
DiPETrans: A Framework for Distributed

Parallel Execution of Transactions of Blocks in

Blockchain∗

(Annual Progress Seminar)

Parwat Singh Anjana (CS17RESCH11004)

Guided by:

Dr. Sathya Peri, Associate Professor

Department of Computer Science and Engineering,

Indian Institute of Technology Hyderabad, India

∗Accepted at Concurrency and Computation: Practice and Experience (CCPE), Wiley, 2021

Outline

1. Introduction

2. Bottleneck in Existing Blockchain Design

3. Challenges in Executing Transactions Parallelly

4. Current Progress

5. Experimental Evaluation

6. Conclusion and Future Work

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 1 / 24

Outline

1. Introduction

2. Bottleneck in Existing Blockchain Design

3. Challenges in Executing Transactions Parallelly

4. Current Progress

5. Experimental Evaluation

6. Conclusion and Future Work

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 1 / 24

Introduction: Blockchain

• Blockchain is a distributed, decentralized database or ledger of

records.

Block-1

T1 T2 T3 T4

Block-2

T1 T2 T3

• Miners add blocks to the blockchain, and validators validate each

block added to the blockchain.

• Example: Bitcoin1, Ethereum2, Fabric, Sawtooth3, etc.

Execution of Ethereum

1
https://bitcoin.org/en/

2
https://www.ethereum.org/

3
https://www.hyperledger.org/

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 2 / 24

https://bitcoin.org/en/
https://www.ethereum.org/
https://www.hyperledger.org/

Introduction: Blockchain

• Blockchain is a distributed, decentralized database or ledger of

records.

Block-1

T1 T2 T3 T4

Block-2

T1 T2 T3

• Miners add blocks to the blockchain, and validators validate each

block added to the blockchain.

• Example: Bitcoin1, Ethereum2, Fabric, Sawtooth3, etc.

Execution of Ethereum

1
https://bitcoin.org/en/

2
https://www.ethereum.org/

3
https://www.hyperledger.org/

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 2 / 24

https://bitcoin.org/en/
https://www.ethereum.org/
https://www.hyperledger.org/

Introduction: Blockchain

• Blockchain is a distributed, decentralized database or ledger of

records.

Block-1

T1 T2 T3 T4

Block-2

T1 T2 T3

• Miners add blocks to the blockchain, and validators validate each

block added to the blockchain.

• Example: Bitcoin1, Ethereum2, Fabric, Sawtooth3, etc.

Execution of Ethereum

1
https://bitcoin.org/en/

2
https://www.ethereum.org/

3
https://www.hyperledger.org/

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 2 / 24

https://bitcoin.org/en/
https://www.ethereum.org/
https://www.hyperledger.org/

Introduction: Blockchain

• Blockchain is a distributed, decentralized database or ledger of

records.

Block-1

T1 T2 T3 T4

Block-2

T1 T2 T3

• Miners add blocks to the blockchain, and validators validate each

block added to the blockchain.

• Example: Bitcoin1, Ethereum2, Fabric, Sawtooth3, etc.

Execution of Ethereum

1
https://bitcoin.org/en/

2
https://www.ethereum.org/

3
https://www.hyperledger.org/

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 2 / 24

https://bitcoin.org/en/
https://www.ethereum.org/
https://www.hyperledger.org/

Outline

1. Introduction

2. Bottleneck in Existing Blockchain Design

3. Challenges in Executing Transactions Parallelly

4. Current Progress

5. Experimental Evaluation

6. Conclusion and Future Work

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 2 / 24

Bottleneck in Existing Blockchain: Ethereum

• Serial execution of the transactions by miners and validators fails to

harness the power of multi-core processors’, thus degrading

throughput.

• By leveraging multiple threads

to execute transactions, we

can achieve better efficiency

and higher throughput.

Listing 1: Transfer function

1 transfer(s_id , r_id , amt) {
2 if(amt > bal[s_id])
3 throw;
4 bal[s_id] -= amt;
5 bal[r_id] += amt;
6 }

(b) Concurrent Execution(a) Serial Execution of transactions

T1

T2

T1

T2

transfer(A,B, $10)
C1

C2

transfer(C ,D, $20)

transfer(A,B, $10)

C1

transfer(C ,D, $20)

C2

Figure 1: Motivation towards concurrent execution over serial

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 3 / 24

Bottleneck in Existing Blockchain: Ethereum

• Serial execution of the transactions by miners and validators fails to

harness the power of multi-core processors’, thus degrading

throughput.

• By leveraging multiple threads

to execute transactions, we

can achieve better efficiency

and higher throughput.

Listing 1: Transfer function

1 transfer(s_id , r_id , amt) {
2 if(amt > bal[s_id])
3 throw;
4 bal[s_id] -= amt;
5 bal[r_id] += amt;
6 }

(b) Concurrent Execution(a) Serial Execution of transactions

T1

T2

T1

T2

transfer(A,B, $10)
C1

C2

transfer(C ,D, $20)

transfer(A,B, $10)

C1

transfer(C ,D, $20)

C2

Figure 1: Motivation towards concurrent execution over serial

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 3 / 24

Bottleneck in Existing Blockchain: Ethereum

• Serial execution of the transactions by miners and validators fails to

harness the power of multi-core processors’, thus degrading

throughput.

• By leveraging multiple threads

to execute transactions, we

can achieve better efficiency

and higher throughput.

Listing 1: Transfer function

1 transfer(s_id , r_id , amt) {
2 if(amt > bal[s_id])
3 throw;
4 bal[s_id] -= amt;
5 bal[r_id] += amt;
6 }

(b) Concurrent Execution(a) Serial Execution of transactions

T1

T2

T1

T2

transfer(A,B, $10)
C1

C2

transfer(C ,D, $20)

transfer(A,B, $10)

C1

transfer(C ,D, $20)

C2

Figure 1: Motivation towards concurrent execution over serial

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 3 / 24

Outline

1. Introduction

2. Bottleneck in Existing Blockchain Design

3. Challenges in Executing Transactions Parallelly

4. Current Progress

5. Experimental Evaluation

6. Conclusion and Future Work

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 3 / 24

Parallel Execution Challenges (1/4)

Smart Contract

A B

data item

(k)

T1 T2

Conflict

Figure 2: Conflicting access to shared data item.

