.5 describes
KSFTM algorithm that simultaneously maintains correctness, strict-serializability and
local opacity while providing starvation-freedom.

3.1 Starvation-Freedom Explanation

This section starts with the definition of starvation-freedom. Then we describe the
assumption about the scheduler for our algorithm to satisfy starvation-freedom.
Definition 1 Starvation-Freedom: A STM system is said to be starvation-free if a
thread invoking a non-parasitic transaction Ti gets the opportunity to retry Ti on every
abort, due to the presence of a fair scheduler, then Ti will eventually commit.

As explained by Herlihy & Shavit [17], a fair scheduler implies that no thread is
forever delayed or crashed. Hence with a fair scheduler, we get that if a thread acquires
locks then it will eventually release the locks. Thus a thread cannot block out other
threads from progressing.
Assumption about Scheduler: In order for starvation-free algorithm KSFTM (de-
scribed in Section 3.5) to work correctly, we make the following assumption about the
fair scheduler:

Assumption 1 Bounded-Termination: For any transaction Ti, invoked by a thread
Thx, the fair system scheduler ensures, in the absence of deadlocks, Thx is given
sufficient time on a CPU (and memory etc.) such that Ti terminates (either commits or
aborts) in bounded time.

While the bound for each transaction may be different, we use L to denote the
maximum bound. In other words, in time L, every transaction will either abort or
commit due to the absence of deadlocks.

There are different ways to satisfy the scheduler requirement. For example, a
round-robin scheduler which provides each thread equal amount of time in any win-
dow satisfies this requirement as long as the number of threads is bounded. In a system
with two threads, even if a scheduler provides one thread 1% of CPU and another
thread 99% of the CPU, it satisfies the above requirement. On the other hand, a sched-
uler that schedules the threads as ‘T1, T2, T1, T2, T2, T1, T2, T2, T2, T2, T1, T2, T2,
T2, T2, T2, T2, T2, T2, T1, T2(16times)’ does not satisfy the above requirement. This
is due to the fact that over time, thread 1 gets infinitesimally smaller portion of the
CPU and, hence, the time required for it to complete (commit or abort) will continue
to increase over time.

In our algorithm, we will ensure that it is deadlock free using standard techniques
from the literature. In other words, each thread is in a position to make progress. We
assume that the scheduler provides sufficient CPU time to complete (either commit or
abort) within a bounded time.

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 9

3.2 Algorithm Preliminaries

In this sub-section, we describe the invocation of transactions by the application. Next,
we describe the data structures used by the algorithms.
Transaction Invocation: Transactions are invoked by the threads. Suppose a thread
Thx invokes a transaction Ti. If this transaction Ti gets aborted, Thx will reissue
it, as a new incarnation of Ti, say Tj . The thread Thx will continue to invoke new
incarnations of Ti until an incarnation commits.

When the thread Thx invokes a transaction, say Ti, for the first time then the STM
system assigns Ti a unique timestamp called current timestamp or CTS. If it aborts
and retries again as Tj , then its CTS will be different. However, in this case, the thread
Thx will also pass the CTS value of the first incarnation (Ti) to the STM system. By
this, Thx informs the STM that, Tj is not a new invocation but is an incarnation of Ti.
The CTS values are obtained by incrementing a global atomic counter G Count.

We denote the CTS of Ti (first incarnation) as Initial Timestamp or ITS for all the
incarnations of Ti. Thus, the invoking thread Thx passes ctsi to all the incarnations
of Ti (including Tj). Thus for Tj , itsj = ctsi. The transaction Tj is associated with
the timestamps: 〈itsj , ctsj〉. For Ti, which is the initial incarnation, its ITS and CTS
are the same, i.e., itsi = ctsi. For simplicity, we use the notation that for transaction
Tj , j is its CTS, i.e., ctsj = j.
We now state our assumptions about transactions in the system.

Assumption 2 We assume that in the absence of other concurrent conflicting transac-
tions, every transaction will commit. In other words, (a) if a transaction Ti is executing
in a system where other concurrent conflicting transactions are not present then Ti

will not self-abort. (b) Transactions are not parasitic (explained in Section 1).

If transactions self-abort or behave in parasitic manner then providing starvation-freedom
is impossible.
Common Data Structures and STM Methods: Here we describe the common data
structures used by all the algorithms proposed in this section.

In all our algorithms, for each t-object, the algorithms maintain multiple versions
in form of version-list (or vlist). Similar to MVTO [20], each version of a t-object is a
tuple denoted as vTuple and consists of three fields: (1) timestamp characterizing the
transaction that created the version, (2) value, and (3) a list, read-list (or rl) consisting
of transaction ids (or CTSs) that read from this version.

Fig 2 illustrates this structure. For a t-object x, we use the notation x[t] to access
the version with timestamp t. Depending on the algorithm considered, the fields of
this structure change.

We assume that the STM system exports the following methods for a transaction
Ti: (1) stm-begin(t) where t is provided by the invoking thread, Thx. From our
earlier assumption, it is the CTS of the first incarnation or null if Thx is invoking
this transaction for the first time. This method returns a unique timestamp to Thx

which is the CTS/id of the transaction. (2) stm-readi(x) tries to read t-object x. It
returns either value v or A . (3) stm-writei(x, v) operation that updates a t-object x
with value v locally. It returns ok. (4) stm-tryCi() tries to commit the transaction and
returns C if it succeeds. Otherwise, it returns A .

10 Ved Prakash Chaudhary et al.

Correctness Criteria: For ease of exposition, we initially consider strict-serializability
as correctness-criterion to illustrate the correctness of the algorithms. Subsequently,
we consider a stronger property, local opacity that is more suitable for STMs.

3.3 Priority-based MVTO Algorithm

In this subsection, we describe a modification to the multi-version timestamp ordering
(MVTO) algorithm [2, 20] to ensure that it provides preference to transactions that
have low ITS, i.e., transactions that have been in the system for a longer time. We
denote the basic algorithm which maintains unbounded versions as Priority-based
MVTO or PMVTO (akin to the original MVTO). We denote the variant of PMVTO
that maintains K versions as PKTO and the unbounded versions variant with garbage
collection as PMVTO-GC.

While providing higher priority to older transactions suffices to provide starvation-
freedom in SV-SFTM, we note that PKTO is not starvation free. The reason that
demonstrates why PKTO is not starvation free forms our basis of designing SFMVTO
that provides starvation-freedom (described in Section 3.4).

We now describe PKTO. This description can be trivially extended to PMVTO and
PMVTO-GC as well.

stm-begin(t): A unique timestamp ts is allocated to Ti which is its CTS (i from our
assumption). The timestamp ts is generated by atomically incrementing the global
counter G Count. If the input t is null, then ctsi = itsi = ts as this is the first
incarnation of this transaction. Otherwise, the non-null value of t is assigned as itsi.
stm-read(x): Transaction Ti reads from a version of x in the shared memory (if x
does not exist in Ti’s local buffer) with timestamp j such that j is the largest timestamp
less than i (among the versions of x), i.e., there exists no version of x with timestamp
k such that j < k < i. After reading this version of x, Ti is stored in x[j]’s read-list.
If no such version exists then Ti is aborted.
stm-write(x, v): Ti stores this write to value x locally in its wseti. If Ti ever reads
x again, this value will be returned.
stm-tryC : This operation consists of three steps. In Step 1, it checks whether Ti can
be committed. In Step 2, it performs the necessary tasks to mark Ti as a committed
transaction and in Step 3, Ti return commits.

1. Before Ti can commit, it needs to verify that any version it creates does not violate
consistency. Suppose Ti creates a new version of x with timestamp i. Let j be the
largest timestamp smaller than i for which version of x exists. Let this version
be x[j]. Now, Ti needs to make sure that any transaction that has read x[j] is not
affected by the new version created by Ti. There are two possibilities of concern:

(a) Let Tk be some transaction that has read x[j] and k > i (k = CTS of Tk). In this
scenario, the value read by Tk would be incorrect (w.r.t strict-serializability)
if Ti is allowed to create a new version. In this case, we say that the transac-
tions Ti and Tk are in conflict. So, we do the following: (i) if Tk has already
committed then Ti is aborted; (ii) Suppose Tk is live and itsk is less than itsi.
Then again Ti is aborted; (iii) If Tk is still live with itsi less than itsk then Tk

is aborted.

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 11

(b) The previous version x[j] does not exist. This happens when the previous
version x[j] has been overwritten. In this case, Ti is aborted since PKTO does
not know if Ti conflicts with any other transaction Tk that has read the previous
version.

2. After Step 1, we have verified that it is ok for Ti to commit. Now, we have to
create a version of each t-object x in the wset of Ti. This is achieved as follows:

(a) Ti creates a vTuple 〈i, wseti.x.v, null〉. In this tuple, i (CTS of Ti) is the
timestamp of the new version; wseti.x.v is the value of x is in Ti’s wset, and
the read-list of the vTuple is null.

(b) Suppose the total number of versions of x is K. Then among all the ver-
sions of x, Ti replaces the version with the smallest timestamp with vTuple
〈i, wseti.x.v, null〉. Otherwise, the vTuple is added to x’s vlist.

3. Transaction Ti is then committed.

The algorithm described here is only the main idea. The actual implementation will
use locks to ensure that each of these methods are linearizable [19]. It can be seen that
PKTO gives preference to the transaction having lower ITS in Step 1a. Transactions
having lower ITS have been in the system for a longer time. Hence, PKTO gives
preference to them. The detailed pseudocode along with the description can be found
in Appendix A.3 and arxiv[5]. We have the following correctness property of PKTO.

Property 1 Any history generated by the PKTO is strict-serializable.

Consider a history H generated by PKTO. Let the committed sub-history of H be
CSH = H.subhist(H.committed). It can be shown that CSH is opaque with the
equivalent serialized history SH ′ is one in which all the transactions of CSH are
ordered by their CTSs. Hence, H is strict-serializable.

While PKTO (and PMVTO) satisfies strict-serializability, it fails to prevent star-
vation. The key reason is that if transaction Tj conflicts with Tk and Tk has already
committed, then Tj must be aborted. This is true even if Tj is the oldest transaction in
the system. Furthermore, next incarnation of Tj may have to be aborted by another
transaction T ′

k. This cannot be prevented as conflict between Tj and T ′
k may not be

detected before T ′
k has committed. A detailed illustration of starvation in PKTO is

shown in Appendix A.4.

3.4 Modifying PKTO to Obtain SFKTO: Trading Correctness for Starvation-Freedom

Our goal is to revise PKTO algorithm to ensure that starvation-freedom is satisfied.
Specifically, we want the transaction with the lowest ITS to eventually commit. Once
this happens, the next non-committed transaction with the lowest ITS will commit.
Thus, from induction, we can see that every transaction will eventually commit.
Key Insights for Eliminating Starvation in PKTO: To identify the necessary revi-
sion, we first focus on the effect of this algorithm on two transactions, say T50 and
T60 with their CTS values being 50 and 60 respectively. Furthermore, for the sake
of discussion, assume that these transactions only read and write t-object x. Also,
assume that the latest version for x is with ts 40. Each transaction first reads x and
then writes x (as part of the stm-tryC operation). We use r50 and r60 to denote their

12 Ved Prakash Chaudhary et al.

S. No. Sequence Possible actions by PKTO
1. r50, w50, r60, w60 T60 reads the version written by T50. No conflict.
2. r50, r60, w50, w60 Conflict detected at w50. Either abort T50 or T60.
3. r50, r60, w60, w50 Conflict detected at w50. Hence, abort T50.
4. r60, r50, w60, w50 Conflict detected at w50. Hence, abort T50.
5. r60, r50, w50, w60 Conflict detected at w50. Either abort T50 or T60.
6. r60, w60, r50, w50 Conflict detected at w50. Hence, abort T50.

Table 1: Permutations of operations
read operations while w50 and w60 to denote their stm-tryC operations. Here, a read
operation will not fail as there is a previous version present.

Now, there are six possible permutations of these statements. We identify these
permutations and the action that should be taken for that permutation in Table 1. In
all these permutations, the read operations of a transaction come before the write
operations as the writes to the shared memory occurs only in the stm-tryC operation
(due to optimistic execution) which is the final operation of a transaction.

From this table, it can be seen that when a conflict is detected, in some cases,
algorithm PKTO must abort T50. In case both the transactions are live, PKTO has the
option of aborting either transaction depending on their ITS. If T60 has lower ITS then
in no case, PKTO is required to abort T60. In other words, it is possible to ensure that
the transaction with the lowest ITS and the highest CTS is never aborted. Although
in this example, we considered only one t-object, this logic can be extended to cases
having multiple operations and t-objects.

Next, consider Step 1b of stm-tryC in PKTO algorithm. Suppose a transaction Ti

wants to read a t-object but does not find a version with a timestamp smaller than i. In
this case, Ti has to abort. But if Ti has the highest CTS, then it will certainly find a
version to read from. This is because the timestamp of a version corresponds to the
timestamp of the transaction that created it. If Ti has the highest CTS value then it
implies that all versions of all the t-objects have a timestamp smaller than CTS of
Ti. This reinforces the above observation that a transaction with the lowest ITS and
highest CTS is not aborted.

To summarize the discussion, algorithm PKTO has an in-built mechanism to
protect transactions with lowest ITS and highest CTS value. However, this is different
from what we need. Specifically, we want to protect a transaction Ti, with lowest ITS
value. One way to ensure this: if transaction Ti with lowest ITS keeps getting aborted,
eventually it should achieve the highest CTS. Once this happens, PKTO ensures that
Ti cannot be further aborted. In this way, we can ensure the liveness of all transactions.

The working of starvation-free algorithm: To realize this idea and achieve starvation-
freedom, we consider another variation of MVTO, Starvation-Free MVTO or SFMVTO.
We specifically consider SFMVTO with K versions, denoted as SFKTO.

A transaction Ti instead of using the current time as ctsi, uses a potentially higher
timestamp, Working Timestamp - WTS or wtsi. Specifically, it adds C ∗ (ctsi − itsi)
to ctsi, i.e.,

wtsi = ctsi + C ∗ (ctsi − itsi); (1)

where, C is any constant greater than 0. In other words, when the transaction Ti is
issued for the first time, wtsi is same as ctsi(= itsi). However, as transaction keeps

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 13

getting aborted, the drift between ctsi and wtsi increases. The value of wtsi increases
with each retry.

Furthermore, in SFKTO algorithm, CTS is replaced with WTS for stm-read,
stm-write and stm-tryC operations of PKTO. In SFKTO, a transaction Ti uses
wtsi to read a version in stm-read. Similarly, Ti uses wtsi in stm-tryC to find the
appropriate previous version (in Step 1b) and to verify if Ti has to be aborted (in
Step 1a). Along the same lines, once Ti decides to commit and create new versions of
x, the timestamp of x will be same as its wtsi (in Step 3). Thus the timestamp of all
the versions in vlist will be WTS of the transactions that created them.

SFKTO algorithms ensures starvation-freedom in presence of a fair scheduler that
satisfies Assumption 1 (bounded-termination). While the proof of this property is
somewhat involved, the key idea is that the transaction with lowest ITS value, say
Tlow, will eventually have highest WTS value than all the other transactions in the
system. Then it cannot be aborted. But SFKTO and its variant SFMVTO do not satisfy
strict-serializability which is illustrated in Appendix A.5.

3.5 Design of KSFTM: Regaining Correctness while Preserving Starvation-Freedom

In this section, we discuss how principles of PKTO and SFKTO can be combined to
obtain KSFTM that provides both correctness (strict-serializability and local opacity)
as well as starvation-freedom. To achieve this, we first understand why the initial
algorithm, PKTO satisfies strict-serializability. This is because CTS was used to create
the ordering among committed transactions. CTS is based on real-time ordering. In
contrast, SFKTO uses WTS which may not correspond to the real-time, as WTS may
be significantly larger than CTS as shown by history H1 in Fig 3.

One straightforward way to modify SFKTO is to delay a committing transaction,
say Ti with WTS value wtsi until the real-time (G Count) catches up to wtsi. This
will ensure that the value of WTS will also become the same as the real-time thereby
guaranteeing strict-serializability. However, this is unacceptable, as in practice, it
would require transaction Ti locking all the variables it plans to update and wait. This
will adversely affect the performance of the STM system.

We can allow the transaction Ti to commit before its wtsi has caught up with
the actual time if it does not violate the real-time ordering. Thus, to ensure that the
notion of real-time order is respected by transactions in the course of their execution
in SFKTO, we add extra time constraints. We use the idea of timestamp ranges. This
notion of timestamp ranges was first used by Riegel et al. [27] in the context of
multi-version STMs. Several other researchers have used this idea since then such as
Guerraoui et al. [15], Crain et al. [7] etc.

Thus, in addition to ITS, CTS and WTS, each transaction Ti maintains a timestamp
range: Transaction Lower Timestamp Limit or tltli, and Transaction Upper Timestamp
Limit or tutli. When a transaction Ti begins, tltli is assigned ctsi and tutli is assigned
the largest possible value which we denote as infinity. When Ti executes a method m
in which it reads a version of a t-object x or creates a new version of x in stm-tryC,
tltli is incremented while tutli gets decremented 1.

1 Technically∞, which is assigned to tutli, cannot be decremented. But here as mentioned earlier, we
use∞ to denote the largest possible value that can be represented in a system.

14 Ved Prakash Chaudhary et al.

We require that all the transactions are serialized based on their WTS while
maintaining their real-time order. On executing a method m, Ti is ordered w.r.t to
other transactions that have created a version of x based on increasing order of WTS.
For all transactions Tj which also have created a version of x and whose wtsj is less
than wtsi, tltli is incremented such that tutlj is less than tltli. Note that all such Tj

are serialized before Ti. Similarly, for any transaction Tk which has created a version
of x and whose wtsk is greater than wtsi, tutli is decremented such that it becomes
less than tltlk. Again, note that all such Tk are serialized after Ti.

If Ti reads a version x created by Tj then Ti is serialized after Tj and before
any other Tk that also created a version of x such that wtsj < wtsk. The algorithm
ensures that wtsj < wtsi < wtsk. For correctness, we again increment tltli and
decrement tutli as above. After the increments of tltli and the decrements of tutli, if
tltli turns out to be greater than tutli then Ti is aborted. Intuitively, this implies that
Ti’s WTS and real-time orders are out of synchrony and cannot be reconciled.

Finally, when a transaction Ti commits: Ti records its commit time (or comTimei)
by getting the current value of G Count and incrementing it by incrV al which is any
value greater than or equal to 1. Then tutli is set to comTimei if it is not already
less than it. Now suppose Ti occurs in real-time before some other transaction, Tk but
does not have any conflict with it. This step ensures that tutli remains less than tltlk
(which is initialized with ctsk).

r1(x, 0) w1(x, 10) C1

r3(x, 10)
T3

T2

r3(z, 25)

C2
r2(y, 0) w2(x, 20)

T1

cts3 = 80

wts3 = 80

C3

cts1 = 50

wts1 = 50 cts2 = 60

wts2 = 100

Fig. 3: Correctness of KSFTM Algorithm

We illustrate this technique with the history H1 shown in Fig 3. When T1 starts
its cts1 = 50, tltl1 = 50, tutl1 = ∞. Now when T1 commits, suppose G Count
is 70. Hence, tutl1 reduces to 70. Next, when T2 commits, suppose tutl2 reduces
to 75 (the current value of G Count). As T1, T2 have accessed a common t-object
x in a conflicting manner, tltl2 is incremented to a value greater than tutl1, say 71.
Next, when T3 begins, tltl3 is assigned cts3 which is 80 and tutl3 is initialized to∞.
When T3 reads 10 from T1, which is r3(x, 10), tutl3 is reduced to a value less than
tltl2(= 71), say 70. But tltl3 is already at 80. Hence, the limits of T3 have crossed
and thus causing T3 to abort. The resulting history consisting of only committed
transactions T1T2 is strict-serializable.

Based on this idea, we next develop a variation of SFKTO, K-version Starvation-
Free STM System or KSFTM. To explain this algorithm, we first describe the structure
of the version of a t-object used. It is a slight variation of the t-object used in PKTO
algorithm. It consists of: (1) timestamp, ts which is the WTS of the transaction that
created this version (and not CTS like PKTO); (2) the value of the version; (3) a
list, called read-list, consisting of transactions ids (could be CTS as well) that read
from this version; (4) version real-time timestamp or vrt which is the tutl of the

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 15

transaction that created this version. Thus a version has information of WTS and tutl
of the transaction that created it.