• Identifying the conflicts at run-time is not straightforward.

• Improper use of locks may lead to deadlock.

• Discovering an equivalent serial schedule of concurrent execution of

SCTs is difficult.

Solution: We use Software Transactional Memory Systems (STMs) to

solve these challenges.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 4 / 24

Parallel Execution Challenges (1/4)

Smart Contract

A B

data item

(k)

T1 T2

Conflict

Figure 2: Conflicting access to shared data item.

• Identifying the conflicts at run-time is not straightforward.

• Improper use of locks may lead to deadlock.

• Discovering an equivalent serial schedule of concurrent execution of

SCTs is difficult.

Solution: We use Software Transactional Memory Systems (STMs) to

solve these challenges.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 4 / 24

Parallel Execution Challenges (1/4)

Smart Contract

A B

data item

(k)

T1 T2

Conflict

Figure 2: Conflicting access to shared data item.

• Identifying the conflicts at run-time is not straightforward.

• Improper use of locks may lead to deadlock.

• Discovering an equivalent serial schedule of concurrent execution of

SCTs is difficult.

Solution: We use Software Transactional Memory Systems (STMs) to

solve these challenges.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 4 / 24

Parallel Execution Challenges (1/4)

Smart Contract

A B

data item

(k)

T1 T2

Conflict

Figure 2: Conflicting access to shared data item.

• Identifying the conflicts at run-time is not straightforward.

• Improper use of locks may lead to deadlock.

• Discovering an equivalent serial schedule of concurrent execution of

SCTs is difficult.

Solution: We use Software Transactional Memory Systems (STMs) to

solve these challenges.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 4 / 24

Parallel Execution Challenges (1/4)

Smart Contract

A B

data item

(k)

T1 T2

Conflict

Figure 2: Conflicting access to shared data item.

• Identifying the conflicts at run-time is not straightforward.

• Improper use of locks may lead to deadlock.

• Discovering an equivalent serial schedule of concurrent execution of

SCTs is difficult.

Solution: We use Software Transactional Memory Systems (STMs) to

solve these challenges.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 4 / 24

Parallel Execution Challenges (2/4)

• Validator may incorrectly reject a valid block proposed by the miner.

We call such error the False Block Rejection (FBR) error.

transfer(A, B, $10)T1

A

B

T2 transfer(B, A, $20)

Time

T1 transfer(A, B, $10)

T2 transfer(B, A, $20)

Account IS FS

A $10 $20

B $10 $0

(b) Equivalent execution by miner (T1T2)

C1

C2

T1 transfer(A, B, $10)

T2 transfer(B, A, $20)

(c) Equivalent execution by validator (T2T1)

C1

A2

Account IS FS

A $10 $0

B $10 $20

Miner Final State

Validatror Final State

(a) Concurrent execution

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 5 / 24

Parallel Execution Challenges (2/4)

• Validator may incorrectly reject a valid block proposed by the miner.

We call such error the False Block Rejection (FBR) error.

transfer(A, B, $10)T1

A

B

T2 transfer(B, A, $20)

Time

T1 transfer(A, B, $10)

T2 transfer(B, A, $20)

Account IS FS

A $10 $20

B $10 $0

(b) Equivalent execution by miner (T1T2)

C1

C2

T1 transfer(A, B, $10)

T2 transfer(B, A, $20)

(c) Equivalent execution by validator (T2T1)

C1

A2

Account IS FS

A $10 $0

B $10 $20

Miner Final State

Validatror Final State

(a) Concurrent execution

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 5 / 24

Parallel Execution Challenges (3/4)

Solution: Miner appends the Block Graph (BG)4,5 in the block to avoid

the FBR error.

T1

A

B

T2

transfer(A, B, $10)

transfer(A, C, $5)

(a) Concurrent execution by malicious miner

T1

A

B

T2

transfer(A, B, $10)

transfer(A, C, $5)

Validator Final State

(b) Concurrent execution by validator

C1 C1

A2A2

Account IS FS
A $10 $0
B $10 $20
C $10 $10

Validator's Final

State is the same as
Miner's Final State

so Accepts the block

TimeTime

Account IS FS
A $10 $0
B $10 $20
C $10 $10

T1 T2

Block Graph (BG)

Block Miner Final State Miner Final State

Block Graph (BG)

Block

T1 T2

Account IS FS
A $10 $0
B $10 $20
C $10 $10

4
Dickerson et al., “Adding Concurrency to Smart Contracts.” PODC, 2017

5
Anjana et al., “An efficient framework for optimistic concurrent execution of smart contracts.” PDP, 2019

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 6 / 24

Parallel Execution Challenges (3/4)

Solution: Miner appends the Block Graph (BG)4,5 in the block to avoid

the FBR error.

T1

A

B

T2

transfer(A, B, $10)

transfer(A, C, $5)

(a) Concurrent execution by malicious miner

T1

A

B

T2

transfer(A, B, $10)

transfer(A, C, $5)

Validator Final State

(b) Concurrent execution by validator

C1 C1

A2A2

Account IS FS
A $10 $0
B $10 $20
C $10 $10

Validator's Final

State is the same as
Miner's Final State

so Accepts the block

TimeTime

Account IS FS
A $10 $0
B $10 $20
C $10 $10

T1 T2

Block Graph (BG)

Block Miner Final State Miner Final State

Block Graph (BG)

Block

T1 T2

Account IS FS
A $10 $0
B $10 $20
C $10 $10

4
Dickerson et al., “Adding Concurrency to Smart Contracts.” PODC, 2017

5
Anjana et al., “An efficient framework for optimistic concurrent execution of smart contracts.” PDP, 2019

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 6 / 24

Parallel Execution Challenges (4/4)

• A Malicious miner can send an incorrect Block Graph to harm the

blockchain, missing some edges, e.g., to cause double spending. We

call such error the Edge Missing BG (EMB) error.

T1

A

B

T2

Validator's Final

State is the same as
Miner's Final State

so Accepts the block

transfer(A, B, $10)

transfer(A, C, $5)

(a) Concurrent execution by malicious miner

T1

A

B

T2

transfer(A, B, $10)

transfer(A, C, $5)

Validator Final State

(b) Concurrent execution by validator

C1
C1

C2C2

Account IS FS
A $10 $5
B $10 $20
C $10 $15

Time Time

Miner Final State

Block Graph (BG)

Block

T1 T2

Account IS FS
A $10 $5
B $10 $20
C $10 $15

Account IS FS
A $10 $5
B $10 $20
C $10 $15

T1 T2

Block Graph (BG)

Block Miner Final State

Solution: We propose a Smart Multi-threaded Validator (SMV) to

detect EMB error and rejects the corresponding blocks.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 7 / 24

Parallel Execution Challenges (4/4)

• A Malicious miner can send an incorrect Block Graph to harm the

blockchain, missing some edges, e.g., to cause double spending. We

call such error the Edge Missing BG (EMB) error.

T1

A

B

T2

Validator's Final

State is the same as
Miner's Final State

so Accepts the block

transfer(A, B, $10)

transfer(A, C, $5)

(a) Concurrent execution by malicious miner

T1

A

B

T2

transfer(A, B, $10)

transfer(A, C, $5)

Validator Final State

(b) Concurrent execution by validator

C1
C1

C2C2

Account IS FS
A $10 $5
B $10 $20
C $10 $15

Time Time

Miner Final State

Block Graph (BG)

Block

T1 T2

Account IS FS
A $10 $5
B $10 $20
C $10 $15

Account IS FS
A $10 $5
B $10 $20
C $10 $15

T1 T2

Block Graph (BG)

Block Miner Final State

Solution: We propose a Smart Multi-threaded Validator (SMV) to

detect EMB error and rejects the corresponding blocks.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 7 / 24

Parallel Execution Challenges (4/4)

• A Malicious miner can send an incorrect Block Graph to harm the

blockchain, missing some edges, e.g., to cause double spending. We

call such error the Edge Missing BG (EMB) error.

T1

A

B

T2

Validator's Final

State is the same as
Miner's Final State

so Accepts the block

transfer(A, B, $10)

transfer(A, C, $5)

(a) Concurrent execution by malicious miner

T1

A

B

T2

transfer(A, B, $10)

transfer(A, C, $5)

Validator Final State

(b) Concurrent execution by validator

C1
C1

C2C2

Account IS FS
A $10 $5
B $10 $20
C $10 $15

Time Time

Miner Final State

Block Graph (BG)

Block

T1 T2

Account IS FS
A $10 $5
B $10 $20
C $10 $15

Account IS FS
A $10 $5
B $10 $20
C $10 $15

T1 T2

Block Graph (BG)

Block Miner Final State

Solution: We propose a Smart Multi-threaded Validator (SMV) to

detect EMB error and rejects the corresponding blocks.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 7 / 24

Outline

1. Introduction

2. Bottleneck in Existing Blockchain Design

3. Challenges in Executing Transactions Parallelly

4. Current Progress

5. Experimental Evaluation

6. Conclusion and Future Work

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 7 / 24

Proposed Approach: DiPETrans Framework

• We proposed a DiPETrans framework6 for parallel execution of the

transactions at miners and validators, based on transaction shards

identified using static analysis.

• We implement this technique using a distributed leader–follower

approach within a mining community of servers.

• The leader shards the transactions in the block and the followers

concurrently execute (mining) or verify (validation) them.

• When mining, the PoW is also partitioned and solved in parallel by

the members of the community.

6∗Accepted at the journal of “Concurrency and Computation: Practice and Experience

(CCPE),” Wiley, 2021.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 8 / 24

Proposed Approach: DiPETrans Framework

• We proposed a DiPETrans framework6 for parallel execution of the

transactions at miners and validators, based on transaction shards

identified using static analysis.

• We implement this technique using a distributed leader–follower

approach within a mining community of servers.

• The leader shards the transactions in the block and the followers

concurrently execute (mining) or verify (validation) them.

• When mining, the PoW is also partitioned and solved in parallel by

the members of the community.

6∗Accepted at the journal of “Concurrency and Computation: Practice and Experience

(CCPE),” Wiley, 2021.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 8 / 24

Proposed Approach: DiPETrans Framework

• We proposed a DiPETrans framework6 for parallel execution of the

transactions at miners and validators, based on transaction shards

identified using static analysis.

• We implement this technique using a distributed leader–follower

approach within a mining community of servers.

• The leader shards the transactions in the block and the followers

concurrently execute (mining) or verify (validation) them.

• When mining, the PoW is also partitioned and solved in parallel by

the members of the community.

6∗Accepted at the journal of “Concurrency and Computation: Practice and Experience

(CCPE),” Wiley, 2021.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 8 / 24

Proposed Approach: DiPETrans Framework

• We proposed a DiPETrans framework6 for parallel execution of the

transactions at miners and validators, based on transaction shards

identified using static analysis.

• We implement this technique using a distributed leader–follower

approach within a mining community of servers.

• The leader shards the transactions in the block and the followers

concurrently execute (mining) or verify (validation) them.

• When mining, the PoW is also partitioned and solved in parallel by

the members of the community.

6∗Accepted at the journal of “Concurrency and Computation: Practice and Experience

(CCPE),” Wiley, 2021.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 8 / 24

Proposed Approach: DiPETrans Framework

• We proposed a DiPETrans framework6 for parallel execution of the

transactions at miners and validators, based on transaction shards

identified using static analysis.