Now, we describe the main idea behind stm-begin, stm-read, stm-write and
stm-tryC operations of a transaction Ti which is an extension of PKTO. Note that as
per our notation i represents the CTS of Ti.
stm-begin(t): A unique timestamp ts is allocated to Ti which is its CTS (i from
our assumption) which is generated by atomically incrementing the global counter
G Count. If the input t is null then ctsi = itsi = ts as this is the first incarnation of
this transaction. Otherwise, the non-null value of t is assigned to itsi. Then, WTS is
computed by Eq.(1). Finally, tltl and tutl are initialized as: tltli = ctsi, tutli =∞.
stm-read(x): Transaction Ti reads from a version of x with timestamp j such that
j is the largest timestamp less than wtsi (among the versions x), i.e. there exists
no version k such that j < k < wtsi is true. If no such j exists then Ti is aborted.
Otherwise, after reading this version of x, Ti is stored in j’s rl. Then we modify tltl,
tutl as follows:

1. The version x[j] is created by a transaction with wtsj which is less than wtsi.
Hence, tltli = max(tltli, x[j].vrt +1).

2. Let p be the timestamp of smallest version larger than i. Then tutli = min(tutli,
x[p].vrt− 1).

3. After these steps, abort Ti if tltl and tutl have crossed, i.e., tltli > tutli.

stm-write(x, v): Ti stores this write to value x locally in its wseti.
stm-tryC : This operation consists of multiple steps:

1. Before Ti can commit, we need to verify that any version it creates is updated
consistently. Ti creates a new version with timestamp wtsi. Hence, we must ensure
that any transaction that read a previous version is unaffected by this new version.
Additionally, creating this version would require an update of tltl and tutl of Ti

and other transactions whose read-write set overlaps with that of Ti. Thus, Ti first
validates each t-object x in its wset as follows:
(a) Ti finds a version of x with timestamp j such that j is the largest timestamp less

than wtsi (like in stm-read). If there exists no version of x with a timestamp
less than wtsi then Ti is aborted. This is similar to Step 1b of the stm-tryC
of PKTO algorithm.

(b) Among all the transactions that have previously read from j suppose there
is a transaction Tk such that j < wtsi < wtsk. Then (i) if Tk has already
committed then Ti is aborted; (ii) Suppose Tk is live, and itsk is less than itsi.
Then again Ti is aborted; (iii) If Tk is still live with itsi less than itsk then Tk

is aborted.
This step is similar to Step 1a of the stm-tryC of PKTO algorithm.

(c) Next, we must ensure that Ti’s tltl and tutl are updated correctly w.r.t to
other concurrently executing transactions. To achieve this, we adjust tltl,
tutl as follows: (i) Let j be the ts of the largest version smaller than wtsi.
Then tltli = max(tltli, x[j].vrt + 1). Next, for each reading transaction,
Tr in x[j].read-list, we again set, tltli = max(tltli, tutlr + 1). (ii) Simi-
larly, let p be the ts of the smallest version larger than wtsi. Then, tutli =

16 Ved Prakash Chaudhary et al.

min(tutli, x[p].vrt− 1). (Note that we don’t have to check for the transac-
tions in the read-list of x[p] as those transactions will have tltl higher than
x[p].vrt due to stm-read.) (iii) Finally, we get the commit time of this trans-
action from G Count: comTimei = G Count.add&Get(incrV al) where
incrV al is any constant ≥ 1. Then, tutli = min(tutli, comTimei). After
performing these updates, abort Ti if tltl and tutl have crossed, i.e., tltli > tutli.

2. After performing the tests of Step 1 over each t-objects x in Ti’s wset, if Ti

has not yet been aborted, we proceed as follows: for each x in wseti create a
vTuple 〈wtsi, wseti.x.v, null, tutli〉. In this tuple, wtsi is the timestamp of the
new version; wseti.x.v is the value of x is in Ti’s wset; the read-list of the vTuple
is null; vrt is tutli (actually it can be any value between tltli and tutli). Update
the vlist of each t-object x similar to Step 2 of stm-tryC of PKTO.

3. Transaction Ti is then committed.

Step 1c.(iii) of stm-tryC ensures that real-time order between transactions that are
not in conflict. It can be seen that locks have to be used to ensure that all these methods
to execute in a linearizable manner (i.e., atomically). The detailed pseudo code along
with the description can be found in Appendix A.6. For simplicity, we assumed C and
incrV al to be 0.1 and 1 respectively in our analysis. But the proof and the analysis
holds for any value greater than 0. Proof of below theorems appear in Appendix A.7
and Appendix A.8, respectively.

Theorem 1 Any history generated by KSFTM is strict-serializable and locally-opaque.

Theorem 2 KSFTM algorithm ensures starvation-freedom.

4 Experimental Evaluation
For performance evaluation of KSFTM with the state-of-the-art STMs, we have
implemented our proposed algorithms that are, PKTO [6], SV-SFTM [12, 30, 29]
along with KSFTM in C++ 2 computer language. We have used the available imple-
mentations of NOrec STM [8], ESTM [10], and MVTO[20] which were originally
developed in C++ as well. Although, only the proposed KSFTM and SV-SFTM provide
starvation-freedom, we have also compared their performances with non-starvation
free STMs in order to analyze their performance in practice.
Experimental system: The experimental system is a 2-socket Intel(R) Xeon(R) CPU
E5-2690 v4 @ 2.60GHz with 14 cores per socket and 2 hyper-threads per core thus
resulting in a total of 56 logical threads. Each core has a private 32KB L1 cache and
256 KB L2 cache. The machine has 32GB of RAM and runs Ubuntu 16.04.2 LTS. In
our implementation, all threads have the same base priority and we use the default
Linux scheduling algorithm. This satisfies the Assumption 1 (bounded-termination)
about the scheduler. We have ensured that there are no parasitic transactions [3] in our
experiments.
Methodology: Here we have considered two different applications: (1) Counter appli-
cation - In this, each thread invokes a single transaction which performs 10 reads/writes

2 Code is available here: https://github.com/PDCRL/KSFTM

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 17

operations on randomly chosen t-objects. A thread continues to invoke a transaction
until it successfully commits. We have gauged the performance of our proposed algo-
rithm under both low as well as high contention. For low contention we have taken
lower number of threads ranging from 1 to 64 while each thread performs 10 random
read/write operations on 1000 t-objects. On the other hand, for high contention we
have taken large number of threads ranging from 50 to 250 where each thread performs
read/write operation over a set of 5 t-objects. We have performed our tests on three
workloads stated as: (W1) Li - Lookup intensive: 90% read, 10% write, (W2) Mi - Mid
intensive: 50% read, 50% write and (W3) Ui - Update intensive: 10% read, 90% write.
This application is undoubtedly very flexible as it allows us to examine performance
by tweaking different parameters (refer Appendix A.10 for details).
(2) Two benchmarks from STAMP suite [24] - (a) We have considered KMEANS
which is a low contention application with short running transactions and hence has a
smaller chance of thread starvation. The number of data points were chosen as 2048
with 16 dimensions and total clusters as 5. (b) LABYRINTH is another application
that we have considered from the suite. LABYRINTH is a high contention application
with long-running transactions where the chances of a thread starving is high. We have
taken a grid of size 64x64x3 and the number of paths to route as 48.

To study starvation in various algorithms, we have considered max-time, which
is the maximum time taken by a transaction among all the transactions in a given
experiment to commit since its first invocation. This includes time taken by all the
aborted incarnations of the transaction to execute as well. To reduce the effect of
outliers, we have taken the average of max-time in ten runs as the final result for all
the experiments.

1 2 4 8 1 6 3 2 6 4
0

1

2

3

4

5

1 2 4 8 1 6 3 2 6 4
0

1

2

3

4

5

1 2 4 8 1 6 3 2 6 4
0

1

2

3

4

(a) W 1 : L o o k u p I n t e n s i v e

Tim
e (m

illi s
ec.

)

N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 E S T M
 N O r e c
 M V T O

(b) W 2 : M i d I n t e n s i v e
N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 E S T M
 N O r e c
 M V T O

(c) W 3 : U p d a t e I n t e n s i v e
N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 E S T M
 N O r e c
 M V T O

Fig. 4: Max-time analysis on workload W1, W2, W3 for low contention

Results Analysis: Fig 4 and Fig 5 illustrate the max-time analysis of KSFTM over
state-of-the-art STMs for the counters application on workloads W1, W2, and W3
under low and high contentions, respectively. For KSFTM and PKTO, we have chosen
the value of K as 5 and C as 0.1 as optimal results have been obtained on these
parameters as shown in Fig 7. Fig 4 and Fig 5 show that KSFTM performs best for
all the three workloads except NOrec STMs on low contention. KSFTM gives an
average speedup on max-time by a factor of 1.74, 2.07, 4.48, 0.95, and 2.41 under
low contention and by a factor of 1.22, 1.89, 23.26, 13.12, and 1.49 under high
contention over PKTO, SV-SFTM, ESTM, NOrec STM, and MVTO respectively. We
have observed that under low contention, NOrec is slightly better than KSFTM but

18 Ved Prakash Chaudhary et al.

this is a trade-off we pay for ensuring starvation-freedom, while KSFTM performs
best under high contention.

Fig 6(a) shows analysis of max-time for KMEANS while Fig 6(b) shows for
LABYRINTH. In this analysis we have not considered ESTM as the integrated
STAMP code for ESTM is not publicly available. For KMEANS, KSFTM performs
1.5, 1.44, and 1.67 times better than PKTO, SV-SFTM, and MVTO. But, NOrec
performs 1.09 times better than KSFTM. This is because KMEANS has short running
transactions with low contention and hence a feeble chance of thread starvation. As a
result, the commit time of the transactions is also low.

5 0 1 0 0 1 5 0 2 0 0 2 5 01
2
4
8

1 6
3 2
6 4

1 2 8
2 5 6
5 1 2

5 0 1 0 0 1 5 0 2 0 0 2 5 01
2
4
8

1 6
3 2
6 4

1 2 8
2 5 6
5 1 2

5 0 1 0 0 1 5 0 2 0 0 2 5 0
1
2
4
8

1 6
3 2
6 4

1 2 8
2 5 6
5 1 2

(a) W 1 : L o o k u p I n t e n s i v e

Tim
e (

mil
li s

ec.
)

N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 M V T O
 E S T M
 N O r e c

(b) W 2 : M i d I n t e n s i v e
N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 M V T O
 E S T M
 N O r e c

(c) W 3 : U p d a t e I n t e n s i v e
N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 M V T O
 E S T M
 N O r e c

Fig. 5: Max-time analysis on workload W1, W2, W3 for high contention

1 2 4 8 1 6 3 2 6 4
0

1 0

2 0

3 0

4 0

5 0

1 2 4 8 1 6 3 2 6 4
0

2

4

6

8

1 0

1 0 - 1 5 2 5 - 3 0 4 0 - 4 5 5 5 - 6 0
0

2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0
1 2 0 0 0
1 4 0 0 0
1 6 0 0 0

(b) L A B Y R I N T H
N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 N O r e c
 M V T O

(a) K M E A N S

Tim
e (m

illi s
ec.

)

N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 N O r e c
 M V T O

(c) K S F T M S t a b i l i t y

Nu
mb

er o
f C

om
mit

ted
 Tra

nsa
ctio

ns

T i m e I n t e r v a l (s e c .)

 # o f C o m m i t e d T r a n s a c t i o n s

Fig. 6: Max-time analysis on KMEANS, LABYRINTH and KSFTM’s Stability

On the other hand for LABYRINTH, KSFTM again performs the best. It performs
1.14, 1.4, 2.63, and 1.37 times better than PKTO, SV-SFTM, NOrec, and MVTO
respectively. This is because LABYRINTH has high contention with long-running
transactions which can lead to starvation of threads with high probability. This result
in longer commit times for transactions.

Fig 6(c) shows the stability of KSFTM over time for the counter application. Here
we have fixed the number of threads to 32, K as 5, C as 0.1, t-objects as 1000, along
with 5 seconds warm-up period on W1 workload. Each thread invokes transactions
until its time-bound of 60 seconds expires. We have performed the experiments on
number of transactions committed in the increments of 5 seconds. The experiment
shows that over time KSFTM is stable which helps to hold the claim that KSFTM’s
performance will continue in same manner if time is increased to higher orders.

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 19

0 5 1 0 1 5 2 0 2 5 3 0
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
6

7

8

9

1 0

1 1

1 2

1 3

(a)

Tim
e (

mil
li s

ec.
)

V a l u e o f K

 K S F T M
 P K T O

(b)
V a l u e o f C

 K S F T M

Fig. 7: Optimal value of K and C for KSFTM

Optimal value of K and constant C: To identify the best value of K for KSFTM,
we ran an experiment with varying the value of K while keepomg the number of
threads as 64 on workload W1. We observed that the optimal value of K in KSFTM
is 5 as shown in Fig 7.(a) for counter application. Similarly, the experiments showed
that the optimal value of K as 5 for PKTO on the same parameters. C is a constant
that is used to calculate WTS of a transaction. i.e., wtsi = ctsi + C ∗ (ctsi − itsi);
where, C is any constant greater than 0. We ran our experiments on workload W1,
for 64 threads and have observed the optimal value of C as 0.1, shown in Fig 7 (b)
for counter application. We have executed several other experiments to study various
parameters such as average time analysis on STAMP benchmark, abort counts, average
time analysis, and memory consumption by the variants of PKTO and KSFTM in
Appendix A.9.
5 Conclusion
We proposed KSFTM, a multi-version STM, which ensures starvation-freedom while
maintaining K versions for each t-objects. It uses two insights to ensure starvation-
freedom in the context of MVSTMs: (1) using ITS to ensure that older transactions are
given a higher priority, and (2) using WTS to ensure that conflicting transactions do
not commit too quickly before the older transaction could commit. We show KSFTM
satisfies strict-serializability [25] and local opacity [21, 22]. Our experiments show
that KSFTM performs better than starvation-free state-of-the-arts STMs as well as non-
starvation free STMs under long-running transactions with high contention workloads.
References

1. Attiya H, Gotsman A, Hans S, Rinetzky N (2014) Safety of Live Transactions in
Transactional Memory: TMS is Necessary and Sufficient. In: DISC, pp 376–390

2. Bernstein PA, Goodman N (1983) Multiversion Concurrency Control: Theory and
Algorithms. ACM Trans Database Syst

3. Bushkov V, Guerraoui R (2015) Liveness in transactional memory pp Transac-
tional Memory. Foundations, Algorithms, Tools, and Applications, 32–49.

4. Bushkov V, Guerraoui R, Kapalka M (2012) On the liveness of transactional
memory. In: ACM Symposium on PODC 2012

5. Chaudhary VP, Juyal C, Kulkarni SS, Kumari S, Peri S (2017) Starvation freedom
in multi-version transactional memory systems. CoRR abs/1709.01033

6. Chaudhary VP, Juyal C, Kulkarni SS, Kumari S, Peri S (2019) Achieving
starvation-freedom in multi-version transactional memory systems. In: NETYS

20 Ved Prakash Chaudhary et al.

7. Crain T, Imbs D, Raynal M (2011) Read invisibility, virtual world consistency
and probabilistic permissiveness are compatible. In: ICA3PP

8. Dalessandro L, Spear MF, Scott ML (2010) NOrec: Streamlining STM by Abol-
ishing Ownership Records. PPoPP 2010

9. Doherty S, Groves L, Luchangco V, Moir M (2009) Towards Formally Specifying
and Verifying Transactional Memory. In: REFINE

10. Felber P, Gramoli V, Guerraoui R (2017) Elastic transactions. J Parallel Distrib
Comput 100(C):103–127

11. Fernandes SM, Cachopo J (2011) Lock-free and Scalable Multi-version Software
Transactional Memory. PPoPP 2011

12. Gramoli V, Guerraoui R, Trigonakis V (2012) TM2C: A Software Transactional
Memory for Many-cores. EuroSys 2012

13. Guerraoui R, Kapalka M (2008) On the Correctness of Transactional Memory. In:
PPoPP 2008

14. Guerraoui R, Kapalka M (2010) Principles of Transactional Memory, Synthesis
Lectures on Distributed Computing Theory. Morgan and Claypool

15. Guerraoui R, Henzinger T, Singh V (2008) Permissiveness in Transactional
Memories. In: DISC 2008

16. Herlihy M, BMoss JE (1993) Transactional memory: Architectural Support for
Lock-Free Data Structures. SIGARCH Comput Archit News 21(2)

17. Herlihy M, Shavit N (2011) On the nature of progress. OPODIS 2011
18. Herlihy M, Shavit N (2012) The Art of Multiprocessor Programming, Revised

Reprint, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
19. Herlihy MP, Wing JM (1990) Linearizability: a correctness condition for concur-

rent objects. ACM Trans Program Lang Syst 12(3)
20. Kumar P, Peri S, Vidyasankar K (2014) A TimeStamp Based Multi-version STM

Algorithm. In: ICDCN, pp 212–226
21. Kuznetsov P, Peri S (2014) Non-interference and Local Correctness in Transac-

tional Memory. In: ICDCN, pp 197–211
22. Kuznetsov P, Peri S (2017) Non-interference and local correctness in transactional

memory. Theor Comput Sci 688
23. Lu L, Scott ML (2013) Generic multiversion STM. In: DISC 2013
24. Minh CC, Chung J, Kozyrakis C, Olukotun K (2008) STAMP: stanford transac-

tional applications for multi-processing. In: IISWC 2008
25. Papadimitriou CH (1979) The serializability of concurrent database updates. J

ACM 26(4)
26. Perelman D, Byshevsky A, Litmanovich O, Keidar I (2011) SMV: Selective

Multi-Versioning STM. In: DISC, pp 125–140
27. Riegel T, Felber P, Fetzer C (2006) A lazy snapshot algorithm with eager valida-

tion. In: DISC 2006
28. Shavit N, Touitou D (1995) Software Transactional Memory. In: PODC
29. Spear MF, Dalessandro L, Marathe VJ, Scott ML (2009) A comprehensive strategy

for contention management in software transactional memory. PPoPP
30. Waliullah MM, Stenström P (2009) Schemes for Avoiding Starvation in Transac-

tional Memory Systems. Concurrency and Computation: Practice and Experience

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 1

Appendix

The appendix section is organized as follows:
Section No. Section Name
Appendix A Supplements of the Paper

Appendix A.2 Detailed Related Work
Appendix A.3 Pseudo code of PKTO
Appendix A.4 Illustration of Starvation in Priority-based MVTO Algorithm
Appendix A.5 The drawback of SFKTO
Appendix A.6 Data Structures and Pseudocode of KSFTM
Appendix A.7 Graph Characterization of Local Opacity and KSFTM Correctness
Appendix A.8 Proof of Liveness of KSFTM
Appendix A.9 Detailed Experimental Evaluation

Appendix A.10 Pseudo code of Counter Application

A Supplements of the Paper

A.1 Missing Notations

Here we define deadlock-freedom in the context of transactions. First, we define it for methods and then
extend it to transactions.
Deadlock-Freedom w.r.t method execution: As per the definition of Herlihy & Shavit [17], a method m
of a concurrent object is deadlock-free in the following setting: if multiple threads invoke m concurrently
then at least one thread will get a response.

Deadlock-Freedom w.r.t transaction execution: We extend the definition of deadlock-freedom to trans-
action execution. This definition is similar in spirit to starvation-freedom definition of transactions in
Section 3.1 and extends the deadlock-freedom given above. Consider the following model: given a set
of threads with each thread invoking a transaction. If every time a transaction aborts, the corresponding
thread invokes another incarnation of the same transaction. The STM system with this model is said to be
deadlock-free if some transaction invoked by a thread Thi successfully commits eventually (possibly after
multiple invocations by thread Thi).

A.2 Detailed Related Work

Discussion on STM Correctness: In Section 2, we discussed about strict-serializability, opacity, local
opacity. TMS1 [9, 1] is another interesting correctness-criterion which unlike opacity does not require a
single sequential history equivalent to the original history. TMS1 requires that each response should be
explained by a sequential history including a subset of the transactions. In this sense, TMS1 is similar to
local opacity by considering multiple sequential histories for correctness of a history. But it differs from
local opacity that the response event could include aborted transactions whereas local opacity does not
involve aborted transaction while considering correctness of a transaction.

Discussion on Multiple Versions and Progress Conditions: Several STM systems have been proposed
in the literature. Among them, Elastic STM (ESTM) [10], NOrec STM [8] are popular STMs that execute
read/write primitive operations on transaction objects or t-objects. We represent these STMs as Read-Write
STMs or RWSTMs. ESTM [10] is an appealing alternative to the traditional transactional model which
offers better performance than traditional RWSTMs. ESTM is favorable for the search structure like the list,
hash-table in shared memory.

Ownership-record-free (NOrec) [8] is another popular STM which ensures low overhead and high
scalability. It acquires a global versioned lock when updating the shared memory. Each transaction maintains
a read log and snapshot timestamp taken from the global versioned lock whenever a transaction begins.
Write of the transaction is occurring directly into its redo-log with a hashing scheme to save the search time.
ESTM [10] and NOrec [8] are non-starvation free STMs.

2 Ved Prakash Chaudhary et al.

Starvation-freedom in STMs has been explored by a few researchers in literature such as Gramoli et al.
[12], Waliullah and Stenstrom [30], Spear et al. [29]. Gramoli et al. [12] proposed a distributed contention
manager, FairCM, for the transactional memory system that ensures the starvation-freedom for multi-core
systems. FairCM used the eager conflict detection technique and visible read to prevent the repetitive abort
of the same transaction.

Waliullah and Stenstrom [30] stated that the commit of unordered transactions on a demand-driven
basis (commit arbitration policies) in software transactional memory systems are prone to starvation. So,
they proposed a scheme by assigning priorities to transactions to avoid starvation. The starvation-freedom is
achieved at the cost of modest complexity to the baseline protocol while reducing the wasted computation
of roll-back.

Spear et al. [29] proposed a comprehensive strategy for contention management to avoid starvation in
software transactional memory systems. It detects the conflicts fairly with invisible reads and lazy acquire
of ownership to deal with livelock. The idea is based on extendable timestamps and assigning the priorities
to the transactions, and minimizes the unnecessary aborts.

Most of these systems [12, 30, 29] work by assigning priorities to transactions. In case of a conflict
between two transactions, the transaction with lower priority is aborted. They ensure that every aborted
transaction, on being retried a sufficient number of times, will eventually have the highest priority and hence
will commit. We denote such an algorithm as single-version starvation-free STM or SV-SFTM.

Although SV-SFTM guarantees starvation-freedom, it can still abort many transactions spuriously.
Consider the case where a transaction Ti has the highest priority. Hence, as per SV-SFTM, Ti cannot
be aborted. But if it is slow (for some reason), then it can cause several other conflicting transactions to
abort and hence, bring down the efficiency and progress of the entire system. we illustrated the problem
in Fig 1 of Section 1. To address this limitation, we motivated from the literature of multi-version STMs
[20, 23, 11, 26] that allows more transactions to commit and reduces the number of aborts as compared to
single-version STMs or SVSTMs. We denote such STMs as multi-version STMs or MVSTMs. It allows to
read from the previous version and guarantees that read-only transaction never returns abort.

Selective multi-versioning (SMV) [26] maintains multiple versions corresponding to each object which
reduces the number of aborts of long-running read-only transactions. (SMV) keeps the versions as long
as it is useful for some reading transaction and garbage collects the version when none of the transactions
read from it. SMV suggested managing the memory through a special garbage collection (GC) thread for a
periodic interval to dispose of obsolete versions.

Multi-version timestamp ordering (MVTO) [20] is another popular timestamp-based MVSTM system
that satisfies correctness criteria as opacity [13]. It was shown that MVTO [20] achieves greater concurrency
than SVSTMs and maintains at least as many versions as the number of live transactions. It provides a
garbage collection mechanism to delete the unwanted versions. Although MVSTMs theoretically provide
greater concurrency, they suffer from the cost of garbage collection.

None of these MVSTMs [20, 23, 11, 26] provide starvation-freedom. MVTO algorithm provides an
idea that multiple versions can help with starvation-freedom without sacrificing on concurrency which
motivated us to develop a multi-version starvation-free STM system. So, we propose a multi-version
starvation-free STM system as K-version starvation-free STM or KSFTM [6] that maintains bounded
versions, where the number of versions is bounded to be at most K. By maintaining bounded versions, we
don’t have to incur any cost of garbage collection although theoretically we compromise on concurrency
provided.

A.3 Pseudocode of PKTO

Algorithm 2 init(): Invoked at the start of the STM system. Initializes all the t-objects
used by the STM System
1: G Count = 1;
2: for all x in T do . All the t-objects used by the STM System
3: add 〈0, 0, nil〉 to x.vl; . T0 is initializing x
4: end for;

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 3

S. No. STMs Number of ver-
sions Safety Liveness

1. NOrec [8] Single version Opacity Non-starvation-free
2. ESTM [10] Single version Opacity Non-starvation-free

3. SV-SFTM [12, 30,
29] Single version Serializability Starvation-freedom

4. MVTO [20] Multiple ver-
sions Opacity Non-starvation-free

5. PKTO K versions Strict Serializability &
Local opacity Non-starvation-free

6. SFKTO K versions None Starvation-freedom

7. KSFTM K versions Strict Serializability &
Local opacity Starvation-freedom

Table 2: Comparison of the various STMs
Algorithm 3 stm-begin(its): Invoked by a thread to start a new transaction Ti. Thread
can pass a parameter its which is the initial timestamp when this transaction was
invoked for the first time. If this is the first invocation then its is nil. It returns the
tuple 〈id,G cts〉
1: i = unique-id; . An unique id to identify this transaction. It could be same as G cts
2: . Initialize transaction specific local and global variables
3: if (its == nil) then
4: . G Count.get&Inc() returns the current value of G Count and atomically increments it
5: G itsi = G ctsi = G Count.get&Inc();
6: else
7: G itsi = its;
8: G ctsi = G Count.get&Inc();
9: end if

10: rseti = wseti = null;
11: G statei = live;
12: G validi = T ;
13: return 〈i, G ctsi〉

Algorithm 4 stm-read(i, x): Invoked by a transaction Ti to read t-object x. It returns
either the value of x or A
1: if (x ∈ rseti) then . Check if the t-object x is in rseti
2: return rseti[x].val;
3: else if (x ∈ wseti) then . Check if the t-object x is in wseti
4: return wseti[x].val;
5: else . t-object x is not in rseti and wseti
6: lock x; lock G locki;
7: if (G validi == F) then return abort(i);
8: end if
9: . findLTS: From x.vl, returns the largest ts value less than G ctsi. If no such version exists, it

returns nil
10: curV er = findLTS(G ctsi, x);
11: if (curV er == nil) then return abort(i); . Proceed only if curV er is not nil
12: end if
13: val = x[curV er].v; add 〈x, val〉 to rseti;
14: add Ti to x[curV er].rl;
15: unlock G locki; unlock x;
16: return val;
17: end if

4 Ved Prakash Chaudhary et al.

Algorithm 5 stm-writei(x, val): A Transaction Ti writes into local memory
1: Append the d tuple〈x, val〉 to wseti.
2: return ok;

Algorithm 6 stm-tryC(): Returns ok on commit else return Abort
1: . The following check is an optimization which needs to be performed again later
2: lock G locki;
3: if (G validi == F) then
4: return abort(i);
5: end if
6: unlock G locki;
7: largeRL = allRL = nil; . Initialize larger read list (largeRL), all read list (allRL) to nil
8: for all x ∈ wseti do
9: lock x in pre-defined order;

10: . findLTS: returns the version with the largest ts value less than G ctsi. If no such version exists,
it returns nil.

11: prevV er = findLTS(G ctsi, x); . prevVer: largest version smaller than G ctsi
12: if (prevV er == nil) then . There exists no version with ts value less than G ctsi
13: lock G locki; return abort(i);
14: end if
15: . getLar: obtain the list of reading transactions of x[prevV er].rl whose G cts is greater than

G ctsi
16: largeRL = largeRL ∪ getLar(G ctsi, x[prevV er].rl);
17: end for . x ∈ wseti
18: relLL = largeRL ∪ Ti; . Initialize relevant Lock List (relLL)
19: for all (Tk ∈ relLL) do
20: lock G lockk in pre-defined order; . Note: Since Ti is also in relLL, G locki is also locked
21: end for
22: . Verify if G validi is false
23: if (G validi == F) then
24: return abort(i);
25: end if
26: abortRL = nil . Initialize abort read list (abortRL)
27: . Among the transactions in Tk in largeRL, either Tk or Ti has to be aborted
28: for all (Tk ∈ largeRL) do
29: if (isAborted(Tk)) then . Transaction Tk can be ignored since it is already aborted or about to

be aborted
30: continue;
31: end if
32: if (G itsi < G itsk) ∧ (G statek == live) then
33: . Transaction Tk has lower priority and is not yet committed. So it needs to be aborted
34: abortRL = abortRL ∪ Tk; . Store Tk in abortRL
35: else . Transaction Ti has to be aborted
36: return abort(i);
37: end if
38: end for
39: . Store the current value of the global counter as commit time and increment it
40: comTime = G Count.get&Inc();
41: for all Tk ∈ abortRL do . Abort all the transactions in abortRL
42: G validk = F ;
43: end for
44: . Having completed all the checks, Ti can be committed
45: for all (x ∈ wseti) do
46: newTuple = 〈G ctsi, wseti[x].val, nil〉; . Create new v tuple: G cts, val, rl for x
47: if (|x.vl| > k) then
48: replace the oldest tuple in x.vl with newTuple; . x.vl is ordered by timestamp
49: else
50: add a newTuple to x.vl in sorted order;
51: end if
52: end for . x ∈ wseti
53: G statei = commit;
54: unlock all variables;
55: return C ;

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 5

Algorithm 7 isAborted(Tk): Verifies if Ti is already aborted or its G valid flag is set
to false implying that Ti will be aborted soon
1: if (G validk == F) ∨ (G statek == abort) ∨ (Tk ∈ abortRL) then
2: return T ;
3: else
4: return F ;
5: end if

Algorithm 8 abort(i): Invoked by various STM methods to abort transaction Ti. It
returns A
1: G validi = F ; G statei = abort;
2: unlock all variables locked by Ti;
3: return A ;

A.4 Illustration of Stravation in Priority-based MVTO Algorithm

As discussed in the main paper, PKTO gives priority to transactions having lower ITS. But a transaction Ti
having the lowest ITS could still abort due to one of the following reasons: (1) Upon executing stm-read(x)
method if it does not find any other version of x to read from. This can happen if all the versions of x
present have a timestamp greater than ctsi. (2) While executing Step 1a(i) of the stm-tryC method, if
Ti wishes to create a version of x with timestamp i. But some other transaction, say Tk has read from a
version with timestamp j and j < i < k. In this case, Ti has to abort if Tk has already committed. (3) On
executing Step 1b of the stm-tryC method, Ti does not find a previous version. Hence, it does not know
which transactions it can conflict with.

This issue is not restricted only to PKTO. It can occur in PMVTO (and PMVTO-GC) due to the point
(2) described above.

We illustrate this problem in PKTO with Fig 8. Here transaction T26, with ITS 26 is the lowest among
all the live transactions, starves due to Step 1a.(i) of the stm-tryC. First time, T26 gets aborted due to
higher timestamp transaction T29 in the read-list of x[25] has committed. We have denoted it by a ‘(C)’
next to the version. The second time, T26 retries with same ITS 26 but new CTS 33. Now when T33 comes
for commit, suppose another transaction T34 in the read-list of x[25] has already committed. So this will
cause T33 (another incarnation of T26) to abort again. Such scenario can possibly repeat again and again
and thus causing no incarnation of T26 to ever commit leading to its starvation.

A.5 The drawback of SFKTO

Although the SFKTO satisfies starvation-freedom, it, unfortunately, does not satisfy strict-serializability
and hence local opacity as well. Specifically, it violates the real-time requirement. PKTO uses CTS for its
working while SFKTO uses WTS. It can be seen that CTS is close to the real-time execution of transactions
whereas WTS of a transaction Ti is artificially inflated based on its ITS and might be much larger than its
CTS.

We illustrate this with an example. Consider the historyH1 as shown in Fig 9: r1(x, 0)r2(y, 0)w1(x, 10)
C1w2(x, 20)C2r3(x, 10)r3(z, 25)C3 with CTS as 50, 60 and 80 and WTS as 50, 100 and 80 for
T1, T2, T3 respectively. Here T1, T2 are ordered before T3 in real-time with T1 ≺RTH1 T3 and T2 ≺RTH1 T3
although T2 has a higher WTS than T3.

6 Ved Prakash Chaudhary et al.

X

16(C) 22(C)

ts
val rl(its, cts)

8(15, 15) rl

ts
val rl

10(25, 25) rl

Abort

ts
val rl(its, cts)

39 rl

ts
val rl(its, cts)

39(26, 26) rl

(26, 33)

2nd time

6(C) 9(C) 12(C)

ts
val rl

4(5, 5) rl

(its, cts) (its, cts)

φ

φ

Abort

29(C) 3217(C)

34(C)

1st time

Fig. 8: Representation of execution under PKTO

r1(x, 0) w1(x, 10) C1

r3(x, 10)
T3

T2

r3(z, 25)

C2
r2(y, 0) w2(x, 20)

T1

cts3 = 80

wts3 = 80

C3

cts1 = 50

wts1 = 50 cts2 = 60

wts2 = 100

Fig. 9: Correctness of SFKTO Algorithm
Here, as per SFKTO algorithm, T3 reads x from T1 since T1 has the largest WTS (50) smaller than

T3’s WTS (80). It can be verified that it is possible for SFKTO to generate such a history. But this history is
not strict-serializable. The only possible serial order equivalent to H1 is T1T3T2 and it is legal as well. But
this violates real-time order as T3 is serialized before T2 but in H1, T2 completes before T3 has begun.
Since H1 is not strict-serializable, it is not locally-opaque as well. Naturally, this drawback extends to
SFMVTO as well.

A.6 Data Structures and Pseudocode of KSFTM

The STM system consists of the following methods: init(), stm-begin(), stm-read(i, x), stm-write(i, x, v)
and stm-tryC(i). We assume that all the t-objects are ordered as x1, x2, ...xn and belong to the set T .
We describe the data-structures used by the algorithm.

We start with structures that local to each transaction. Each transaction Ti maintains a rseti and
wseti. In addition it maintains the following structures (1) comTimei: This is value given to Ti when it
terminates which is assigned a value in stm-tryC method. (2) A series of lists: smallRL, largeRL, allRL,
prevVL, nextVL, relLL, abortRL. The meaning of these lists will be clear with the description of the
pseudocode. In addition to these local structures, the following shared global structures are maintained that
are shared across transactions (and hence, threads). We name all the shared variable starting with ‘G’.

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 7

– G Count (counter): This a numerical valued counter that is incremented when a transaction begins
and terminates.

For each transaction Ti we maintain the following shared timestamps:

– G locki: A lock for accessing all the shared variables of Ti.

– G itsi (initial timestamp): It is a timestamp assigned to Ti when it was invoked for the first time
without any aborts. The current value of G Count is atomically assigned to it and then incremented.
If Ti is aborted and restarts later then the application assigns it the same G its.

– G ctsi (current timestamp): It is a timestamp when Ti is invoked again at a later time after an abort.
Like G its,the current value of G Count is atomically assigned to it and then incremented. When Ti
is created for the first time, then its G cts is same as its G its.

– G wtsi (working timestamp): It is the timestamp that Ti works with. It is either greater than or equal
to Ti’s G cts. It is computed as follows: G wtsi = G ctsi + C ∗ (G ctsi −G itsi).

– G validi: This is a boolean variable which is initially true. If it becomes false then Ti has to be
aborted.

– G statei: This is a variable which states the current value of Ti. It has three states: live, committed
or aborted.

– G tltli, G tutli (transaction lower and upper time limits): These are the time-limits described in the
previous section used to keep the transaction WTS and real-time orders in sync. G tltli is G cts of Ti
when transaction begins and is a non-decreasing value. It continues to increase (or remains same) as Ti
reads t-objects and later terminates. G tutli on the other hand is a non-increasing value starting with
∞ when the Ti is created. It reduces (or remains same) as Ti reads t-objects and later terminates. If Ti
commits then both G tltli and G tutli are made equal.

Two transactions having the same ITS are said to be incarnations. No two transaction can have the same CTS.
For simplicity, we assume that no two transactions have the same WTS as well. In case, two transactions
have the same WTS, one can use the tuple 〈WTS, CTS 〉 instead of WTS. But we ignore such cases. For
each t-object x in T , we maintain:

– x.vl (version list): It is a list consisting of version tuples or vTuple of the form 〈ts, val,rl,vrt〉.
The details of the tuple are explained below.

– ts (timestmp): Here ts is the G wtsi of a committed transaction Ti that has created this version.

– val: The value of this version.

– rl (readList): rl is the read list consists of all the transactions that have read this version. Each entry
in this list is of the form 〈rts〉 where rts is the G wtsj of a transaction Tj that read this version.

– vrt (version real-time timestamp): It is the G tutl value (which is same as G tltl) of the transaction Ti
that created this version at the time of commit of Ti.