• We implement this technique using a distributed leader–follower

approach within a mining community of servers.

• The leader shards the transactions in the block and the followers

concurrently execute (mining) or verify (validation) them.

• When mining, the PoW is also partitioned and solved in parallel by

the members of the community.

6∗Accepted at the journal of “Concurrency and Computation: Practice and Experience

(CCPE),” Wiley, 2021.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 8 / 24

Proposed Approach: Sharding of Block Transactions

• DiPETrans groups the block transactions into independent shards

and executes them parallelly in a distributed fashion using a

leader-follower approach.

Follower1

Follower2

Follower3

Sharding

Dependencies

A0 A5

A9

Shard2

A4 A6

A7

Shard3

Transaction

Dependency Graph

A1

A2

A3

A8

T1
T5 T7Shard1

T2T3 T9

T6

T4

T8

T1 (A1, A3)

T5 (A1, A8)

T7 (A2, A3)

T2 (A9, A0)
T3 (A0, A9)
T9 (A5, A9)

Shard2

T4 (A4, A6)

T6 (A6, A7)

T8 (A4)

Shard3

Shard1

Transaction AccountsAccessed
T1 (A1, A3) A1 A3
T2 (A9, A0) A9 A0
T3 (A0, A9) A0 A9
T4 (A4, A6) A4 A6
T5 (A1, A8) A1 A8
T6 (A6, A7) A6 A7
T7 (A2, A3) A2 A3

T8 (A4) A4
T9 (A5, A9) A5 A9

Figure 3: Sharding of transactions in a block using static graph analysis

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 9 / 24

DiPETrans Architecture: Miner Community

1 8 Sequence During Proposing a Block

(a) Community Acting as Miner

Pending

Transaction Queue

Chain/Global State

 g

Block
FS

S1 S2 Sm

TSMI

PH

BH O

Shards

1

32

4

5

S LS

S LS

S LS

6

Follower1

Follower2

Followern

 Tk

Shard Tx Execution

PoW (BH < D)

N1 N2 Np

7 Nonce

8

i

ii

MI: Miner ID

BH: Block Hash

FS: Final State
LS: Local State

PH: Previous Hash

TS: Timestamp

Tx: Transaction

D: Difficulty

p: # Nonce Set
g: Genesis Block

k: # Transactions

O: Other Information
S: Shard
m: # Shards

n: # Followers at Miner
v: # Followers at Validator

Leader Node

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 10 / 24

DiPETrans Architecture: Validator Community

9 15 Sequence During Validating a Block

(b) Community Acting as Validator

Chain/Global State

g

Block FS

S1 S2 Sm

TSMI

PH

BH O

Shards

910

11

S LS

S LS

S LS

Follower1

Follower2

Followerv

 Tk

12 Shard Tx Re-Execution

State

and PoW

Validation

13

14
Pending

Transaction Queue

15

i

ii

MI: Miner ID

BH: Block Hash

FS: Final State
LS: Local State

PH: Previous Hash

TS: Timestamp

Tx: Transaction

D: Difficulty

p: # Nonce Set
g: Genesis Block

k: # Transactions

O: Other Information
S: Shard
m: # Shards

n: # Followers at Miner
v: # Followers at Validator

Leader Node

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 11 / 24

DiPETrans: Theoretical Running Time Complexity

• Analyze() takes O(n) to build transaction graph with n edges and

between 2 - 2n vertices. So, static analysis using WCC takes O(n).

• With m shards and f follower nodes in the community. The

LoadBalance() takes O(m · log(m)) to sort the shards.

• Using a priority queue to load balance shards (transactions) assigned

to each follower, we get a time complexity of O(m · log(f)).

• For the LoadBalance phase the combined time complexity is

O(m · (log(m) + log(f))).

• So overall time complexity of O(n+m · (log(m) + log(f))). Usually,

with m > f , expected complexity is O(n +m · log(m)).

• The worst-case time complexity for transaction execution is O(n · tx)
and the best-case time complexity is Ω(nf · tx), where, tx is a

transaction execution time.7

7
The time to complete the transaction execution is limited by the follower with the most number of transactions.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 12 / 24

DiPETrans: Theoretical Running Time Complexity

• Analyze() takes O(n) to build transaction graph with n edges and

between 2 - 2n vertices. So, static analysis using WCC takes O(n).

• With m shards and f follower nodes in the community. The

LoadBalance() takes O(m · log(m)) to sort the shards.

• Using a priority queue to load balance shards (transactions) assigned

to each follower, we get a time complexity of O(m · log(f)).

• For the LoadBalance phase the combined time complexity is

O(m · (log(m) + log(f))).

• So overall time complexity of O(n+m · (log(m) + log(f))). Usually,

with m > f , expected complexity is O(n +m · log(m)).

• The worst-case time complexity for transaction execution is O(n · tx)
and the best-case time complexity is Ω(nf · tx), where, tx is a

transaction execution time.7

7
The time to complete the transaction execution is limited by the follower with the most number of transactions.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 12 / 24

DiPETrans: Theoretical Running Time Complexity

• Analyze() takes O(n) to build transaction graph with n edges and

between 2 - 2n vertices. So, static analysis using WCC takes O(n).

• With m shards and f follower nodes in the community. The

LoadBalance() takes O(m · log(m)) to sort the shards.

• Using a priority queue to load balance shards (transactions) assigned

to each follower, we get a time complexity of O(m · log(f)).

• For the LoadBalance phase the combined time complexity is

O(m · (log(m) + log(f))).

• So overall time complexity of O(n+m · (log(m) + log(f))). Usually,

with m > f , expected complexity is O(n +m · log(m)).

• The worst-case time complexity for transaction execution is O(n · tx)
and the best-case time complexity is Ω(nf · tx), where, tx is a

transaction execution time.7

7
The time to complete the transaction execution is limited by the follower with the most number of transactions.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 12 / 24

DiPETrans: Theoretical Running Time Complexity

• Analyze() takes O(n) to build transaction graph with n edges and

between 2 - 2n vertices. So, static analysis using WCC takes O(n).

• With m shards and f follower nodes in the community. The

LoadBalance() takes O(m · log(m)) to sort the shards.

• Using a priority queue to load balance shards (transactions) assigned

to each follower, we get a time complexity of O(m · log(f)).

• For the LoadBalance phase the combined time complexity is

O(m · (log(m) + log(f))).

• So overall time complexity of O(n+m · (log(m) + log(f))). Usually,

with m > f , expected complexity is O(n +m · log(m)).

• The worst-case time complexity for transaction execution is O(n · tx)
and the best-case time complexity is Ω(nf · tx), where, tx is a

transaction execution time.7

7
The time to complete the transaction execution is limited by the follower with the most number of transactions.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 12 / 24

DiPETrans: Theoretical Running Time Complexity

• Analyze() takes O(n) to build transaction graph with n edges and

between 2 - 2n vertices. So, static analysis using WCC takes O(n).

• With m shards and f follower nodes in the community. The

LoadBalance() takes O(m · log(m)) to sort the shards.

• Using a priority queue to load balance shards (transactions) assigned

to each follower, we get a time complexity of O(m · log(f)).

• For the LoadBalance phase the combined time complexity is

O(m · (log(m) + log(f))).

• So overall time complexity of O(n+m · (log(m) + log(f))). Usually,

with m > f , expected complexity is O(n +m · log(m)).

• The worst-case time complexity for transaction execution is O(n · tx)
and the best-case time complexity is Ω(nf · tx), where, tx is a

transaction execution time.7

7
The time to complete the transaction execution is limited by the follower with the most number of transactions.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 12 / 24

DiPETrans: Theoretical Running Time Complexity

• Analyze() takes O(n) to build transaction graph with n edges and

between 2 - 2n vertices. So, static analysis using WCC takes O(n).

• With m shards and f follower nodes in the community. The

LoadBalance() takes O(m · log(m)) to sort the shards.

• Using a priority queue to load balance shards (transactions) assigned

to each follower, we get a time complexity of O(m · log(f)).

• For the LoadBalance phase the combined time complexity is

O(m · (log(m) + log(f))).

• So overall time complexity of O(n+m · (log(m) + log(f))). Usually,

with m > f , expected complexity is O(n +m · log(m)).

• The worst-case time complexity for transaction execution is O(n · tx)
and the best-case time complexity is Ω(nf · tx), where, tx is a

transaction execution time.7

7
The time to complete the transaction execution is limited by the follower with the most number of transactions.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 12 / 24

Outline

1. Introduction

2. Bottleneck in Existing Blockchain Design

3. Challenges in Executing Transactions Parallelly

4. Current Progress

5. Experimental Evaluation

6. Conclusion and Future Work

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 12 / 24

DiPETrans: Experimental Evaluation

• We empirically evaluated DiPETrans using 5 million actual

transactions from the Ethereum blockchain.

• We extracted ≈ 80K blocks consisting of 5,170,597 total

transactions.

• There are two types of transactions: monetary and smart contracts.

• We used a commodity cluster to run the leader and followers.

• The implementation is in C++ using Apache thrift cross-platform

micro-services library.

• Each node in the cluster has an 8-core AMD CPU with 32 GB

memory, running CentOS, and connected using 1 Gbps Ethernet.

• Depending on the experiment configuration, a community has a

leader running on one node and between 1 to 5 followers running on

separate nodes.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 13 / 24

DiPETrans: Experimental Evaluation

• We empirically evaluated DiPETrans using 5 million actual

transactions from the Ethereum blockchain.

• We extracted ≈ 80K blocks consisting of 5,170,597 total

transactions.

• There are two types of transactions: monetary and smart contracts.

• We used a commodity cluster to run the leader and followers.

• The implementation is in C++ using Apache thrift cross-platform

micro-services library.

• Each node in the cluster has an 8-core AMD CPU with 32 GB

memory, running CentOS, and connected using 1 Gbps Ethernet.

• Depending on the experiment configuration, a community has a

leader running on one node and between 1 to 5 followers running on

separate nodes.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 13 / 24

DiPETrans: Experimental Evaluation

• We empirically evaluated DiPETrans using 5 million actual

transactions from the Ethereum blockchain.

• We extracted ≈ 80K blocks consisting of 5,170,597 total

transactions.

• There are two types of transactions: monetary and smart contracts.

• We used a commodity cluster to run the leader and followers.

• The implementation is in C++ using Apache thrift cross-platform

micro-services library.

• Each node in the cluster has an 8-core AMD CPU with 32 GB

memory, running CentOS, and connected using 1 Gbps Ethernet.

• Depending on the experiment configuration, a community has a

leader running on one node and between 1 to 5 followers running on

separate nodes.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 13 / 24

DiPETrans: Experimental Evaluation

• We empirically evaluated DiPETrans using 5 million actual

transactions from the Ethereum blockchain.

• We extracted ≈ 80K blocks consisting of 5,170,597 total

transactions.

• There are two types of transactions: monetary and smart contracts.

• We used a commodity cluster to run the leader and followers.

• The implementation is in C++ using Apache thrift cross-platform

micro-services library.

• Each node in the cluster has an 8-core AMD CPU with 32 GB

memory, running CentOS, and connected using 1 Gbps Ethernet.

• Depending on the experiment configuration, a community has a

leader running on one node and between 1 to 5 followers running on

separate nodes.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 13 / 24

DiPETrans: Experimental Evaluation

• We empirically evaluated DiPETrans using 5 million actual

transactions from the Ethereum blockchain.

• We extracted ≈ 80K blocks consisting of 5,170,597 total

transactions.

• There are two types of transactions: monetary and smart contracts.

• We used a commodity cluster to run the leader and followers.

• The implementation is in C++ using Apache thrift cross-platform

micro-services library.