Algorithm 9 init(): Invoked at the start of the STM system. Initializes all the t-objects
used by the STM System
1: G Count = 1; . Global Transaction Counter
2: for all x in T do . All the t-objects used by the STM System
3: /* T0 is creating the first version of x: ts = 0, val = 0,rl = nil,vrt = 0 */
4: add 〈0, 0, nil, 0〉 to x.vl;
5: end for;

8 Ved Prakash Chaudhary et al.

Algorithm 10 stm-begin(its): Invoked by a thread to start a new transaction Ti.
Thread can pass a parameter its which is the initial timestamp when this transaction
was invoked for the first time. If this is the first invocation then its is nil. It returns the
tuple 〈id,G wts,G cts〉
1: i = unique-id; . An unique id to identify this transaction. It could be same as G cts
2: . Initialize transaction specific local and global variables
3: if (its == nil) then
4: G itsi = G wtsi = G ctsi = G Count.get&Inc(); . G Count.get&Inc() returns the

current value of G Count and atomically increments it
5: else
6: G itsi = its;
7: G ctsi = G Count.get&Inc();
8: G wtsi = G ctsi + C ∗ (G ctsi −G itsi); . C is any constant greater or equal to than 1
9: end if

10: G tltli = G ctsi; G tutli = comTimei =∞;
11: G statei = live; G validi = T ;
12: rseti = wseti = nil;
13: return 〈i, G wtsi, G ctsi〉

Algorithm 11 stm-read(i, x): Invoked by a transaction Ti to read t-object x. It returns
either the value of x or A
1: if (x ∈ wseti) then . Check if the t-object x is in wseti
2: return wseti[x].val;
3: else if (x ∈ rseti) then . Check if the t-object x is in rseti
4: return rseti[x].val;
5: else . t-object x is not in rseti and wseti
6: lock x; lock G locki;
7: if (G validi == F) then return abort(i);
8: end if

9: /* findLTS: From x.vl, returns the largest ts value less than G wtsi. If no such version exists, it
returns nil */

10: curV er = findLTS(G wtsi, x);
11: if (curV er == nil) then return abort(i); . Proceed only if curV er is not nil
12: end if
13: /* findSTL: From x.vl, returns the smallest ts value greater than G wtsi. If no such version

exists, it returns nil */
14: nextV er = findSTL(G wtsi, x);
15: if (nextV er 6= nil) then
16: . Ensure that G tutli remains smaller than nextV er’s vrt
17: G tutli = min(G tutli, x[nextV er].vrt− 1);
18: end if
19: . G tltli should be greater than x[curV er].vrt
20: G tltli = max(G tltli, x[curV er].vrt+ 1);
21: if (G tltli > G tutli) then . If the limits have crossed each other, then Ti is aborted
22: return abort(i);
23: end if
24: val = x[curV er].v; add 〈x, val〉 to rseti;
25: add Ti to x[curV er].rl;
26: unlock G locki; unlock x;
27: return val;
28: end if

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 9

Algorithm 12 stm-writei(x, val): A Transaction Ti writes into local memory
1: Append the d tuple〈x, val〉 to wseti.
2: return ok;

Algorithm 13 stm-tryC(): Returns ok on commit else return Abort
1: . The following check is an optimization which needs to be performed again later
2: lock G locki;
3: if (G validi == F) then return abort(i);
4: end if
5: unlock G locki;
6: . Initialize smaller read list (smallRL), larger read list (largeRL), all read list (allRL) to nil
7: smallRL = largeRL = allRL = nil;
8: . Initialize previous version list (prevVL), next version list (nextVL) to nil
9: prevV L = nextV L = nil;

10: for all x ∈ wseti do
11: lock x in pre-defined order;
12: /* findLTS: returns the version of x with the largest ts less than G wtsi. If no such version exists,

it returns nil. */
13: prevV er = findLTS(G wtsi, x); . prevVer: largest version smaller than G wtsi
14: if (prevV er == nil) then . There exists no version with ts value less than G wtsi
15: lock G locki; return abort(i);
16: end if
17: prevV L = prevV L ∪ prevV er; . prevVL stores the previous version in sorted order
18: allRL = allRL ∪ x[prevV er].rl; . Store the read-list of the previous version
19: . getLar: obtain the list of reading transactions of x[prevV er].rl whose G wts is greater than

G wtsi
20: largeRL = largeRL ∪ getLar(G wtsi,

x[prevV er].rl);
21: . getSm: obtain the list of reading transactions of x[prevV er].rl whose G wts is smaller than

G wtsi
22: smallRL = smallRL ∪ getSm(G wtsi,

x[prevV er].rl);
23: /* findSTL: returns the version with the smallest ts value greater than G wtsi. If no such version

exists, it returns nil. */
24: nextV er = findSTL(G wtsi, x); . nextVer: smallest version larger than G wtsi
25: if (nextV er 6= nil)) then
26: nextV L = nextV L ∪ nextV er; . nextVL stores the next version in sorted order
27: end if
28: end for . x ∈ wseti
29: relLL = allRL ∪ Ti; . Initialize relevant Lock List (relLL)
30: for all (Tk ∈ relLL) do
31: lock G lockk in pre-defined order; . Note: Since Ti is also in relLL, G locki is also locked
32: end for
33: . Verify if G validi is false
34: if (G validi == F) then return abort(i);
35: end if
36: abortRL = nil . Initialize abort read list (abortRL)
37: . Among the transactions in Tk in largeRL, either Tk or Ti has to be aborted
38: for all (Tk ∈ largeRL) do
39: if (isAborted(Tk)) then
40: . Transaction Tk can be ignored since it is already aborted or about to be aborted
41: continue;
42: end if
43: if (G itsi < G itsk) ∧ (G statek == live) then
44: . Transaction Tk has lower priority and is not yet committed. So it needs to be aborted
45: abortRL = abortRL ∪ Tk; . Store Tk in abortRL
46: else . Transaction Ti has to be aborted
47: return abort(i);
48: end if
49: end for
50: . Ensure that G tltli is greater than vrt of the versions in prevV L

10 Ved Prakash Chaudhary et al.

51: for all (ver ∈ prevV L) do
52: x = t-object of ver;
53: G tltli = max(G tltli, x[ver].vrt+ 1);
54: end for
55: . Ensure that vutli is less than vrt of versions in nextV L
56: for all (ver ∈ nextV L) do
57: x = t-object of ver;
58: G tutli = min(G tutli, x[ver].vrt− 1);
59: end for
60: . Store the current value of the global counter as commit time and increment it
61: comTimei = G Count.add&Get(incrV al); . incrV al can be any constant ≥ 1
62: G tutli = min(G tutli, comTimei); . Ensure that G tutli is less than or equal to comTime
63: . Abort Ti if its limits have crossed
64: if (G tltli > G tutli) then return abort(i);
65: end if
66: for all (Tk ∈ smallRL) do
67: if (isAborted(Tk)) then
68: continue;
69: end if
70: if (G tltlk ≥ G tutli) then . Ensure that the limits do not cross for both Ti and Tk
71: if (G statek == live) then . Check if Tk is live
72: if (G itsi < G itsk) then
73: . Transaction Tk has lower priority and is not yet committed. So it needs to be aborted
74: abortRL = abortRL ∪ Tk; . Store Tk in abortRL
75: else . Transaction Ti has to be aborted
76: return abort(i);
77: end if . (G itsi < G itsk)
78: else . (Tk is committed. Hence, Ti has to be aborted)
79: return abort(i);
80: end if . (G statek == live)
81: end if . (G tltlk ≥ G tutli)
82: end for(Tk ∈ smallRL)
83: . After this point Ti can’t abort.
84: G tltli = G tutli;
85: . Since Ti can’t abort, we can update Tk’s G tutl
86: for all (Tk ∈ smallRL) do
87: if (isAborted(Tk)) then
88: continue;
89: end if
90: /* The following line ensure that G tltlk ≤ G tutlk < G tltli. Note that this does not cause the

limits of Tk to cross each other because of the check in Line 70.*/
91: G tutlk = min(G tutlk, G tltli − 1);
92: end for
93: for all Tk ∈ abortRL do . Abort all the transactions in abortRL since Ti can’t abort
94: G validk = F ;
95: end for
96: . Having completed all the checks, Ti can be committed
97: for all (x ∈ wseti) do
98: /* Create new v tuple: ts, val,rl,vrt for x */
99: newTuple = 〈G wtsi, wseti[x].val, nil, G tltli〉;
100: if (|x.vl| > k) then
101: replace the oldest tuple in x.vl with newTuple; . x.vl is ordered by ts
102: else
103: add a newTuple to x.vl in sorted order;
104: end if
105: end for . x ∈ wseti
106: G statei = commit;
107: unlock all variables;
108: return C ;

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 11

Algorithm 14 isAborted(Tk): Verifies if Ti is already aborted or its G valid flag is
set to false implying that Ti will be aborted soon
1: if (G validk == F) ∨ (G statek == abort) ∨ (Tk ∈ abortRL) then
2: return T ;
3: else
4: return F ;
5: end if

Algorithm 15 abort(i): Invoked by various STM methods to abort transaction Ti. It
returns A
1: G validi = F ; G statei = abort;
2: unlock all variables locked by Ti;
3: return A ;

Garbage Collection: Having described the starvation-free algorithm, we now describe how garbage
collection can be performed on the unbounded variant, UVSFTM to achieve UVSFTM-GC. This is achieved
by deleting non-latest version (i.e., there exists a version with greater ts) of each t-object whose timestamp,
ts is less than the CTS of smallest live transaction. It must be noted that UVSFTM (KSFTM) works with
WTS which is greater or equal to CTS for any transaction. Interestingly, the same garbage collection
principle can be applied for PMVTO to achieve PMVTO-GC.

To identify the transaction with the smallest CTS among live transactions, we maintain a set of all the
live transactions, live-list. When a transaction Ti begins, its CTS is added to this live-list. And when Ti
terminates (either commits or aborts), Ti is deleted from this live-list.

A.7 Graph Characterization of Local Opacity and KSFTM Correctness

To prove correctness of STM systems, it is useful to consider graph characterization of histories. In this
section, we describe the graph characterization developed by Kumar et al [20] for proving opacity which is
based on characterization by Bernstein and Goodman [2]. We extend this characterization for LO.

Consider a history H which consists of multiple versions for each t-object. The graph characterization
uses the notion of version order. Given H and a t-object x, we define a version order for x as any (non-
reflexive) total order on all the versions of x ever created by committed transactions in H . It must be noted
that the version order may or may not be the same as the actual order in which the version of x are generated
in H . A version order of H , denoted as�H is the union of the version orders of all the t-objects in H .

Consider the history H2 : r1(x, 0)r2(x, 0)r1(y, 0)r3(z, 0)w1(x, 5)w3(y, 15)w2(y,
10)w1(z, 10)c1c2r4(x, 5)r4(y, 10)w3(z, 15)c3r4(z, 10). Using the notation that a committed transac-
tion Ti writing to x creates a version xi, a possible version order for H2�H2 is: 〈x0 � x1〉, 〈y0 �
y2 � y3〉, 〈z0 � z1 � z3〉.

We define the graph characterization based on a given version order. Consider a historyH and a version
order�. We then define a graph (called opacity graph) onH using�, denoted asOPG(H,�) = (V,E).
The vertex set V consists of a vertex for each transaction Ti in H . The edges of the graph are of three kinds
and are defined as follows:

1. real-time(real-time) edges: If Ti commits before Tj starts in H , then there is an edge from vi to vj .
This set of edges are referred to as rt(H).

2. rf (reads-from) edges: If Tj reads x from Ti in H , then there is an edge from vi to vj . Note that in
order for this to happen, Ti must have committed before Tj and ci <H rj(x). This set of edges are
referred to as rf(H).

3. mv(multiversion) edges: The mv edges capture the multiversion relations and is based on the version
order. Consider a successful read operation rk(x, v) and the write operation wj(x, v) belonging
to transaction Tj such that rk(x, v) reads x from wj(x, v) (it must be noted Tj is a committed
transaction and cj <H rk). Consider a committed transaction Ti which writes to x, wi(x, u) where
u 6= v. Thus the versions created xi, xj are related by�. Then, if xi � xj we add an edge from
vi to vj . Otherwise (xj � xi), we add an edge from vk to vi. This set of edges are referred to as
mv(H,�).

12 Ved Prakash Chaudhary et al.

rf

rt, rf
rf

mv

rt, rf

rt, rf

rtT0

T1

T4

T3

T2

Fig. 10: OPG(H2,�H2)

Using the construction, the OPG(H2,�H2) for history H2 and �H2 is shown in Fig 10. The
edges are annotated. The only mv edge from T4 to T3 is because of t-objects y, z. T4 reads value 5 for z
from T1 whereas T3 also writes 15 to z and commits before r4(z).

Kumar et al [20] showed that if a version order� exists for a history H such that OPG(H,�H) is
acyclic, then H is opaque. This is captured in the following result.

Result 3 A valid history H is opaque iff there exists a version order�H such that OPG(H,�H) is
acyclic.

This result can be easily extended to prove LO as follows

Theorem 4 A valid history H is locally-opaque iff for each sub-history sh in H.subhistSet there exists
a version order�sh such that OPG(sh,�sh) is acyclic. Formally,
〈(H is locally-opaque)⇔ (∀sh ∈ H.subhistSet, ∃ �sh: OPG(sh,�sh) is acyclic)〉.

Proof To prove this theorem, we have to show that each sub-history sh in H.subhistSet is valid. Then
the rest follows from Result 3. Now consider a sub-history sh. Consider any read operation ri(x, v) of a
transaction Ti. It is clear that Ti must have read a version of x created by a previously committed transaction.
From the construction of sh, we get that all the transaction that committed before ri are also in sh. Hence
sh is also valid.

Now, proving sh to be opaque iff there exists a version order �sh such that OPG(sh,�sh) is
acyclic follows from Result 3. ut

Lemma 1 Consider a history H in gen(KSFTM) with two transactions Ti and Tj such that both their
G valid flags are true. there is an edge from Ti→ Tj then G tltli < G tltlj .

Proof There are three types of possible edges in MVSG.

1. Real-time edge: Since, transaction Ti and Tj are in real time order so comTimei < G ctsj . As we
know from Lemma 14 (G tltli ≤ comTimei). So, (G tltli ≤ CTSj).
We know from stm-begin(its) method, G tltlj = G ctsj .
Eventually, G tltli < G tltlj .

2. Read-from edge: Since, transaction Ti has been committed and Tj is reading from Ti so, from Line 99
stm-tryC(Ti), G tltli = vrti.
and from Line 20 STM read(j, x), G tltlj = max(G tltlj ,
x[curV er].vrt+ 1)⇒ (G tltlj > vrti)⇒ (G tltlj > G tltli)
Hence, G tltli < G tltlj .

3. Version-order edge: Consider a triplet wj(xj)rk(xj)wi(xi) in which there are two possibilities of
version order:
(a) i� j =⇒ G wtsi < G wtsj

There are two possibilities of commit order:

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 13

i. comTimei <H comTimej : Since, Ti has been committed before Tj soG tltli = vrti.
From Line 53 of stm-tryC(Tj), vrti < G tltl(j).
Hence, G tltli < G tltlj .

ii. comTimej <H comTimei: Since, Tj has been committed before Ti so G tltlj =
vrtj . From Line 58 of stm-tryC(Ti), G tutli < vrtj . As we have assumed G validi
is true so definitely it will execute the Line 84 stm-tryC(Ti) i.e. G tltli = G tutli.
Hence, G tltli < G tltlj .

(b) j� i =⇒ G wtsj < G wtsi
Again, there are two possibilities of commit order:

i. comTimej <H comTimei: Since, Tj has been committed before Ti and Tk read from
Tj . There can be two possibilities G wtsk .

A. G wtsk > G wtsi: That means Tk is in largeRL of Ti. From Line 45 to Line 47of
stm-tryC(i), either transaction Tk or Ti, G valid flag is set to be false. If Ti re-
turns abort then this case will not be considered in Lemma 1. Otherwise, as Tj has
already been committed and later Ti will execute the Line 99 stm-tryC(Ti), Hence,
G tltlj < G tltli.

B. G wtsk < G wtsi: That means Tk is in smallRL of Ti. From Line 17 of read(k, x),
G tutlk < vrti and from Line 20 of read(k, x), G tltlk > vrtj . Here, Tj has
already been committed so, G tltlj = vrtj . As we have assumed G validi is true
so definitely it will execute the Line 99 stm-tryC(Ti), G tltli = vrti.
So, G tutlk < G tltli and G tltlk > G tltlj . While considering G validk flag is
true→ G tltlk < G tutlk .
Hence, G tltlj < G tltlk < G tutlk < G tltli.
Therefore, G tltlj < G tltlk < G tltli.

ii. comTimei <H comTimej : Since, Ti has been committed before Tj so, G tltli =
vrti. From Line 58 of stm-tryC(Tj), G tutlj < vrti i.e. G tutlj < G tltli. Here,
Tk read from Tj . So, From Line 17 of read(k, x), G tutlk < vrti → G tutlk <
G tltli from Line 20 of read(k, x), G tltlk > vrtj . As we have assumed G validj is
true so definitely it will execute the Line 99 stm-tryC(Tj), G tltlj = vrtj .
Hence, G tltlj < G tltlk < G tutlk < G tltli.
Therefore, G tltlj < G tltlk < G tltli. ut

Theorem 5 Any history H gen(KSFTM) is local opaque iff for a given version order� H, MVSG(H,�) is
acyclic.

Proof We are proving it by contradiction, so Assuming MVSG(H,�) has cycle. From Lemma 1, For any
two transactions Ti and Tj such that both their G valid flags are true and if there is an edge from Ti →
Tj then G tltli < G tltlj . While considering transitive case for k transactions T1, T2, T3...Tk such that
G valid flags of all the transactions are true. if there is an edge from T1 → T2 → T3 →....→ Tk then
G tltl1 < G tltl2 < G tltl3 << G tltlk .
Now, considering our assumption, MVSG(H,�) has cycle so, T1 → T2 → T3 →....→ Tk → T1 that
implies G tltl1 < G tltl2 < G tltl3 << G tltlk < G tltl1.
Hence from above assumption, G tltl1 < G tltl1 but this is impossible. So, our assumption is wrong.
Therefore, MVSG(H,�) produced by KSFTM is acyclic. ut

M OrderH : It stands for method order of history H in which methods of transactions are interval
(consists of invocation and response of a method) instead of dot (atomic). Because of having method as
an interval, methods of different transactions can overlap. To prove the correctness (local opacity) of our
algorithm, we need to order the overlapping methods.

Let say, there are two transactions Ti and Tj either accessing common (t-objects/G lock) orG Count
through operations opi and opj respectively. If res(opi) <H inv(opj) then opi and opj are in real-time
order in H. So, the M OrderH is opi → opj .

If operations are overlapping and either accessing common t-objects or sharing G lock:
1. readi(x) and readj(x): If readi(x) acquires the lock on x before readj(x) then the M OrderH is
opi → opj .

2. readi(x) and stm-tryCj(): If they are accessing common t-objects then, let say readi(x) acquires
the lock on x before stm-tryCj() then the M OrderH is opi → opj . Now if they are not ac-
cessing common t-objects but sharing G lock then, let say readi(x) acquires the lock on G locki

14 Ved Prakash Chaudhary et al.

before stm-tryCj() acquires the lock on relLL (which consists of G locki and G lockj) then the
M OrderH is opi → opj .

3. stm-tryCi() and stm-tryCj(): If they are accessing common t-objects then, let say stm-tryCi()
acquires the lock on x before stm-tryCj() then the M OrderH is opi → opj . Now if they are
not accessing common t-objects but sharing G lock then, let say stm-tryCi() acquires the lock on
relLLi before stm-tryCj() then the M OrderH is opi → opj .

If operations are overlapping and accessing different t-objects but sharing G Count counter:

1. stm-begini and stm-beginj : Both the stm-begin are accessing shared counter variable G Count.
If stm-begini executes G Count.get&Inc() before stm-beginj then the M OrderH is opi →
opj .

2. stm-begini and stm-tryC(j): If stm-begini executesG Count.get&Inc() before stm-tryC(j)
then the M OrderH is opi → opj .

Linearization: The history generated by STMs are generally not sequential because operations of the
transactions are overlapping. The correctness of STMs is defined on sequential history, in order to show
history generated by our algorithm is correct we have to consider sequential history. We have enough
information to order the overlapping methods, after ordering the operations will have equivalent sequential
history, the total order of the operation is called linearization of the history.

Operation graph (OPG): Consider each operation as a vertex and edges as below:

1. Real time edge: If response of operation opi happen before the invocation of operation opj i.e. rsp(opi)
<H inv(opj) then there exist real time edge between opi→ opj .

2. Conflict edge: It is based on L OrderH which depends on three conflicts:
(a) Common t-object: If two operations opi and opj are overlapping and accessing common t-object

x. Let say opi acquire lock first on x then L Order.opi(x) <H L Order.opj (x) so, conflict
edge is opi→ opj .

(b) Common G valid flag: If two operation opi and opj are overlapping but accessing common
G valid flag instead of t-object. Let say opi acquire lock first onG validi then L Order.opi(x)
<H L Order.opj (x) so, conflict edge is opi→ opj .

3. Common G Count counter: If two operation opi and opj are overlapping but accessing com-
mon G Count counter instead of t-object. Let say opi access G Count counter before opj then
L Order.opi(x) <H L Order.opj (x) so, conflict edge is opi→ opj .

Lemma 2 All the locks in history H (L OrderH) gen(KSFTM) follows strict partial order. So, operation
graph (OPG(H)) is acyclic. If (opi→opj) in OPG, then atleast one of them will definitely true: (Fpui(α)
< Lpl opj (α)) ∪ (access.G Counti < access.G Countj) ∪ (Fpu opi(α) < access.G Countj) ∪
(access.G Counti < Lpl opj (α)). Here, α can either be t-object or G valid.

Proof we consider proof by induction, So we assummed there exist a path from op1 to opn and there is an
edge between opn to opn+1. As we described, while constructing OPG(H) we need to consider three types
of edges. We are considering one by one:

1. Real time edge between opn to opn+1:
(a) opn+1 is a locking method: In this we are considering all the possible path between op1 to opn:

i. (Fu op1(α) < Ll opn(α)): Here, (Fu opn(α) < Ll opn+1(α)).
So, (Fu op1(α) < Ll opn(α)) < (Fu opn(α) < Ll opn+1(α))
Hence, (Fu op1(α) < Ll opn+1(α))

ii. (Fu op1(α) < Ll opn(α)):
Here, (access.G Countn < Ll opn+1(α)). As we know if any method is locking as well
as accessing common counter then locking tobject first then accessing the counter after that
unlocking tobject i.e.
So, (Ll opn(α)) < (access.G Countn) < (Fu opn(α)).
Hence, (Fu op1(α) < Ll opn+1(α))

iii. (access.G Count1) < (access.G Countn):
Here, (access.G Countn) < Ll opn+1(α)).
So, (access.G Count1) < (access.G Countn) < Ll opn+1(α)).
Hence, (access.G Count1) < Ll opn+1(α)).