• Each node in the cluster has an 8-core AMD CPU with 32 GB

memory, running CentOS, and connected using 1 Gbps Ethernet.

• Depending on the experiment configuration, a community has a

leader running on one node and between 1 to 5 followers running on

separate nodes.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 13 / 24

DiPETrans: Experimental Evaluation

• We empirically evaluated DiPETrans using 5 million actual

transactions from the Ethereum blockchain.

• We extracted ≈ 80K blocks consisting of 5,170,597 total

transactions.

• There are two types of transactions: monetary and smart contracts.

• We used a commodity cluster to run the leader and followers.

• The implementation is in C++ using Apache thrift cross-platform

micro-services library.

• Each node in the cluster has an 8-core AMD CPU with 32 GB

memory, running CentOS, and connected using 1 Gbps Ethernet.

• Depending on the experiment configuration, a community has a

leader running on one node and between 1 to 5 followers running on

separate nodes.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 13 / 24

DiPETrans: Experimental Evaluation

• We empirically evaluated DiPETrans using 5 million actual

transactions from the Ethereum blockchain.

• We extracted ≈ 80K blocks consisting of 5,170,597 total

transactions.

• There are two types of transactions: monetary and smart contracts.

• We used a commodity cluster to run the leader and followers.

• The implementation is in C++ using Apache thrift cross-platform

micro-services library.

• Each node in the cluster has an 8-core AMD CPU with 32 GB

memory, running CentOS, and connected using 1 Gbps Ethernet.

• Depending on the experiment configuration, a community has a

leader running on one node and between 1 to 5 followers running on

separate nodes.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 13 / 24

DiPETrans: Experiment Workload

Table 1: Summary of transactions in experiment workload

Block type ρ # Txns/ block # Blocks
∑

Contract txns
∑

Non-contract txns

data-1-1-100

1
1

100 3,880 193,959 194,000

data-1-1-200 200 1,940 193,959 194,000

data-1-1-300 300 1,294 193,959 194,100

data-1-1-400 400 970 193,959 194,000

data-1-1-500 500 776 193,959 194,000

data-1-2-100

1
2

100 5,705 193,959 376,530

data-1-2-200 200 2,895 193,959 385,035

data-1-2-300 300 1,940 193,959 388,000

data-1-2-400 400 1,448 193,959 385,168

data-1-2-500 500 1,162 193,959 386,946

data-1-4-100

1
4

100 9,698 193,959 775,840

data-1-4-200 200 4,849 193,959 775,840

data-1-4-300 300 3,233 193,959 775,840

data-1-4-400 400 2,425 193,959 776,000

data-1-4-500 500 1,940 193,959 776,000

data-1-8-100

1
8

100 16,164 193,959 1,422,432

data-1-8-200 200 8,434 193,959 1,492,818

data-1-8-300 300 5,705 193,959 1,517,530

data-1-8-400 400 4,311 193,959 1,530,405

data-1-8-500 500 3,464 193,959 1,538,016

data-1-16-100

1
16

100 32,327 193,959 3,038,738

data-1-16-200 200 16,164 193,959 3,038,832

data-1-16-300 300 10,776 193,959 3,038,832

data-1-16-400 400 8,082 193,959 3,038,832

data-1-16-500 500 6,466 193,959 3,039,020

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 14 / 24

DiPETrans Results: Transaction Execution Speedup on W1

 0

 0.5

 1

 1.5

 2

 2.5

100 200 300 400 500

(a) Miner

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
M

in
e
r

Transactions/Block

 0

 0.5

 1

 1.5

 2

 2.5

100 200 300 400 500

(b) Default Validator
S

p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
V

a
lid

a
to

r
Transactions/Block

 Serial 1 Follower 2 Follower 3 Follower 4 Follower 5 Follower

 0

 0.5

 1

 1.5

 2

 2.5

100 200 300 400 500

(c) Sharing Validator

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
V

a
lid

a
to

r

Transactions/Block

Figure 4: Workload-1: speedup by community miner and validator over serial miner and validator.

• With 5 followers, the peak speedup achieved by the community miners’ is

2.18×, the speedup efficiency is sub-optimal at about 51% for 4 followers

and 44% for 5 followers, with 500 transactions/blocks.

• The default community validators’ average speedup is 1.25×, and their

peak is 2.03× with 5 followers and 500 transactions per block.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 15 / 24

DiPETrans Results: Transaction Execution Speedup on W2

 0

 0.5

 1

 1.5

 2

 2.5

 3

1:1 1:2 1:4 1:8 1:16

Fixed 500 Transactions/Block

(a) Miner

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
M

in
e
r

Data Set

 0

 0.5

 1

 1.5

 2

 2.5

 3

1:1 1:2 1:4 1:8 1:16

Fixed 500 Transactions/Block

(b) Default Validator
S

p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
V

a
lid

a
to

r
Data Set

 Serial 1 Follower 2 Follower 3 Follower 4 Follower 5 Follower

 0

 0.5

 1

 1.5

 2

 2.5

 3

1:1 1:2 1:4 1:8 1:16

Fixed 500 Transactions/Block

(c) Sharing Validator

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
V

a
lid

a
to

r

Data Set

Figure 5: Workload-2: speedup by community miner and validator over serial miner and validator.

• For the community miners’ a peak speedup of 2.7× is achieved with 5

followers and a favorable speedup efficiency of 73% with 3 followers is

achieved when ρ = 1
4
.

• For the default community validators’ a peak speedup of 2.5× is achieved

with 5 followers.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 16 / 24

DiPETrans Results: End-to-end Mining Speedup

 0

 1

 2

 3

 4

 5

100 200 300 400 500

(a) Miner: Workload-1

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l

Transactions/Block

 0

 1

 2

 3

 4

 5

1:1 1:2 1:4 1:8 1:16

Fixed 500 Transactions/Block

(b) Miner: Workload-2

Varying Data Set

Serial

1 Follower
2 Follower
3 Follower

4 Follower
5 Follower

Figure 6: Average end-to-end block creation speedup by community miner over serial miner.