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 15

iv. (Fu op1(α) < (access.G Countn):
Here, (access.G Countn) < Ll opn+1(α)).
So, (Fu op1(α) < (access.G Countn) < Ll opn+1(α)).
Hence, (Fu op1(α) < Ll opn+1(α))

v. (access.G Count1) < Ll opn(α)):
Here, (Fu opn(α) < Ll opn+1(α)).
So, (access.G Count1) < Ll opn(α)) < (Fu opn(α) <
Ll opn+1(α)). Hence, (access.G Count1) < Ll opn+1(α)).

vi. (access.G Count1) < Ll opn(α)): Here, (access.G Countn < Ll opn+1(α)). As we
know if any method is locking as well as accessing common counter then locking tobject
first then accessing the counter after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G Countn) < (Fu opn(α)).
Hence, (access.G Count1) < Ll opn+1(α)).

(b) opn+1 is a non-locking method: Again, we are considering all the possible path between op1 to
opn:

i. (Fu op1(α) < Ll opn(α)):
Here, (access.G Countn) < (access.G Countn+1).
As we know if any method is locking as well as accessing common counter then locking
tobject first then accessing the counter after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G Countn) < (Fu opn(α)).
Hence, (Fu op1(α) < (access.G Countn+1)

ii. (Fu op1(α) < Ll opn(α)):
Here, (Fu opn(α) < (access.G Countn+1).
So, (Fu op1(α) < Ll opn(α)) < (Fu opn(α) <
(access.G Countn+1)
Hence, (Fu op1(α) < (access.G Countn+1))

iii. (access.G Count1) < (access.G Countn):
Here, (access.G Countn) < (access.G Countn+1).
So, (access.G Count1) < (access.G Countn) <
(access.G Countn+1).
Hence, (access.G Count1) < (access.G Countn+1).

iv. (Fu op1(α) < (access.G Countn): Here, (access.G Countn) < (access.
G Countn+1).
So, (Fu op1(α) < (access.G Countn) < (access.G Countn+1).
Hence, (Fu op1(α) < (access.G Countn+1)

v. (access.G Count1) < Ll opn(α)): Here, (access.G Countn) < (access.
G Countn+1).
As we know if any method is locking as well as accessing common counter then locking
tobject first then accessing the counter after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G Countn) < (Fu opn(α)).
Hence, (access.G Count1) < (access.G Countn+1).

vi. (access.G Count1) < Ll opn(α)):
Here, (Fu opn(α) < (access.G Countn+1).
So, (access.G Count1) < Ll opn(α)) < (Fu opn(α) <
(access.G Countn+1).
Hence, (access.G Count1) < (access.G Countn+1).

2. Conflict edge between opn to opn+1:

(a) (Fu op1(α) < Ll opn(α)): Here, (Fu opn(α) < Ll opn+1(α)). Ref 1.(a).i.
(b) (access.G Count1) < (access.G Countn): Here, (Fu opn(α) < Ll opn+1(α)). As we

know if any method is locking as well as accessing common counter then locking tobject first then
accessing the counter after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G Countn) < (Fu opn(α)).
Hence, (access.G Count1) < Ll opn+1(α)).

(c) (Fu op1(α) < (access.G Countn):
Here, (Fu opn(α) < Ll opn+1(α)). As we know if any method is locking as well as accessing
common counter then locking tobject first then accessing the counter after that unlocking tobject
i.e.

16 Ved Prakash Chaudhary et al.

So, (Ll opn(α)) < (access.G Countn) < (Fu opn(α)).
Hence, (Fu op1(α) < Ll opn+1(α)).

(d) (access.G Count1) < Ll opn(α)):
Here, (Fu opn(α) < Ll opn+1(α)).
Ref 1.(a).v.

3. Common counter edge between opn to opn+1:
(a) (Fu op1(α) < Ll opn(α)):

Here, (access.G Countn) < (access.G Countn+1). As we know if any method is locking as
well as accessing common counter then locking tobject first then accessing the counter after that
unlocking tobject i.e.
So, (Ll opn(α)) < (access.G Countn) < (Fu opn(α)).
Hence, (Fu op1(α) < (access.G Countn+1).

(b) (access.G Count1) < (access.G Countn):
Here, (access.G Countn) < (access.G Countn+1). Ref 1.(b).iii.

(c) (Fu op1(α) < (access.G Countn): Here, (access.G Countn) < (access.
G Countn+1). Ref 1.(b).iv.

(d) (access.G Count1) < Ll opn(α)): Here, (access.G Countn) < (access.
G Countn+1). Ref 1.(b).v

Therefore, OPG(H, M Order) produced by KSFTM is acyclic. ut

Lemma 3 Any history H gen(KSFTM) with α linearization such that it respects M OrderH then (H, α)
is valid.

Proof From the definition of valid history: If all the read operations of H is reading from the previously
committed transaction Tj then H is valid.
In order to prove H is valid, we are analyzing the read(i,x). so, from Line 10, it returns the largest ts value
less than G wtsi that has already been committed and return the value successfully. If such version created
by transaction Tj found then Ti read from Tj . Otherwise, if there is no version whose WTS is less than
Ti’s WTS, then Ti returns abort.
Now, consider the base case read(i,x) is the first transaction T1 and none of the transactions has been created
a version then as we have assummed, there always exist T0 by default that has been created a version for all
t-objects. Hence, T1 reads from committed transaction T0.
So, all the reads are reading from largest ts value less than G wtsi that has already been committed.
Hence, (H, α) is valid. ut

Lemma 4 Any history H gen(KSFTM) with α and β linearization such that both respects M OrderH i.e.
M OrderH ⊆ α and M OrderH ⊆ β then ≺RT

(H,α)
= ≺RT

(H,β)
.

Proof Consider a history H gen(KSFTM) such that two transactions Ti and Tj are in real time order which
respects M OrderH i.e. stm-tryCi < stm-beginj . As α and β are linearizations of H so, stm-tryCi
<(H,α) stm-beginj and stm-tryCi <(H,β) stm-beginj . Hence in both the cases of linearizations, Ti
committed before begin of Tj . So, ≺RT

(H,α)
= ≺RT

(H,β)
. ut

Lemma 5 Any history H gen(KSFTM) with α and β linearization such that both respects M OrderH i.e.
M OrderH ⊆ α and M OrderH ⊆ β then (H,α) is local opaque iff (H,β) is local opaque.

Proof As α and β are linearizations of history H gen(KSFTM) so, from Lemma 3 (H, α) and (H, β) are
valid histories.

Now assuming (H, α) is local opaque so we need to show (H, β) is also local opaque. Since (H, α) is
local opaque so there exists legal t-sequential history S (with respect to each aborted transactions and last
committed transaction while considering only committed transactions) which is equivalent to (H , α). As
we know β is a linearization of H so (H , β) is equivalent to some legal t-sequential history S. From the
definition of local opacity≺RT

(H,α)
⊆≺RTS . From Lemma 4,≺RT

(H,α)
=≺RT

(H,β)
that implies≺RT

(H,β)
⊆≺RTS .

Hence, (H,β) is local opaque.

Now consider the other way in which (H, β) is local opaque and we need to show (H, α) is also local
opaque. We can prove it while giving the same argument as above, by exchanging α and β.

Hence, (H,α) is local opaque iff (H,β) is local opaque. ut

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 17

Theorem 6 Any history generated by KSFTM is locally-opaque.

Proof For proving this, we consider a sequential history H generated by KSFTM. We define the version
order�vrt: for two versions vi, vj it is defined as

(vi �vrt vj) ≡ (vi.vrt < vj .vrt)
Using this version order�vrt, we can show that all the sub-histories in H.subhistSet are acyclic. ut

Since the histories generated by KSFTM are locally-opaque, we get that they are also strict-serializable.

Corollary 1 Any history generated by KSFTM is strict-serializable.

A.8 Proof of Liveness of KSFTM

Proof Notations: Let gen(KSFTM) consist of all the histories accepted by KSFTM algorithm. In
the follow sub-section, we only consider histories that are generated by KSFTM unless explicitly stated
otherwise. For simplicity, we only consider sequential histories in our discussion below.

Consider a transaction Ti in a history H generated by KSFTM. Once it executes stm-begin method,
its ITS, CTS, WTS values do not change. Thus, we denote them as itsi, ctsi, wtsi respectively for Ti. In
case the context of the history H in which the transaction executing is important, we denote these variables
as H.itsi, H.ctsi, H.wtsi respectively.

The other variables that a transaction maintains are: tltl, tutl, lock, valid, state. These values change as
the execution proceeds. Hence, we denote them as: H.tltli, H.tutli,
H.locki, H.validi, H.statei. These represent the values of tltl, tutl, lock, valid, state after the execu-
tion of last event in H . Depending on the context, we sometimes ignore H and denote them only as:
locki, validi, statei, tltli, tutli.

We approximate the system time with the value of t Count. We denote the sys-time of history H as
the value of t Count immediately after the last event of H . Further, we also assume that the value of C is
1 in our arguments. But, it can be seen that the proof will work for any value greater than 1 as well.

The application invokes transactions in such a way that if the current Ti transaction aborts, it invokes
a new transaction Tj with the same ITS. We say that Ti is an incarnation of Tj in a history H if
H.itsi = H.itsj . Thus the multiple incarnations of a transaction Ti get invoked by the application until
an incarnation finally commits.

To capture this notion of multiple transactions with the same ITS, we define incarSet (incarnation set)
of Ti in H as the set of all the transactions in H which have the same ITS as Ti and includes Ti as well.
Formally,

H.incarSet(Ti) = {Tj |(Ti = Tj) ∨ (H.itsi = H.itsj)}
Note that from this definition of incarSet, we implicitly get that Ti and all the transactions in its

incarSet of H also belong to H . Formally, H.incarSet(Ti) ∈ H.txns.
The application invokes different incarnations of a transaction Ti in such a way that as long as an

incarnation is live, it does not invoke the next incarnation. It invokes the next incarnation after the current
incarnation has got aborted. Once an incarnation of Ti has committed, it can’t have any future incarnations.
Thus, the application views all the incarnations of a transaction as a single application-transaction.

We assign incNums to all the transactions that have the same ITS. We say that a transaction Ti starts
afresh, if Ti.incNum is 1. We say that Ti is the nextInc of Ti if Tj and Ti have the same ITS and
Ti’s incNum is Tj ’s incNum + 1. Formally, 〈(Ti.nextInc = Tj) ≡ (itsi = itsj) ∧ (Ti.incNum =
Tj .incNum+ 1)〉

As mentioned the objective of the application is to ensure that every application-transaction eventually
commits. Thus, the applications views the entire incarSet as a single application-transaction (with all the
transactions in the incarSet having the same ITS). We can say that an application-transaction has committed
if in the corresponding incarSet a transaction in eventually commits. For Ti in a history H , we denote this
by a boolean value incarCt (incarnation set committed) which implies that either Ti or an incarnation of Ti
has committed. Formally, we define it as H.incarCt(Ti)

H.incarCt(Ti) =


True (∃Tj : (Tj ∈ H.incarSet(Ti))

∧(Tj ∈ H.committed))
False otherwise

From the definition of incarCt we get the following observations and lemmas about a transaction Ti

18 Ved Prakash Chaudhary et al.

Observation 7 Consider a transaction Ti in a historyH with its incarCt being true inH . Then Ti is termi-
nated (either committed or aborted) in H . Formally, 〈H,Ti : (Ti ∈ H.txns) ∧ (H.incarCt(Ti)) =⇒
(Ti ∈ H.terminated)〉.

Observation 8 Consider a transaction Ti in a history H with its incarCt being true in H1. Let H2 be a
extension of H1 with a transaction Tj in it. Suppose Tj is an incarnation of Ti. Then Tj ’s incarCt is true
in H2. Formally, 〈H1, H2, Ti, Tj : (H1 v H2) ∧ (H1.incarCt(Ti)) ∧ (Tj ∈ H2.txns) ∧ (Ti ∈
H2.incarSet(Tj)) =⇒ (H2.incarCt(Tj))〉.

Lemma 6 Consider a historyH1 with a strict extensionH2. Let Ti and Tj be two transactions inH1 and
H2 respectively. Let Tj not be in H1. Suppose Ti’s incarCt is true. Then ITS of Ti cannot be the same as
ITS of Tj . Formally, 〈H1, H2, Ti, Tj : (H1 @ H2)∧ (H1.incarCt(Ti))∧ (Tj ∈ H2.txns)∧ (Tj /∈
H1.txns) =⇒ (H1.itsi 6= H2.itsj)〉.

Proof Here, we have that Ti’s incarCt is true in H1. Suppose Tj is an incarnation of Ti, i.e., their ITSs are
the same. We are given that Tj is not in H1. This implies that Tj must have started after the last event of
H1.

We are also given that Ti’s incarCt is true in H1. This implies that an incarnation of Ti or Ti itself has
committed in H1. After this commit, the application will not invoke another transaction with the same ITS
as Ti. Thus, there cannot be a transaction after the last event of H1 and in any extension of H1 with the
same ITS of T1. Hence, H1.itsi cannot be same as H2.itsj . ut

Now we show the liveness with the following observations, lemmas and theorems. We start with two
observations about that histories of which one is an extension of the other. The following states that for any
history, there exists an extension. In other words, we assume that the STM system runs forever and does not
terminate. This is required for showing that every transaction eventually commits.

Observation 9 Consider a historyH1 generated by gen(KSFTM). Then there is a historyH2 in gen(KSFTM)
such that H2 is a strict extension of H1. Formally, 〈∀H1 : (H1 ∈ gen(ksftm)) =⇒ (∃H2 : (H2 ∈
gen(ksftm)) ∧ (H1 @ H2)〉.

The follow observation is about the transaction in a history and any of its extensions.

Observation 10 Given two histories H1 and H2 such that H2 is an extension of H1. Then, the set of
transactions in H1 are a subset equal to the set of transaction in H2. Formally, 〈∀H1, H2 : (H1 v
H2) =⇒ (H1.txns ⊆ H2.txns)〉.

In order for a transaction Ti to commit in a historyH , it has to compete with all the live transactions and
all the aborted that can become live again as a different incarnation. Once a transaction Tj aborts, another
incarnation of Tj can start and become live again. Thus Ti will have to compete with this incarnation of Tj
later. Thus, we have the following observation about aborted and committed transactions.

Observation 11 Consider an aborted transaction Ti in a history H1. Then there is an extension of H1,
H2 in which an incarnation of Ti, Tj is live and has ctsj is greater than ctsi. Formally, 〈H1, Ti : (Ti ∈
H1.aborted) =⇒ (∃Tj , H2 : (H1 v H2)∧(Tj ∈ H2.live)∧(H2.itsi = H2.itsj)∧(H2.ctsi <
H2.ctsj))〉.

Observation 12 Consider an committed transaction Ti in a history H1. Then there is no extension of H1,
in which an incarnation of Ti, Tj is live. Formally, 〈H1, Ti : (Ti ∈ H1.committed) =⇒ (@Tj , H2 :
(H1 v H2) ∧ (Tj ∈ H2.live) ∧ (H2.itsi = H2.itsj))〉.

Lemma 7 Consider a history H1 and its extension H2. Let Ti, Tj be in H1, H2 respectively such that
they are incarnations of each other. If WTS of Ti is less than WTS of Tj then CTS of Ti is less than
CTS Tj . Formally, 〈H1, H2, Ti, Tj : (H1 @ H2) ∧ (Ti ∈ H1.txns) ∧ (Tj ∈ H2.txns) ∧ (Ti ∈
H2.incarSet(Tj)) ∧ (H1.wtsi < H2.wtsj) =⇒ (H1.ctsi < H2.ctsj)〉

Proof Here we are given that
H1.wtsi < H2.wtsj (2)

The definition of WTS of Ti is: H1.wtsi = H1.ctsi + C ∗ (H1.ctsi −H1.itsi). Combining this
Eq.(2), we get that

(C + 1) ∗H1.ctsi − C ∗H1.itsi < (C + 1) ∗H2.ctsj − C ∗H2.itsj
Ti∈H2.incarSet(Tj)−−−−−−−−−−−−−−→
H1.itsi=H2.itsj

H1.ctsi < H2.ctsj . ut

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 19

Lemma 8 Consider a live transaction Ti in a history H1 with its wtsi less than a constant α. Then
there is a strict extension of H1, H2 in which an incarnation of Ti, Tj is live with WTS greater than
α. Formally, 〈H1, Ti : (Ti ∈ H1.live) ∧ (H1.wtsi < α) =⇒ (∃Tj , H2 : (H1 v H2) ∧ (Ti ∈
H2.incarSet(Tj)) ∧ ((Tj ∈ H2.committed) ∨ ((Tj ∈ H2.live) ∧ (H2.wtsj > α))))〉.

Proof The proof comes the behavior of an application-transaction. The application keeps invoking a
transaction with the same ITS until it commits. Thus the transaction Ti which is live in H1 will eventually
terminate with an abort or commit. If it commits, H2 could be any history after the commit of T2.

On the other hand if Ti is aborted, as seen in Observation 11 it will be invoked again or reincarnated
with another CTS and WTS. It can be seen that CTS is always increasing. As a result, the WTS is also
increasing. Thus eventually the WTS will become greater α. Hence, we have that either an incarnation of
Ti will get committed or will eventually have WTS greater than or equal to α. ut

Next we have a lemma about CTS of a transaction and the sys-time of a history.

Lemma 9 Consider a transaction Ti in a history H . Then, we have that CTS of Ti will be less than or
equal to sys-time of H . Formally, 〈Ti, H1 : (Ti ∈ H.txns) =⇒ (H.ctsi ≤ H.sys-time)〉.

Proof We get this lemma by observing the methods of the STM System that increment the t Count which
are stm-begin and stm-tryC. It can be seen that CTS of Ti gets assigned in the stm-begin method. So if the
last method of H is the stm-begin of Ti then we get that CTS of Ti is same as sys-time of H . On the other
hand if some other method got executed in H after stm-begin of Ti then we have that CTS of Ti is less than
sys-time of H . Thus combining both the cases, we get that CTS of Ti is less than or equal to as sys-time of
H , i.e., (H.ctsi ≤ H.sys-time). ut

From this lemma, we get the following corollary which is the converse of the lemma statement

Corollary 2 Consider a transaction Ti which is not in a history H1 but in an strict extension of H1,
H2. Then, we have that CTS of Ti is greater than the sys-time of H . Formally, 〈Ti, H1, H2 : (H1 @
H2) ∧ (Ti /∈ H1.txns) ∧ (Ti ∈ H2.txns) =⇒ (H2.ctsi > H1.sys-time)〉.

Now, we have lemma about the methods of KSFTM completing in finite time.

Lemma 10 If all the locks are fair and the underlying system scheduler is fair then all the methods of
KSFTM will eventually complete.

Proof It can be seen that in any method, whenever a transaction Ti obtains multiple locks, it obtains locks
in the same order: first lock relevant t-objects in a pre-defined order and then lock relevant G locks again in
a predefined order. Since all the locks are obtained in the same order, it can be seen that the methods of
KSFTM will not deadlock.

It can also be seen that none of the methods have any unbounded while loops. All the loops in stm-tryC
method iterate through all the t-objects in the write-set of Ti. Moreover, since we assume that the underlying
scheduler is fair, we can see that no thread gets swapped out infinitely. Finally, since we assume that all the
locks are fair, it can be seen all the methods terminate in finite time. ut

Theorem 13 Every transaction either commits or aborts in finite time.

Proof This theorem comes directly from the Lemma 10. Since every method of KSFTM will eventually
complete, all the transactions will either commit or abort in finite time.

From this theorem, we get the following corollary which states that the maximum lifetime of any transaction
is L.

Corollary 3 Any transaction Ti in a historyH will either commit or abort before the sys-time ofH crosses
ctsi + L.

The following lemma connects WTS and ITS of two transactions, Ti, Tj .

Lemma 11 Consider a history H1 with two transactions Ti, Tj . Let Ti be in H1.live. Suppose Tj ’s
WTS is greater or equal to Ti’ s WTS. Then ITS of Tj is less than itsi + 2 ∗ L. Formally, 〈H,Ti, Tj :
({Ti, Tj} ⊆ H.txns) ∧ (Ti ∈ H.live) ∧ (H.wtsj ≥ H.wtsi) =⇒ (H.itsi + 2L ≥ H.itsj)〉.

20 Ved Prakash Chaudhary et al.

Proof Since Ti is live in H1, from Corollary 3, we get that it terminates before the system time, t Count
becomes ctsi + L. Thus, sys-time of history H1 did not progress beyond ctsi + L. Hence, for any other
transaction Tj (which is either live or terminated) in H1, it must have started before sys-time has crossed
ctsi + L. Formally 〈ctsj ≤ ctsi + L〉.

Note that we have defined WTS of a transaction Tj as: wtsj = (ctsj +C ∗ (ctsj − itsj)). Now, let
us consider the difference of the WTSs of both the transactions.
wtsj − wtsi = (ctsj + C ∗ (ctsj − itsj))− (ctsi + C ∗ (ctsi − itsi))
= (C + 1)(ctsj − ctsi)− C(itsj − itsi)
≤ (C + 1)L− C(itsj − itsi) [∵ ctsj ≤ ctsi + L]
= 2 ∗ L+ itsi − itsj [∵ C = 1]

Thus, we have that: 〈(itsi + 2L− itsj) ≥ (wtsj − wtsi)〉. This gives us that
((wtsj − wtsi) ≥ 0) =⇒ ((itsi + 2L− itsj) ≥ 0).
From the above implication we get that, (wtsj ≥ wtsi) =⇒ (itsi + 2L ≥ itsj). ut

It can be seen that KSFTM algorithm gives preference to transactions with lower ITS to commit. To
understand this notion of preference, we define a few notions of enablement of a transaction Ti in a history
H . We start with the definition of itsEnabled as:

Definition 2 We say Ti is itsEnabled in H if for all transactions Tj with ITS lower than ITS of Ti in H
have incarCt to be true. Formally,

H.itsEnabled(Ti) =


True (Ti ∈ H.live) ∧ (∀Tj ∈ H.txns :

(H.itsj < H.itsi) =⇒ (H.incarCt(Tj)))

False otherwise

The follow lemma states that once a transaction Ti becomes itsEnabled it continues to remain so until it
terminates.

Lemma 12 Consider two histories H1 and H2 with H2 being a extension of H1. Let a transaction Ti
being live in both of them. Suppose Ti is itsEnabled in H1. Then Ti is itsEnabled in H2 as well. Formally,
〈H1, H2, Ti : (H1 v H2) ∧ (Ti ∈ H1.live) ∧ (Ti ∈ H2.live) ∧ (H1.itsEnabled(Ti)) =⇒
(H2.itsEnabled(Ti))〉.

Proof When Ti begins in a history H3 let the set of transactions with ITS less than itsi be smIts. Then
in any extension of H3, H4 the set of transactions with ITS less than itsi remains as smIts.

Suppose H1, H2 are extensions of H3. Thus in H1, H2 the set of transactions with ITS less
than itsi will be smIts. Hence, if Ti is itsEnabled in H1 then all the transactions Tj in smIts are
H1.incarCt(Tj). It can be seen that this continues to remain true in H2. Hence in H2, Ti is also itsEn-
abled which proves the lemma. ut

The following lemma deals with a committed transaction Ti and any transaction Tj that terminates
later. In the following lemma, incrV al is any constant greater than or equal to 1.

Lemma 13 Consider a history H with two transactions Ti, Tj in it. Suppose transaction Ti commits
before Tj terminates (either by commit or abort) in H . Then comTimei is less than comTimej by at
least incrV al. Formally, 〈H, {Ti, Tj} ∈ H.txns : (stm-tryCi <H term-opj) =⇒ (comTimei +
incrV al ≤ comTimej)〉.

Proof When Ti commits, let the value of the global t Count be α. It can be seen that in stm-begin method,
comTimej get initialized to∞. The only place where comTimej gets modified is at Line 61 of stm-tryC.
Thus if Tj gets aborted before executing stm-tryC method or before this line of stm-tryC we have that
comTimej remains at∞. Hence in this case we have that 〈comTimei + incrV al < comTimej〉.

If Tj terminates after executing Line 61 of stm-tryC method then comTimej is assigned a value, say
β. It can be seen that β will be greater than α by at least incrV al due to the execution of this line. Thus,
we have that 〈α+ incrV al ≤ β〉. ut

The following lemma connects the G tltl and comTime of a transaction Ti.

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 21

Lemma 14 Consider a history H with a transaction Ti in it. Then in H , tltli will be less than or equal to
comTimei. Formally, 〈H, {Ti} ∈ H.txns : (H.tltli ≤ H.comTimei)〉.

Proof Consider the transaction Ti. In stm-begin method, comTimei get initialized to∞. The only place
where comTimei gets modified is at Line 61 of stm-tryC. Thus if Ti gets aborted before this line or if Ti
is live we have that (tltli ≤ comTimei). On executing Line 61, comTimei gets assigned to some finite
value and it does not change after that.

It can be seen that tltli gets initialized to ctsi in Line 4 of stm-begin method. In that line, ctsi reads
t Count and increments it atomically. Then in Line 61, comTimei gets assigned the value of t Count
after incrementing it. Thus, we clearly get that ctsi(= tltli initially) < comTimei. Then tltli gets
updated on Line 20 of read, Line 53 and Line 84 of stm-tryC methods. Let us analyze them case by case
assuming that tltli was last updated in each of these methods before the termination of Ti:

1. Line 20 of read method: Suppose this is the last line where tltli updated. Here tltli gets assigned to 1
+ vrt of the previously committed version which say was created by a transaction Tj . Thus, we have
the following equation,

tltli = 1 + x[j].vrt (3)

It can be seen that x[j].vrt is same as tltlj when Tj executed Line 99 of stm-tryC. Further, tltlj in
turn is same as tutlj due to Line 84 of stm-tryC. From Line 62, it can be seen that tutlj is less than or
equal to comTimej when Tj committed. Thus we have that

x[j].vrt = tltlj = tutlj ≤ comTimej (4)

It is clear that from the above discussion that Tj executed stm-tryC method before Ti terminated (i.e.
stm-tryCj <H1 term-opi). From Eq.(3) and Eq.(4), we get

tltli ≤ 1 + comTimej
incrV al≥1−−−−−−−−→ tltli ≤ incrV al+ comTimej

Lemma 13−−−−−−−→ tltli ≤ comTimei
2. Line 53 of stm-tryC method: The reasoning in this case is very similar to the above case.
3. Line 84 of stm-tryC method: In this line, tltli is made equal to tutli. Further, in Line 62, tutli is

made lesser than or equal to comTimei. Thus combing these, we get that tltli ≤ comTimei. It can
be seen that the reasoning here is similar in part to Case 1.

Hence, in all the three cases we get that 〈tltli ≤ comTimei〉. ut

The following lemma connects the G tutl,comTime of a transaction Ti with WTS of a transaction Tj that
has already committed.

Lemma 15 Consider a history H with a transaction Ti in it. Suppose tutli is less than comTimei.
Then, there is a committed transaction Tj in H such that wtsj is greater than wtsi. Formally, 〈H ∈
gen(KSFTM), {Ti} ∈ H.txns : (H.tutli < H.comTimei) =⇒ (∃Tj ∈ H.committed :
H.wtsj > H.wtsi)〉.

Proof It can be seen that G tutli initialized in stm-begin method to∞. tutli is updated in Line 17 of read
method, Line 58 and Line 62 of stm-tryC method. If Ti executes Line 17 of read method and/or Line 58 of
stm-tryC method then tutli gets decremented to some value less than∞, say α. Further, it can be seen
that in both these lines the value of tutli is possibly decremented from∞ because of nextV er (or ver), a
version of x whose ts is greater than Ti’s WTS. This implies that some transaction Tj , which is committed
in H , must have created nextV er (or ver) and wtsj > wtsi.

Next, let us analyze the value of α. It can be seen that α = x[nextV er/ver].vrt − 1 where
nextV er/ver was created by Tj . Further, we can see when Tj executed stm-tryC, we have that x[nextV er].
vrt = tltlj (from Line 99). From Lemma 14, we get that tltlj ≤ comTimej . This implies that
α < comTimej . Now, we have that Tj has already committed before the termination of Ti. Thus from
Lemma 13, we get that comTimej < comTimei. Hence, we have that,

α < comTimei (5)

Now let us consider Line 62 executed by Ti which causes tutli to change. This line will get executed
only after both Line 17 of read method, Line 58 of stm-tryC method. This is because every transaction
executes stm-tryC method only after read method. Further within stm-tryC method, Line 62 follows Line 58.

22 Ved Prakash Chaudhary et al.

There are two sub-cases depending on the value of tutli before the execution of Line 62: (i) If tutli
was∞ and then get decremented to comTimei upon executing this line, then we get comTimei = tutli.
From Eq.(5), we can ignore this case. (ii) Suppose the value of tutli before executing Line 62 was α. Then
from Eq.(5) we get that tutli remains at α on execution of Line 62. This implies that a transaction Tj
committed such that wtsj > wtsi. ut

The following lemma connects the G tltl of a committed transaction Tj and comTime of a transaction Ti
that commits later.

Lemma 16 Consider a history H1 with transactions Ti, Tj in it. Suppose Tj is committed and Ti is
live in H1. Then in any extension of H1, say H2, tltlj is less than or equal to comTimei. Formally,
〈H1, H2 ∈ gen(KSFTM), {Ti, Tj} ⊆ H1, H2.txns : (H1 v H2)∧(Tj ∈ H1.committed)∧(Ti ∈
H1.live) =⇒ (H2.tltlj < H2.comTimei)〉.

Proof As observed in the previous proof of Lemma 14, if Ti is live or aborted in H2, then its comTime is
∞. In both these cases, the result follows.

If Ti is committed in H2 then, one can see that comTime of Ti is not∞. In this case, it can be seen
that Tj committed before Ti. Hence, we have that comTimej < comTimei. From Lemma 14, we get
that tltlj ≤ comTimej . This implies that tltlj < comTimei. ut

In the following sequence of lemmas, we identify the condition by when a transaction will commit.

Lemma 17 Consider two histories H1, H3 such that H3 is a strict extension of H1. Let Ti be a transac-
tion in H1.live such that Ti itsEnabled in H1 and G validi flag is true in H1. Suppose Ti is aborted in
H3. Then there is a history H2 which is an extension of H1 (and could be same as H1) such that
(1) Transaction Ti is live in H2; (2) there is a transaction Tj that is live in H2; (3) H2.wtsj is
greater than H2.wtsi; (4) Tj is committed in H3. Formally, 〈H1, H3, Ti : (H1 @ H3) ∧ (Ti ∈
H1.live) ∧ (H1.validi = True) ∧ (H1.itsEnabled(Ti)) ∧ (Ti ∈ H3.aborted)) =⇒ (∃H2, Tj :
(H1 v H2 @ H3) ∧ (Ti ∈ H2.live) ∧ (Tj ∈ H2.txns) ∧ (H2.wtsi < H2.wtsj) ∧ (Tj ∈
H3.committed))〉.

Proof To show this lemma, w.l.o.g we assume that Ti on executing either read or stm-tryC in H2 (which
could be same as H1) gets aborted resulting in H3. Thus, we have that Ti is live in H2. Here Ti is
itsEnabled in H1. From Lemma 12, we get that Ti is itsEnabled in H2 as well.

Let us sequentially consider all the lines where a Ti could abort. In H2, Ti executes one of the
following lines and is aborted in H3. We start with stm-tryC method.

1. stm-tryC:

(a) Line 3 : This line invokes abort() method on Ti which releases all the locks and returns A to the
invoking thread. Here Ti is aborted because its valid flag, is set to false by some other transaction,
say Tj , in its stm-tryC algorithm. This can occur in Lines: 45, 74 where Ti is added to Tj ’s
abortRL set. Later in Line 94, Ti’s valid flag is set to false. Note that Ti’s valid is true (after the
execution of the last event) in H1. Thus, Ti’s valid flag must have been set to false in an extension
of H1, which we again denote as H2.
This can happen only if in both the above cases, Tj is live in H2 and its ITS is less than Ti’s ITS.
But we have that Ti’s itsEnabled in H2. As a result, it has the smallest among all live and aborted
transactions of H2. Hence, there cannot exist such a Tj which is live and H2.itsj < H2.itsi.
Thus, this case is not possible.

(b) Line 15: This line is executed inH2 if there exists no version of x whose ts is less than Ti’s WTS.
This implies that all the versions of x have tss greater thanwtsi. Thus the transactions that created
these versions have WTS greater than wtsi and have already committed in H2. Let Tj create one
such version. Hence, we have that 〈(Tj ∈ H2.committed) =⇒ (Tj ∈ H3.committed)〉
since H3 is an extension of H2.

(c) Line 34 : This case is similar to Case 1a, i.e., Line 3.
(d) Line 47 : In this line, Ti is aborted as some other transaction Tj in Ti’s largeRL has committed.

Any transaction in Ti’s largeRL has WTS greater than Ti’s WTS. This implies that Tj is already
committed in H2 and hence committed in H3 as well.

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 23

(e) Line 64 : In this line, Ti is aborted because its lower limit has crossed its upper limit. First, let
us consider tutli. It is initialized in stm-begin method to∞. As long as it is∞, these limits
cannot cross each other. Later, tutli is updated in Line 17 of read method, Line 58 and Line 62 of
stm-tryC method. Suppose tutli gets decremented to some value α by one of these lines.
Now there are two cases here: (1) Suppose tutli gets decremented to comTimei due to Line 62
of stm-tryC method. Then from Lemma 14, we have tltli ≤ comTimei = tutli. Thus in this
case, Ti will not abort. (2) tutli gets decremented to α which is less than comTimei. Then
from Lemma 15, we get that there is a committed transaction Tj in H2.committed such that
wtsj > wtsi. This implies that Tj is in H3.committed.

(f) Line 76: This case is similar to Case 1a, i.e., Line 3.
(g) Line 79 : In this case, Tk is in Ti’s smallRL and is committed in H1. And, from this case, we

have that

H2.tutli ≤ H2.tltlk (6)

From the assumption of this case, we have that Tk commits before Ti. Thus, from Lemma 16, we
get that comTimek < comTimei. From Lemma 14, we have that tltlk ≤ comTimek . Thus,
we get that tltlk < comTimei. Combining this with the inequality of this case Eq.(6), we get
that tutli < comTimei.
Combining this inequality with Lemma 15, we get that there is a transaction Tj inH2.committed
and H2.wtsj > H2.wtsi. This implies that Tj is in H3.committed as well.

2. STM read:

(a) Line 7: This case is similar to Case 1a, i.e., Line 3
(b) Line 22: The reasoning here is similar to Case 1e, i.e., Line 64. ut

The interesting aspect of the above lemma is that it gives us a insight as to when a Ti will get commit.
If an itsEnabled transaction Ti aborts then it is because of another transaction Tj with WTS higher than
Ti has committed. To precisely capture this, we define two more notions of a transaction being enabled
cdsEnabled and finEnabled. To define these notions of enabled, we in turn define a few other auxiliary
notions. We start with affectSet,

H.affectSet(Ti) = {Tj |(Tj ∈ H.txns) ∧ (H.itsj < H.itsi + 2 ∗ L)}

From the description of KSFTM algorithm and Lemma 11, it can be seen that a transaction Ti’s commit
can depend on committing of transactions (or their incarnations) which have their ITS less than ITS of Ti +
2 ∗ L, which is Ti’s affectSet. We capture this notion of dependency for a transaction Ti in a history H as
commit dependent set or cds as: the set of all transactions Tj in Ti’s affectSet that do not any incarnation
that is committed yet, i.e., not yet have their incarCt flag set as true. Formally,

H.cds(Ti) = {Tj |(Tj ∈ H.affectSet(Ti)) ∧ (¬H.incarCt(Tj))}

Based on this definition of cds, we next define the notion of cdsEnabled.

Definition 3 We say that transaction Ti is cdsEnabled if the following conditions hold true (1) Ti is live
in H; (2) CTS of Ti is greater than or equal to ITS of Ti + 2 ∗ L; (3) cds of Ti is empty, i.e., for all
transactions Tj in H with ITS lower than ITS of Ti + 2 ∗ L in H have their incarCt to be true. Formally,

H.cdsEnabled(Ti) =


True (Ti ∈ H.live) ∧ (H.ctsi ≥ H.itsi + 2 ∗ L)

∧(H.cds(Ti) = φ)

False otherwise

The meaning and usefulness of these definitions will become clear in the course of the proof. In fact, we
later show that once the transaction Ti is cdsEnabled, it will eventually commit. We will start with a few
lemmas about these definitions.

Lemma 18 Consider a transaction Ti in a history H . If Ti is cdsEnabled then Ti is also itsEnabled.
Formally, 〈H,Ti : (Ti ∈ H.txns) ∧ (H.cdsEnabled(Ti)) =⇒ (H.itsEnabled(Ti))〉.

24 Ved Prakash Chaudhary et al.

Proof If Ti is cdsEnabled in H then it implies that Ti is live in H . From the definition of cdsEnabled, we
get that H.cds(Ti) is φ implying that any transaction Tj with itsk less than itsi + 2 ∗ L has its incarCt
flag as true in H . Hence, for any transaction Tk having itsk less than itsi, H.incarCt(Tk) is also true.
This shows that Ti is itsEnabled in H . ut

Lemma 19 Consider a transaction Ti which is cdsEnabled in a history H1. Consider an extension of H1,
H2 with a transaction Tj in it such that Ti is an incarnation of Tj . Let Tk be a transaction in the affectSet
of Tj in H2 Then Tk is also in the set of transaction of H1. Formally, 〈H1, H2, Ti, Tj , Tk : (H1 v
H2) ∧ (H1.cdsEnabled(Ti)) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (Tk ∈ H2.affectSet(Tj)) =⇒
(Tk ∈ H1.txns)〉

Proof Since Ti is cdsEnabled in H1, we get (from the definition of cdsEnabled) that

H1.ctsi ≥ H1.itsi + 2 ∗ L (7)

Here, we have that Tk is in H2.affectSet(Tj). Thus from the definition of affectSet, we get that

H2.itsk < H2.itsj + 2 ∗ L (8)

Since Ti and Tj are incarnations of each other, their ITS are the same. Combining this with Eq.(8), we
get that

H2.itsk < H1.itsi + 2 ∗ L (9)

We now show this proof through contradiction. Suppose Tk is not in H1.txns. Then there are two
cases:

– No incarnation of Tk is in H1: This implies that Tk starts afresh after H1. Since Tk is not in H1,
from Corollary 2 we get that

H2.ctsk > H1.sys-time
Tk starts afresh−−−−−−−−−−−−→

H2.ctsk=H2.itsk
H2.itsk >

H1.sys-time
(Ti∈H1)∧Lemma 9−−−−−−−−−−−−−−−→
H1.sys-time≥H1.ctsi

H2.itsk > H1.ctsi
Eq.(7)−−−−→ H2.itsk > H1.itsi + 2 ∗

L
H1.itsi=H2.itsj−−−−−−−−−−−−→ H2.itsk > H2.itsj + 2 ∗ L

But this result contradicts with Eq.(8). Hence, this case is not possible.
– There is an incarnation of Tk , Tl in H1: In this case, we have that

H1.itsl = H2.itsk (10)

Now combing this result with Eq.(9), we get that H1.itsl < H1.itsi + 2 ∗ L. This implies that Tl is
in affectSet of Ti in H1. Since Ti is cdsEnabled, we get that Tl’s incarCt must be true.
We also have that Tk is not in H1 but in H2 where H2 is an extension of H1. Since H2 has some
events more than H1, we get that H2 is a strict extension of H1.
Thus, we have that, (H1 @ H2) ∧ (H1.incarCt(Tl)) ∧ (Tk ∈ H2.txns) ∧ (Tk /∈ H1.txns).
Combining these with Lemma 6, we get that (H1.itsl 6= H2.itsk). But this result contradicts Eq.(10).
Hence, this case is also not possible.