• In Workload 1, a speedup of 1.15× to 4.91× for 1–5 followers that remain

stable as the block size increases, with a speedup efficiency of 57.5 to

81.83%.

• We achieve a maximum speedup of 1.17× to 4.82× for 1–5 followers,

with a speedup efficiency of 58.5 to 80.33% in Workload 2.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 17 / 24

DiPETrans Results: Throughput

 64

 256

 1024

 4096

100 200 300 400 500

(a) Workload 1 (W1)

T
h
ro

u
g
h
p
u
t

(T
ra

n
s
a
c
ti
o
n
s
/S

e
c
)

Transactions/Block

4
7

8

7
7

0 9
0

0

8
2

4

7
6

6

4
4

9

5
7

9 6
5

9

7
0

9

7
4

2

5
7

0

7
9

9 9
5

0

1
0

4
0

1
1

1
3

6
2

8

9
1

5 1
1

0
9

1
2

4
8

1
3

6
9

6
4

6

9
7

9 1
2

0
5

1
3

8
3

1
5

0
2

6
5

0

1
0

1
0 1
2

6
7

1
4

6
3

1
5

7
7

 64

 256

 1024

 4096

1:1 1:2 1:4 1:8 1:16

(b) Workload 2 (W2)

Data Set

 Serial 1 Follower 2 Follower 3 Follower 4 Follower 5 Follower

5
5

6 6
2

2

6
7

1

1
0

6
9 1

4
3

6

5
5

3 6
6

5 7
7

1 8
8

0

1
0

0
7

8
2

9 9
8

1

1
1

6
7

1
3

3
3

1
5

1
9

1
0

2
3

1
1

9
8

1
4

1
1

1
6

6
3

1
8

9
1

1
0

9
6 1
3

2
5

1
5

8
2

1
8

6
0

2
0

3
1

1
1

3
2 1
4

2
6

1
6

9
0

1
8

9
5

2
1

4
7

Figure 7: Throughput with varying transactions per block and varying ρ.

• In Workload 1, the maximum throughput is 1577 tps in a community with

5 followers at 500 transactions/block, which is 2.05× higher than that of

serial execution.

• In Workload 2, we achieves a maximum throughput of 2147 tps that is

1.49× over serial when ratio ρ = 1
16

for 5 followers, with 500

transactions/blocks. The sweet spot of maximum throughput is 2.52×
with 1690 tps when ρ = 1

4
.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 18 / 24

DiPETrans Results: Optimal Community Size

 0

 20

 40

 60

 80

 100

100 200 300 400 500

(a) Workload 1 (W1)

T
im

e
 (

m
s
)

Transactions/Block

3
5
.0

2

3
2
.8

0

3
1
.9

2

3
3
.8

2

3
8
.2

3

3
2
.1

1 4
0
.0

4

4
6
.6

0

5
3
.6

5 6
0
.9

9

2
3
.3

6 3
1
.8

4

3
8
.6

2

4
5
.2

0

5
1
.4

3

 0

 20

 40

 60

 80

 100

1:1 1:2 1:4 1:8 1:16

(b) Workload 2 (W2)

Data Set

 Accumulative Idle Time Maximum Execution Time Average Execution Time

3
.0

6 8
.5

8

2
3
.0

8

3
6
.6

7

4
0
.3

7

8
2
.0

6

6
6
.1

1

5
8
.2

0

5
5
.6

6

4
9
.9

0

8
1
.3

0

6
3
.9

6

5
2
.4

3

4
6
.4

9

3
9
.8

0

Figure 8: Transaction execution time by a follower and accumulative followers idle time on W1

and W2.

• The optimal community size depends on several parameters: #

transactions/block, # shards formed, the mix of contractual and

monetary transactions/shard.

• With an optimal community size, the idle time will be minimized, hence,

the average execution time will be similar to the maximum execution time.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 19 / 24

Outline

1. Introduction

2. Bottleneck in Existing Blockchain Design

3. Challenges in Executing Transactions Parallelly

4. Current Progress

5. Experimental Evaluation

6. Conclusion and Future Work

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 19 / 24

DiPETrans Conclusion

• We proposed DiPETrans framework to execute block transactions

efficiently in parallel by leveraging distributed resources using

leader-follower approach.

• The proposed techniques prevent transaction parallelization errors

such as FBR, EMB, and FBin.

• We achieve a maximum speedup of 2.2× and 2.0× and an average

speedup of 1.6× and 1.5× for the miner and the validator,

respectively, with 100 to 500 transactions per block when using 6

machines in the community.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 20 / 24

DiPETrans Conclusion

• We proposed DiPETrans framework to execute block transactions

efficiently in parallel by leveraging distributed resources using

leader-follower approach.

• The proposed techniques prevent transaction parallelization errors

such as FBR, EMB, and FBin.

• We achieve a maximum speedup of 2.2× and 2.0× and an average

speedup of 1.6× and 1.5× for the miner and the validator,

respectively, with 100 to 500 transactions per block when using 6

machines in the community.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 20 / 24

DiPETrans Conclusion

• We proposed DiPETrans framework to execute block transactions

efficiently in parallel by leveraging distributed resources using

leader-follower approach.

• The proposed techniques prevent transaction parallelization errors

such as FBR, EMB, and FBin.

• We achieve a maximum speedup of 2.2× and 2.0× and an average

speedup of 1.6× and 1.5× for the miner and the validator,

respectively, with 100 to 500 transactions per block when using 6

machines in the community.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 20 / 24

Future Work

• Exploring the possibilities of integrating our ideas into existing

order-execute-based blockchain platforms like Bitcoin, Sawtooth,

Tezos, and EOS is an exciting direction to pursue.

• We plan to integrate it with Ethereum blockchain by deploying a

DiPETrans community smart contract.