Thus from both the cases we get that Tk should be in H1. Hence proved. ut

Lemma 20 Consider two histories H1, H2 where H2 is an extension of H1. Let Ti, Tj , Tk be three
transactions such that Ti is in H1.txns while Tj , Tk are in H2.txns. Suppose we have that (1) ctsi is
greater than itsi+2 ∗L inH1; (2) Ti is an incarnation of Tj ; (3) Tk is in affectSet of Tj in H2. Then an
incarnation of Tk , say Tl (which could be same as Tk) is in H1.txns. Formally, 〈H1, H2, Ti, Tj , Tk :
(H1 v H2) ∧ (Ti ∈ H1.txns) ∧ ({Tj , Tk} ∈ H2.txns) ∧ (H1.ctsi > H1.itsi + 2 ∗ L) ∧ (Ti ∈
H2.incarSet(Tj)) ∧ (Tk ∈ H2.affectSet(Tj)) =⇒ (∃Tl : (Tl ∈ H2.incarSet(Tk)) ∧ (Tl ∈
H1.txns))〉

Proof This proof is similar to the proof of Lemma 19. We are given that

H1.ctsi ≥ H1.itsi + 2 ∗ L (11)

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 25

We now show this proof through contradiction. Suppose no incarnation of Tk is in H1.txns. This
implies that Tk must have started afresh in some history H3 which is an extension of H1. Also note that
H3 could be same as H2 or a prefix of it, i.e., H3 v H2. Thus, we have that

H3.itsk > H1.sys-time Lemma 9−−−−−−−→ H3.itsk > H1.ctsi
Eq.(11)−−−−−→ H3.itsk > H1.itsi + 2 ∗

L
H1.itsi=H2.itsj−−−−−−−−−−−−→ H3.itsk > H2.itsj + 2 ∗ L H3vH2−−−−−−−−−−−→

Observation 10
H2.itsk > H2.itsj + 2 ∗

L
affectSet−−−−−−−→
definition

Tk /∈ H2.affectSet(Tj)

But we are given that Tk is in affectSet of Tj in H2. Hence, it is not possible that Tk started afresh
after H1. Thus, Tk must have a incarnation in H1. ut

Lemma 21 Consider a transaction Ti which is cdsEnabled in a history H1. Consider an extension of H1,
H2 with a transaction Tj in it such that Tj is an incarnation of Ti inH2. Then affectSet of Ti inH1 is same
as the affectSet of Tj inH2. Formally, 〈H1, H2, Ti, Tj : (H1 v H2)∧(H1.cdsEnabled(Ti))∧(Tj ∈
H2.txns) ∧ (Ti ∈ H2.incarSet(Tj)) =⇒ ((H1.affectSet(Ti) = H2.affectSet(Tj)))〉

Proof From the definition of cdsEnabled, we get that Ti is in H1.txns. Now to prove that affectSets are
the same, we have to show that (H1.affectSet(Ti) ⊆ H2.affectSet(Tj)) and (H1.affectSet(Tj)
⊆ H2.affectSet(Ti)). We show them one by one:

(H1.affectSet(Ti) ⊆ H2.affectSet(Tj)): Consider a transaction Tk in
H1.affectSet(Ti). We have to show that Tk is also in H2.affectSet(Tj). From the definition of
affectSet, we get that

Tk ∈ H1.txns (12)

Combining Eq.(12) with Observation 10, we get that

Tk ∈ H2.txns (13)

From the definition of ITS, we get that

H1.itsk = H2.itsk (14)

Since Ti, Tj are incarnations we have that .

H1.itsi = H2.itsj (15)

From the definition of affectSet, we get that,

H1.itsk < H1.itsi+2∗L Eq.(14)−−−−−→ H2.itsk < H1.itsi+2∗L Eq.(15)−−−−−→ H2.itsk < H2.itsj+2∗L
Combining this result with Eq.(13), we get that Tk ∈ H2.affectSet(Tj).

(H1.affectSet(Ti) ⊆ H2.affectSet(Tj)): Consider a transaction Tk in
H2.affectSet(Tj). We have to show that Tk is also in H1.affectSet(Ti). From the definition of
affectSet, we get that Tk ∈ H2.txns.

Here, we have that (H1 v H2) ∧ (H1.cdsEnabled(Ti)) ∧ (Ti ∈ H2.incarSet(Tj))
∧ (Tk ∈ H2.affectSet(Tj)). Thus from Lemma 19, we get that Tk ∈ H1.txns. Now, this case is
similar to the above case. It can be seen that Equations 12, 13, 14, 15 hold good in this case as well.

Since Tk is in H2.affectSet(Tj), we get that

H2.itsk < H2.itsi+2∗L Eq.(14)−−−−−→ H1.itsk < H2.itsj+2∗L Eq.(15)−−−−−→ H1.itsk < H1.itsi+2∗L
Combining this result with Eq.(12), we get that Tk ∈ H1.affectSet(Ti). ut

Next we explore how a cdsEnabled transaction remains cdsEnabled in the future histories once it becomes
true.

Lemma 22 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti and Tj be
two transactions which are live in H1 and H2 respectively. Let Ti be an incarnation of Tj and ctsi
is less than ctsj . Suppose Ti is cdsEnabled in H1. Then Tj is cdsEnabled in H2 as well. Formally,
〈H1, H2, Ti, Tj : (H1 v H2) ∧ (Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (Ti ∈ H2.incarSet(Tj)) ∧
(H1.ctsi < H2.ctsj) ∧ (H1.cdsEnabled(Ti)) =⇒ (H2.cdsEnabled(Tj))〉.

26 Ved Prakash Chaudhary et al.

Proof We have that Ti is live in H1 and Tj is live in H2. Since Ti is cdsEnabled in H1, we get (from the
definition of cdsEnabled) that

H1.ctsi ≥ H2.itsi + 2 ∗ L (16)

We are given that ctsi is less than ctsj and Ti, Tj are incarnations of each other. Hence, we have that

H2.ctsj > H1.ctsi

> H1.itsi + 2 ∗ L [From Eq.(16)]

> H2.itsj + 2 ∗ L [itsi = itsj]

Thus we get that ctsj > itsj + 2 ∗ L. We have that Tj is live in H2. In order to show that Tj is
cdsEnabled in H2, it only remains to show that cds of Tj in H2 is empty, i.e., H2.cds(Tj) = φ. The cds
becomes empty when all the transactions of Tj ’s affectSet in H2 have their incarCt as true in H2.

Since Tj is live in H2, we get that Tj is in H2.txns. Here, we have that (H1 v H2) ∧ (Tj ∈
H2.txns) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.cdsEnabled(Ti)). Combining this with Lemma 21, we
get that H1.affectSet(Ti) = H2.affectSet(Tj).

Now, consider a transaction Tk in H2.affectSet(Tj). From the above result, we get that Tk is
also in H1.affectSet(Ti). Since Ti is cdsEnabled in H1, i.e., H1.cdsEnabled(Ti) is true, we get that
H1.incarCt(Tk) is true. Combining this with Observation 8, we get that Tk must have its incarCt as true
in H2 as well, i.e. H2.incarCt(Tk). This implies that all the transactions in Tj ’s affectSet have their
incarCt flags as true in H2. Hence the H2.cds(Tj) is empty. As a result, Tj is cdsEnabled in H2, i.e.,
H2.cdsEnabled(Tj). ut

Having defined the properties related to cdsEnabled, we start defining notions for finEnabled. Next, we
define maxWTS for a transaction Ti in H which is the transaction Tj with the largest WTS in Ti’s incarSet.
Formally,

H.maxWTS(Ti) = max{H.wtsj |(Tj ∈ H.incarSet(Ti))}

From this definition of maxWTS, we get the following simple observation.

Observation 14 For any transaction Ti inH , we have thatwtsi is less than or equal toH.maxWTS(Ti).
Formally, H.wtsi ≤ H.maxWTS(Ti).

Next, we combine the notions of affectSet and maxWTS to define affWTS. It is the maximum of
maxWTS of all the transactions in its affectSet. Formally,

H.affWTS(Ti) = max{H.maxWTS(Tj)|(Tj ∈ H.affectSet(Ti))}

Having defined the notion of affWTS, we get the following lemma relating the affectSet and affWTS of two
transactions.

Lemma 23 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti and Tj
be two transactions which are live in H1 and H2 respectively. Suppose the affectSet of Ti in H1 is
same as affectSet of Tj in H2. Then the affWTS of Ti in H1 is same as affWTS of Tj in H2. Formally,
〈H1, H2, Ti, Tj : (H1 v H2) ∧ (Ti ∈ H1.txns) ∧ (Tj ∈ H2.txns) ∧ (H1.affectSet(Ti) =
H2.affectSet(Tj)) =⇒ (H1.affWTS(Ti) = H2.affWTS(Tj))〉.

Proof From the definition of affWTS, we get the following equations

H.affWTS(Ti) = max{H.maxWTS(Tk)|(Tk ∈ H1.affectSet(Ti))} (17)

H.affWTS(Tj) = max{H.maxWTS(Tl)|(Tl ∈ H2.affectSet(Tj))} (18)

From these definitions, let us suppose that H1.affWTS(Ti) is H1.maxWTS(Tp) for some
transaction Tp inH1.affectSet(Ti). Similarly, suppose thatH2.affWTS(Tj) isH2.maxWTS(Tq)
for some transaction Tq in H2.affectSet(Tj).

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 27

Here, we are given that H1.affectSet(Ti) = H2.affectSet(Tj)). Hence, we get that Tp is also
in H1.affectSet(Ti). Similarly, Tq is in H2.affectSet(Tj) as well. Thus from Equations (17) and
(18), we get that

H1.maxWTS(Tp) ≥ H2.maxWTS(Tq) (19)

H2.maxWTS(Tq) ≥ H1.maxWTS(Tp) (20)

Combining these both equations, we get that H1.maxWTS(Tp) = H2.maxWTS(Tq) which in
turn implies that H1.affWTS(Ti) = H2.affWTS(Tj). ut

Finally, using the notion of affWTS and cdsEnabled, we define the notion of finEnabled

Definition 4 We say that transaction Ti is finEnabled if the following conditions hold true (1) Ti is live in
H; (2) Ti is cdsEnabled is H; (3) H.wtsj is greater than H.affWTS(Ti). Formally,

H.finEnabled(Ti) =


True (Ti ∈ H.live) ∧ (H.cdsEnabled(Ti))

∧(H.wtsj > H.affWTS(Ti))

False otherwise

It can be seen from this definition, a transaction that is finEnabled is also cdsEnabled. We now show
that just like itsEnabled and cdsEnabled, once a transaction is finEnabled, it remains finEnabled until it
terminates. The following lemma captures it.

Lemma 24 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti and Tj be
two transactions which are live in H1 and H2 respectively. Suppose Ti is finEnabled in H1. Let Ti
be an incarnation of Tj and ctsi is less than ctsj . Then Tj is finEnabled in H2 as well. Formally,
〈H1, H2, Ti, Tj : (H1 v H2) ∧ (Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (Ti ∈ H2.incarSet(Tj)) ∧
(H1.ctsi < H2.ctsj) ∧ (H1.finEnabled(Ti)) =⇒ (H2.finEnabled(Tj))〉.

Proof Here we are given that Tj is live in H2. Since Ti is finEnabled in H1, we get that it is cdsEnabled
in H1 as well. Combining this with the conditions given in the lemma statement, we have that,

〈(H1 v H2) ∧ (Ti ∈ H1.live) ∧ (Tj ∈ H2.live)

∧(Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi < H2.ctsj)

∧(H1.cdsEnabled(Ti))〉
(21)

Combining Eq.(21) with Lemma 22, we get that Tj is cdsEnabled in H2, i.e., H2.cdsEnabled(Tj).
Now, in order to show that Tj is finEnabled inH2 it remains for us to show thatH2.wtsj > H2.affWTS(Tj).

We are given that Tj is live in H2 which in turn implies that Tj is in H2.txns. Thus changing this in
Eq.(21), we get the following

〈(H1 v H2) ∧ (Tj ∈ H2.txns) ∧ (Ti ∈ H2.incarSet(Tj))

∧(H1.ctsi < H2.ctsj) ∧ (H1.cdsEnabled(Ti))〉
(22)

Combining Eq.(22) with Lemma 21 we get that

H1.affWTS(Ti) = H2.affWTS(Tj) (23)

We are given that H1.ctsi < H2.ctsj . Combining this with the definition of WTS, we get

H1.wtsi < H2.wtsj (24)

Since Ti is finEnabled in H1, we have that

H1.wtsi > H1.affWTS(Ti)
Eq.(24)−−−−−→ H2.wtsj > H1.affWTS(Ti)

Eq.(23)−−−−−→ H2.wtsj > H2.affWTS(Tj). ut

28 Ved Prakash Chaudhary et al.

Now, we show that a transaction that is finEnabled will eventually commit.

Lemma 25 Consider a live transaction Ti in a history H1. Suppose Ti is finEnabled in H1 and validi
is true in H1. Then there exists an extension of H1, H3 in which Ti is committed. Formally, 〈H1, Ti :
(Ti ∈ H1.live) ∧ (H1.validi) ∧ (H1.finEnabled(Ti)) =⇒ (∃H3 : (H1 @ H3) ∧ (Ti ∈
H3.committed))〉.

Proof Consider a history H3 such that its sys-time being greater than ctsi + L. We will prove this lemma
using contradiction. Suppose Ti is aborted in H3.

Now consider Ti in H1: Ti is live; its valid flag is true; and is finEnabled. From the definition of
finEnabled, we get that it is also cdsEnabled. From Lemma 18, we get that Ti is itsEnabled in H1. Thus
from Lemma 17, we get that there exists an extension of H1, H2 such that (1) Transaction Ti is live in
H2; (2) there is a transaction Tj in H2; (3) H2.wtsj is greater than H2.wtsi; (4) Tj is committed in H3.
Formally,

〈(∃H2, Tj : (H1 v H2 @ H3) ∧ (Ti ∈ H2.live)

∧(Tj ∈ H2.txns) ∧ (H2.wtsi < H2.wtsj)

∧(Tj ∈ H3.committed))〉
(25)

Here, we have that H2 is an extension of H1 with Ti being live in both of them and Ti is finEnabled
in H1. Thus from Lemma 24, we get that Ti is finEnabled in H2 as well. Now, let us consider Tj in H2.
From Eq.(25), we get that (H2.wtsi < H2.wtsj). Combining this with the observation that Ti being live
in H2, Lemma 11 we get that (H2.itsj ≤ H2.itsi + 2 ∗ L).

This implies that Tj is in affectSet of Ti in H2, i.e.,
(Tj ∈ H2.affectSet(Ti)). From the definition of affWTS, we get that

(H2.affWTS(Ti) ≥ H2.maxWTS(Tj)) (26)

Since Ti is finEnabled in H2, we get that wtsi is greater than affWTS of Ti in H2.

(H2.wtsi > H2.affWTS(Ti)) (27)

Now combining Equations 26, 27 we get,

H2.wtsi > H2.affWTS(Ti) ≥ H2.maxWTS(Tj)

> H2.affWTS(Ti) ≥ H2.maxWTS(Tj)

≥ H2.wtsj [From Observation 14]

> H2.wtsj

But this equation contradicts with Eq.(25). Hence our assumption that Ti will get aborted in H3 after
getting finEnabled is not possible. Thus Ti has to commit in H3. ut

Next we show that once a transaction Ti becomes itsEnabled, it will eventually become finEnabled as well
and then committed. We show this change happens in a sequence of steps. We first show that Transaction
Ti which is itsEnabled first becomes cdsEnabled (or gets committed). We next show that Ti which is
cdsEnabled becomes finEnabled or get committed. On becoming finEnabled, we have already shown that
Ti will eventually commit.

Now, we show that a transaction that is itsEnabled will become cdsEnabled or committed. To show this,
we introduce a few more notations and definitions. We start with the notion of depIts (dependent-its) which
is the set of ITSs that a transaction Ti depends on to commit. It is the set of ITS of all the transactions in
Ti’s cds in a history H . Formally,

H.depIts(Ti) = {H.itsj |Tj ∈ H.cds(Ti)}

We have the following lemma on the depIts of a transaction Ti and its future incarnation Tj which states
that depIts of a Ti either reduces or remains the same.

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 29

Lemma 26 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti and Tj be two
transactions which are live in H1 and H2 respectively and Ti is an incarnation of Tj . In addition, we
also have that ctsi is greater than itsi + 2 ∗ L in H1. Then, we get that H2.depIts(Tj) is a subset of
H1.depIts(Ti). Formally, 〈H1, H2, Ti, Tj : (H1 v H2)∧(Ti ∈ H1.live)∧(Tj ∈ H2.live)∧(Ti ∈
H2.incarSet(Tj)) ∧ (H1.ctsi ≥ H1.itsi + 2 ∗ L) =⇒ (H2.depIts(Tj) ⊆ H1.depIts(Ti))〉.

Proof Suppose H2.depIts(Tj) is not a subset of H1.depIts(Ti). This implies that there is a transaction
Tk such that H2.itsk ∈ H2.depIts(Tj) but H1.itsk /∈ H1.depIts(Tj). This implies that Tk starts
afresh after H1 in some history say H3 such that H1 @ H3 v H2. Hence, from Corollary 2 we get the
following

H3.itsk > H1.sys-time Lemma 9−−−−−−−→ H3.itsk > H1.ctsi =⇒ H3.itsk > H1.itsi + 2 ∗

L
H1.itsi=H2.itsj−−−−−−−−−−−−→ H3.itsk > H2.itsj + 2 ∗ L affectSet,depIts−−−−−−−−−−−−→

definitions
H2.itsk /∈ H2.depIts(Tj)

We started with itsk in H2.depIts(Tj) and ended with itsk not in H2.depIts(Tj). Thus, we have
a contradiction. Hence, the lemma follows. ut

Next we denote the set of committed transactions in Ti’s affectSet in H as cis (commit independent set).
Formally,

H.cis(Ti) = {Tj |(Tj ∈ H.affectSet(Ti)) ∧ (H.incarCt(Tj))}

In other words, we have that H.cis(Ti) = H.affectSet(Ti)−H.cds(Ti). Finally, using the notion of
cis we denote the maximum of maxWTS of all the transactions in Ti’s cis as partAffWTS (partly affecting
WTS). It turns out that the value of partAffWTS affects the commit of Ti which we show in the course of
the proof. Formally, partAffWTS is defined as

H.partAffWTS(Ti) = max{H.maxWTS(Tj)|(Tj ∈ H.cis(Ti))}

Having defined the required notations, we are now ready to show that a itsEnabled transaction will eventually
become cdsEnabled.

Lemma 27 Consider a transaction Ti which is live in a history H1 and ctsi is greater than or equal to
itsi + 2 ∗ L. If Ti is itsEnabled in H1 then there is an extension of H1, H2 in which an incarnation
Ti, Tj (which could be same as Ti), is either committed or cdsEnabled. Formally, 〈H1, Ti : (Ti ∈
H1.live) ∧ (H1.ctsi ≥ H1.itsi + 2 ∗ L) ∧ (H1.itsEnabled(Ti)) =⇒ (∃H2, Tj : (H1 @
H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧ ((Tj ∈ H2.committed) ∨ (H2.cdsEnabled(Tj))))〉.

Proof We prove this by inducting on the size of H1.depIts(Ti), n. For showing this, we define a boolean
function P (k) as follows:

P (k) =



True 〈H1, Ti : (Ti ∈ H1.live) ∧ (H1.ctsi ≥ H1.itsi+

2 ∗ L) ∧ (H1.itsEnabled(Ti))∧
(k ≥ |H1.depIts(Ti)|) =⇒ (∃H2, Tj : (H1 @ H2)

∧(Tj ∈ H2.incarSet(Ti))∧
((Tj ∈ H2.committed) ∨ (H2.cdsEnabled(Tj))))〉

False otherwise
As can be seen, here P (k) means that if (1) Ti is live in H1; (2) ctsi is greater than or equal to

itsi + 2 ∗ L; (3) Ti is itsEnabled in H1 (4) the size of H1.depIts(Ti) is less than or equal to k; then
there exists a history H2 with a transaction Tj in it which is an incarnation of Ti such that Tj is either
committed or cdsEnabled in H2. We show P (k) is true for all (integer) values of k using induction.

Base Case - P (0): Here, from the definition of P (0), we get that |H1.depIts(Ti)| = 0. This in turn
implies that H1.cds(Ti) is null. Further, we are already given that Ti is live in H1 and H1.ctsi ≥
H1.itsi + 2 ∗ L. Hence, all these imply that Ti is cdsEnabled in H1.

Induction case - To proveP (k+1) given thatP (k) is true: If |H1.depIts(Ti)| ≤ k, from the induction
hypothesis P (k), we get that Tj is either committed or cdsEnabled in H2. Hence, we consider the case
when

|H1.depIts(Ti)| = k + 1 (28)

30 Ved Prakash Chaudhary et al.

Let α be H1.partAffWTS(Ti). Suppose H1.wtsi < α. Then from Lemma 8, we get that there is
an extension of H1, say H3 in which an incarnation of Ti, Tl (which could be same as Ti) is committed
or is live in H3 and has WTS greater than α. If Tl is committed then P (k + 1) is trivially true. So we
consider the latter case in which Tl is live in H3. In case H1.wtsi ≥ α, then in the analysis below follow
where we can replace Tl with Ti.

Next, suppose Tl is aborted in an extension of H3, H5. Then from Lemma 17, we get that there
exists an extension of H3, H4 in which (1) Tl is live; (2) there is a transaction Tm in H4.txns; (3)
H4.wtsm > H4.wtsl (4) Tm is committed in H5.

Combining the above derived conditions (1), (2), (3) with Lemma 14 we get that in H4,

H4.itsm ≤ H4.itsl + 2 ∗ L (29)

Eq.(29) implies that Tm is in Tl’s affectSet. Here, we have that Tl is an incarnation of Ti and we are
given that H1.ctsi ≥ H1.itsi + 2 ∗ L. Thus from Lemma 20, we get that there exists an incarnation of
Tm, Tn in H1.

Combining Eq.(29) with the observations (a) Tn, Tm are incarnations; (b) Tl, Ti are incarnations;
(c) Ti, Tn are in H1.txns, we get that H1.itsn ≤ H1.itsi + 2 ∗ L. This implies that Tn is in
H1.affectSet(Ti). Since Tn is not committed in H1 (otherwise, it is not possible for Tm to be an
incarnation of Tn), we get that Tn is in H1.cds(Ti). Hence, we get that H4.itsm = H1.itsn is in
H1.depIts(Ti).

From Eq.(28), we have that H1.depIts(Ti) is k + 1. From Lemma 26, we get that H4.depIts(Ti)
is a subset of H1.depIts(Ti). Further, we have that transaction Tm has committed. Thus H4.itsm which
was inH1.depIts(Ti) is no longer inH4.depIts(Ti). This implies thatH4.depIts(Ti) is a strict subset
of H1.depIts(Ti) and hence |H4.depIts(Ti)| ≤ k.
Since Ti and Tl are incarnations, we get that H4.depIts(Ti) =
H1.depIts(Tl). Thus, we get that

|H4.depIts(Ti)| ≤ k =⇒ |H4.depIts(Tl)| ≤ k (30)

Further, we have that Tl is a later incarnation of Ti. So, we get that

H4.ctsl > H4.ctsi
given−−−−→ H4.ctsl > H4.itsi + 2 ∗ L H4.itsi=H4.itsl−−−−−−−−−−−−→

H4.ctsl > H4.itsl + 2 ∗ L
(31)

We also have that Tl is live in H4. Combining this with Equations 30, 31 and given the induction
hypothesis that P (k) is true, we get that there exists a history extension of H4, H6 in which an incarnation
of Tl (also Ti), Tp is either committed or cdsEnabled. This proves the lemma. ut

Lemma 28 Consider a transaction Ti in a historyH1. If Ti is cdsEnabled inH1 then there is an extension
of H1, H2 in which an incarnation Ti, Tj (which could be same as Ti), is either committed or finEnabled.
Formally, 〈H1, Ti : (Ti ∈ H.live) ∧ (H1.cdsEnabled(Ti)) =⇒ (∃H2, Tj : (H1 @ H2) ∧ (Tj ∈
H2.incarSet(Ti)) ∧ ((Tj ∈ H2.committed) ∨ (H2.finEnabled(Tj)))〉.

Proof In H1, suppose H1.affWTS(Ti) is α. From Lemma 8, we get that there is a extension of H1,
H2 with a transaction Tj which is an incarnation of Ti. Here there are two cases: (1) Either Tj is committed
in H2. This trivially proves the lemma; (2) Otherwise, wtsj is greater than α.
In the second case, we get that

(Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (H.cdsEnabled(Ti))

∧(Tj ∈ H2.incarSet(Ti)) ∧ (H1.wtsi < H2.wtsj)
(32)

Combining the above result with Lemma 7, we get thatH1.ctsi < H2.ctsj . Thus the modified equation is

(Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (H1.cdsEnabled(Ti))

∧(Tj ∈ H2.incarSet(Ti)) ∧ (H1.ctsi < H2.ctsj)
(33)

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 31

Next combining Eq.(33) with Lemma 21, we get that

H1.affectSet(Ti) = H2.affectSet(Tj) (34)

Similarly, combining Eq.(33) with Lemma 22 we get that Tj is cdsEnabled in H2 as well. Formally,

H2.cdsEnabled(Tj) (35)

Now combining Eq.(34) with Lemma 23, we get that

H1.affWTS(Ti) = H2.affWTS(Tj) (36)

From our initial assumption we have that H1.affWTS(Ti) is α. From Eq.(36), we get that
H2.affWTS(Tj) = α. Further, we had earlier also seen that H2.wtsj is greater than α. Hence,
we have that H2.wtsj > H2.affWTS(Tj).
Combining the above result with Eq.(35), H2.cdsEnabled(Tj), we get that Tj is finEnabled, i.e.,
H2.finEnabled(Tj). ut

Next, we show that every live transaction eventually become itsEnabled.

Lemma 29 Consider a history H1 with Ti be a transaction in H1.live. Then there is an extension of H1,
H2 in which an incarnation of Ti, Tj (which could be same as Ti) is either committed or is itsEnabled.
Formally, 〈H1, Ti : (Ti ∈ H.live) =⇒ (∃Tj , H2 : (H1 @ H2)∧(Tj ∈ H2.incarSet(Ti))∧(Tj ∈
H2.committed) ∨ (H.itsEnabled(Ti)))〉.

Proof We prove this lemma by inducting on ITS.

Base Case - itsi = 1: In this case, Ti is the first transaction to be created. There are no transactions with
smaller ITS. Thus Ti is trivially itsEnabled.

Induction Case: Here we assume that for any transaction itsi ≤ k the lemma is true. ut

Combining these lemmas gives us the result that for every live transaction Ti there is an incarnation Tj
(which could be the same as Ti) that will commit. This implies that every application-transaction eventually
commits. The follow lemma captures this notion.

Theorem 15 Consider a history H1 with Ti be a transaction in H1.live. Then there is an extension
of H1, H2 in which an incarnation of Ti, Tj is committed. Formally, 〈H1, Ti : (Ti ∈ H.live) =⇒
(∃Tj , H2 : (H1 @ H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧ (Tj ∈ H2.committed))〉.

Proof Here we show the states that a transaction Ti (or one of it its incarnations) undergoes before it
commits. In all these transitions, it is possible that an incarnation of Ti can commit. But to show the worst
case, we assume that no incarnation of Ti commits. Continuing with this argument, we show that finally an
incarnation of Ti commits.

Consider a live transaction Ti inH1. Then from Lemma 29, we get that there is a historyH2, which is
an extension of H1, in which Tj an incarnation of Ti is either committed or itsEnabled. If Tj is itsEnabled
in H2, then from Lemma 27, we get that Tk , an incarnation of Tj , will be cdsEnabled in a extension of
H2, H3 (assuming that Tk is not committed in H3).

From Lemma 28, we get that there is an extension of H3, H4 in which an incarnation of Tk , Tl will
be finEnabled assuming that it is not committed in H4. Finally, from Lemma 25, we get that there is an
extension of H4 in which Tm, an incarnation of Tl, will be committed. This proves our theorem. ut

From this theorem, we get the following corollary which states that any history generated by KSFTM is
starvation-freedom.

Corollary 4 KSFTM algorithm ensures starvation-freedom.

32 Ved Prakash Chaudhary et al.

A.9 Detailed Experimental Evaluation

This section explains the additional experiments which we have performed to analyze the performance of
our proposed algorithms. Especially, we have performed average time analysis on STAMP benchmark, abort
counts for low and high contention counter application, average time analysis, and memory consumption on
the variants of PKTO and KSFTM.

1. Average time analysis by a transaction to commit for STAMP benchmark: We have performed
an experiment to analyze the average time taken by a transaction to commit in two of the applications
(KMEANS and LABYRINTH) from STAMP. Fig 11 (a) shows the behavior of the algorithms for
KMEANS application which has low contention. We observed that till thread count 32 NOrec performs
the best, but after 32 thread count, PKTO outperforms NOrec and the performance of KSFTM improves.
As there is an overhead involved in achieving starvation-freedom KSFTM does not performs best. On
the other hand, KSFTM performs best for LABYRINTH application which has high contention and
long-running transaction as shown in Fig 11 (b).

1 2 4 8 1 6 3 2 6 40 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

1 2 4 8 1 6 3 2 6 4
0
3
6
9

1 2
1 5
1 8
2 1

(a) K M E A N S

Tim
e (

mil
li s

ec.
)

N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 N O r e c
 M V T O

(b) L A B Y R I N T H
N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V S F T M
 N O r e c
 M V T O

Fig. 11: Average time analysis on KMEANS and LABYRINTH

2. Abort Count: We have performed experiment to analyze the abort counts by all the proposed as well
as state-of-the art algorithms, under both low as well as high contention for all the three predefined
workloads (W1, W2, and W3) on counter application. We observed that, under low contention the
number of aborts in ESTM and NOrec are high as compared to all other algorithms (KSFTM, PKTO,
SV-SFTM, MVTO) who have marginally small differences among them as shown in Fig 12. While
under high contention NOrec has the least number of abort count as shown in Fig 13.

3. Garbage Collection: Maintaining multiple versions to increase the performance and to decrease the
number of aborts, leads to creating too many versions which are not of any use and hence occupying
space. So, such garbage versions need to be taken care of. Hence we come up with a garbage collection
over these unwanted versions. This technique help to conserve memory space and increases the
performance in turn as no more unnecessary traversing of garbage versions by transactions is required.
We have used a global, i.e., across all transactions a list that keeps track of all the live transactions in the
system. We call this list as live-list. Each transaction at the beginning of its life cycle creates its entry in
this live-list. Under the optimistic approach of STM, each transaction in the shared memory performs
its updates in the stm-tryC phase. In this phase, each transaction performs some validations, and if
all the validations are successful then the transaction make changes or in simple terms creates versions
of the corresponding t-object in the shared memory. While creating a version, every transaction checks
if it is the least live timestamp transaction present in the system using live-list data structure then
the current transaction deletes all the version of that t-object whose timestamp is less than its own
and creates a version of it. Otherwise, the transaction does not perform garbage collection or delete
any version and look for creating a new version of next t-object in the write set, if at all. Here we
have proposed two algorithms that use this garbage collection technique. One of which is a variant of
priority-based multi-version timestamp ordering STMs which is PMVTO-GC and the other algorithm
is a variant of unbounded versions starvation-free STMs which is UVSFTM-GC.

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 33

1 2 4 8 1 6 3 2 6 4
0

1 5 0

3 0 0

4 5 0

6 0 0

7 5 0

1 2 4 8 1 6 3 2 6 4
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

1 2 4 8 1 6 3 2 6 4
0

1 5 0

3 0 0

4 5 0

6 0 0

(b) W 2 : M i d I n t e n s i v e
N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 E S T M
 N O r e c
 M V T O

(c) W 3 : U p d a t e I n t e n s i v e
N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 E S T M
 N O r e c
 M V T O

(a) W 1 : L o o k u p I n t e n s i v e

Nu
mb

er
of

Ab
ort

s

N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 E S T M
 N O r e c
 M V T O

Fig. 12: Abort Count on workload W1,W2,W3 for low contention

4. Variants of PKTO: In order to understand and analyze the best performing algorithm among the
variants of priority-based multi-version read/write STMs (PMVTO, PMVTO-GC and PKTO) we have
performed two experiments. Our first experiment as also shown in Fig 14 have helped us to observe
that among all three variants of priority-based multi-version read/write STMs, PKTO (priority-based
k-version STM) takes the least time when threads are varied from 20 to 26 on 1000 t-objects. PKTO
outperforms PMVTO and PMVTO-GC by a factor of 2 and 1.35. In addition to time efficiency, PKTO
is also memory efficient as shown in Fig 15. The number of versions created by PKTO is least among
all the variants. Our experiments have helped us to conclude that PKTO is the best variant (among
PMVTO, PMVTO-GC and PKTO) of priority-based multi-version read/write STMs.

5 0 1 0 0 1 5 0 2 0 0 2 5 00

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

5 0 1 0 0 1 5 0 2 0 0 2 5 0
0

1 5 0 0

3 0 0 0

4 5 0 0

6 0 0 0

7 5 0 0

5 0 1 0 0 1 5 0 2 0 0 2 5 0
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

(a) W 1 : L o o k u p I n t e n s i v e

Nu
mb

er
of

Ab
ort

s

N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 E S T M
 N O r e c
 M V T O

(b) W 2 : M i d I n t e n s i v e
N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 E S T M
 N O r e c
 M V T O

(c) W 3 : U p d a t e I n t e n s i v e
N u m b e r o f T h r e a d s

 K S F T M
 P K T O
 S V - S F T M
 E S T M
 N O r e c
 M V T O

Fig. 13: Abort Count on workload W1,W2,W3 for high contention

34 Ved Prakash Chaudhary et al.

1 2 4 8 1 6 3 2 6 4
0
1
2
3
4
5
6
7

1 2 4 8 1 6 3 2 6 4
0

2

4

6

8

1 2 4 8 1 6 3 2 6 4
0

2

4

6

8

(b) M i d I n t e n s i v e
N u m b e r o f T h r e a d s

 P K T O
 P M V T O - G C
 P M V T O

(c) U p d a t e I n t e n s i v e
N u m b e r o f T h r e a d s

 P K T O
 P M V T O - G C
 P M V T O

(a) L o o k u p I n t e n s i v e

Tim
e (

mi
lli s

ec
.)

N u m b e r o f T h r e a d s

 P K T O
 P M V T O - G C
 P M V T O

Fig. 14: Average time analysis among variants of PKTO

5 0 1 0 0 1 5 0 2 0 0 2 5 0
2 0

3 0

4 0

5 0

6 0

7 0

8 0

5 0 1 0 0 1 5 0 2 0 0 2 5 00

1 5 0

3 0 0

4 5 0

6 0 0

7 5 0

5 0 1 0 0 1 5 0 2 0 0 2 5 00

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

(a) W 1 : L o o k u p I n t e n s i v e

Me
mo

ry
Co

ns
um

pti
on

N u m b e r o f T h r e a d s

 P K T O
 P M V T O - G C
 P M V T O

(b) W 2 : M i d I n t e n s i v e
N u m b e r o f T h r e a d s

 P K T O
 P M V T O - G C
 P M V T O

(c) W 3 : U p d a t e I n t e n s i v e
N u m b e r o f T h r e a d s

 P K T O
 P M V T O - G C
 P M V T O

Fig. 15: Memory consumption among variants of PKTO

1 2 4 8 1 6 3 2 6 4
0
1
2
3
4
5
6
7

1 2 4 8 1 6 3 2 6 4
0

2

4

6

8

1 2 4 8 1 6 3 2 6 4
0

2

4

6

8

(b) M i d I n t e n s i v e
N u m b e r o f T h r e a d s

 K S F T M
 U V S F T M - G C
 U V S F T M

(c) U p d a t e I n t e n s i v e
N u m b e r o f T h r e a d s

 K S F T M
 U V S F T M - G C
 U V S F T M

(a) L o o k u p I n t e n s i v e

Tim
e (

mi
lli s

ec
.)

N u m b e r o f T h r e a d s

 K S F T M
 U V S F T M - G C
 U V S F T M

Fig. 16: Average time analysis among variants of KSFTM

Achieving Starvation-Freedom in Multi-Version Transactional Memory Systems? 35

5. Variants of KSFTM: Similar to our last experiment, we performed experiment to analyze the best
time as well as memory efficient variant among all the proposed multi-version starvation-free STMs
(UVSFTM, UVSFTM-GC, KSFTM). Our experiments for time and memory as shown in Fig 16 and
Fig 17, respectively. In terms of time, KSFTM outperforms UVSFTM and UVSFTM-GC by a factor of
2.1 and 1.5. We can conclude that KSFTM performs best among all its variants.

5 0 1 0 0 1 5 0 2 0 0 2 5 02 0

3 0

4 0

5 0

6 0

7 0

5 0 1 0 0 1 5 0 2 0 0 2 5 00

1 5 0

3 0 0

4 5 0

6 0 0

7 5 0

5 0 1 0 0 1 5 0 2 0 0 2 5 00

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

(a) W 1 : L o o k u p I n t e n s i v e

Me
mo

ry
Co

ns
um

pti
on

N u m b e r o f T h r e a d s

 K S F T M
 U V S F T M - G C
 U V S F T M

(b) W 2 : M i d I n t e n s i v e
N u m b e r o f T h r e a d s

 K S F T M
 U V S F T M - G C
 U V S F T M

(c) W 3 : U p d a t e I n t e n s i v e
N u m b e r o f T h r e a d s

 K S F T M
 U V S F T M - G C
 U V S F T M

Fig. 17: Memory consumption among variants of KSFTM

These results show that maintaining finite versions corresponding to each t-object performs better than
maintaining infinite versions and garbage collection on infinite versions corresponding to each t-object.

A.10 Pseudo code of Counter Application

OP LT SEED is defined as number of operations per transaction, T OBJ SEED is defined as number of
transaction objects in the system, TRANS LT defines the total number of transactions to be executed in the
system, and READ PER is the percentage of read operation which is used to define various workloads.
Algorithm 16 main(): The main procedure invoked by counter application
1: . To log abort counts by each thread
2: abort count[NUMTHREADS]
3: . To log average time taken by each transaction to commit
4: time taken[NUMTHREADS]
5: . To log the time of longest running transaction by each thread, worst case time
6: worst time[NUMTHREADS]
7: for (i = 0 : NUMTHREADS) do
8: pthread create(&threads[i], NULL, testFunc helper,(void∗)args)
9: end for

10: for (i = 0 : NUMTHREADS) do
11: pthread join(threads[i], &status)
12: end for
13: max worst time = 0.0
14: total abort count = 0
15: average timetaken = 0
16: for (i = 0 : NUMTHREADS) do
17: if (max worst time < worst time[i]) then
18: max worst time = worst time[i]
19: end if
20: total abort count+ = abort count[i]
21: average time taken+ = time taken[i]
22: end for

36 Ved Prakash Chaudhary et al.

Algorithm 17 testFunc helper():Function invoked by threads
1: transaction count = 0
2: while (TRANS LT) do
3: . Log the time at the start of every transaction
4: begin time = time request()
5: . Invoke the test function to execute a transaction
6: abort count[thread id] = test function()
7: transaction count++
8: . Log the time at the end of every transaction
9: end time = time request()

10: time taken[thread id]+ = (end time− begin time)
11: if (worst time[threadid] < (end time− begin time)) then
12: worst time[threadid] = (end time− begin time)
13: end if
14: TRANS LT -= 1
15: end while
16: time taken[thread id] /= transaction count

Algorithm 18 test function():main test function while executes a transaction
1: Transaction ∗T = new Transaction;
2: T → g its = NIL
3: local abort count = 0
4: label:
5: while (true) do
6: if (T → g its != NIL) then
7: its = T → g its
8: T = lib→ stm-begin(its)
9: else

10: T = lib→ stm-begin(T → g its)
11: end if
12: for all (OP LT SEED) do
13: t obj = rand()%T OBJ SEED
14: randV al = rand()%OP SEED
15: if (randV al <= READ PER) then
16: stm-read(t obj, value)
17: if (value == ABORTED) then
18: local abort count++
19: goto label
20: end if
21: else
22: stm-write(t obj, value)
23: end if
24: end for
25: if (lib→ stm-tryC() == ABORTED) then
26: local abort count++
27: continue
28: end if
29: break
30: end while