• Another interesting direction is to apply concurrency in the nested

execution of SCTs.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 21 / 24

Future Work

• Exploring the possibilities of integrating our ideas into existing

order-execute-based blockchain platforms like Bitcoin, Sawtooth,

Tezos, and EOS is an exciting direction to pursue.

• We plan to integrate it with Ethereum blockchain by deploying a

DiPETrans community smart contract.

• Another interesting direction is to apply concurrency in the nested

execution of SCTs.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 21 / 24

Future Work

• Exploring the possibilities of integrating our ideas into existing

order-execute-based blockchain platforms like Bitcoin, Sawtooth,

Tezos, and EOS is an exciting direction to pursue.

• We plan to integrate it with Ethereum blockchain by deploying a

DiPETrans community smart contract.

• Another interesting direction is to apply concurrency in the nested

execution of SCTs.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 21 / 24

Collaborators

Parwat Singh Anjana
Ph.D. Student

IIT Hyderabad, India
cs17resch11004@iith.ac.in

Sathya Peri
Associate Professor

IIT Hyderabad, India
sathya_p@cse.iith.ac.in

Yogesh Simmhan
Professor

IISc, Bangalore, India
simmhan@iisc.ac.in

Shrey Baheti
Software Engineer

Cargill Digital Labs, India

shrey_baheti@cargill.com

Thanks!

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 22 / 24

Publications (1/2)

Journal Papers:
• Shrey Baheti, Parwat Singh Anjana, Sathya Peri, and Yogesh Simmhan. “DiPETrans: A

Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain.”

CCPE, Wiley, (In Press, Accepted on Nov. 28, 2021).

• Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit Somani.

“OptSmart: A Space Efficient Optimistic Concurrent Execution of Smart Contracts.” SI on

Blockchain, DAPD, Springer (Under Revision), 2021.

Conference Papers:
• Parwat Singh Anjana, Hagit Attiya, Sweta Kumari, Sathya Peri, and Archit Somani.

“Efficient Concurrent Execution of Smart Contracts in Blockchains using Object-based

Transactional Memory.” NETYS, pp. 77 - 93, Springer, 2021.

• Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit Somani. “An

Efficient Framework for Optimistic Concurrent Execution of Smart Contracts.” PDP, pp. 83

- 92, IEEE, 2019.

Short Papers:
• Parwat Singh Anjana. “Efficient Parallel Execution of Block Transactions in Blockchain.”

Middleware Doctoral Symposium, pp. 8 - 11, ACM, 2021.

• Prashansa Agrawal, Parwat Singh Anjana, and Sathya Peri. “DeHiDe: Deep Learning-based

Hybrid Model to Detect Fake News using Blockchain.” ICDCN, pp. 245 – 246, ACM, 2021.

• Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit Somani.

“Entitling concurrency to smart contracts using optimistic transactional memory.” ICDCN,

pp. 508 - 508, ACM, 2019. (Best Poster Award)

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 23 / 24

Publications (2/2)

Manuscripts under review/preparation:

• Parwat Singh Anjana, Adithya Rajesh Chandrassery, and Sathya Peri. “An Efficient

Approach to Move Elements in the Distributed Geo-Replicated Tree.” CCGrid, Under

Review, 2022.

• Parwat Singh Anjana, Shailesh Mishra, and Sathya Peri. “BDIDS: A Blockchain-based

Distributed Intrusion Detection System for IoT Networks.” Manuscript Under Preparation,

2022.

• Parwat Singh Anjana, Sai Ramana Reddy, and Sathya Peri. “Empirical Study of Parallel

Execution of Block Transactions in the Tezos and Ethereum Blockchain.” Manuscript Under

Preparation, 2022.

• Parwat Singh Anjana, Sandeep Kulkarni, Sathya Peri, Raaghav Ravishankar, and Diksha

Sethi. “Caliber-GC: A Causally Consistent Space Efficient Geo-Replicated Distributed

Key-value Store.” Manuscript Under Preparation, 2022.

Parwat Singh Anjana (CS17RESCH11004)Guided by:Dr. Sathya Peri, Associate ProfessorDiPETrans: A Framework for Distributed Parallel Execution of Transactions of Blocks in Blockchain∗ 24 / 24

Introduction: Ethereum High Level Design

• Ethereum nodes form a peer-to-peer system.

• Clients (external to the system) wishing to execute smart contracts,

contact a peer of the system.

Peer1

Peer2

Peer3

Peer4

Client1

Client2

Client3

T1

T2

T3

B1 B2 B3

B1 B2 B3B1 B2 B3

B1 B2 B3

Figure 9: Clients send Transaction T1, T2 and T3 to Miner (Peer4)

Introduction: Ethereum High Level Design

Peer4 T1 T2 T3 FS
Hash of the

Previous
Block

B1 B2 B3 B4

Figure 10: Miner forms a block B4 and computes final state (FS) sequentially

Introduction: Ethereum High Level Design

Peer1

Peer2

Peer3

Peer4

B1 B2 B3

B1 B2 B3B1 B2 B3

B1 B2 B3 B4

B4

B4B4

Figure 11: Miner broadcasts the block B4

Introduction: Ethereum High Level Design

Peer1

Peer2

Peer3

B1 B2 B3

B1 B2 B3B1 B2 B3

B4

B4

B4

T1 T2 T3 FS
Hash of the

Previous
Block

T1 T2 T3 FS
Hash of the

Previous
Block

T1 T2 T3 FS
Hash of the

Previous
Block

Compute CS

Compute CS Compute CS

Figure 12: Validators (Peer 1, 2, and 3) compute current state (CS) sequentially

Introduction: Ethereum High Level Design

Peer1

Peer2

Peer3

B1 B2 B3

B1 B2 B3B1 B2 B3

B4

B4

B4

T1 T2 T3 FS
Hash of the

Previous
Block

T1 T2 T3 FS
Hash of the

Previous
Block

T1 T2 T3 FS
Hash of the

Previous
Block

CS == FS
 Reject Block B4

No Yes Agree on
Block B4

CS == FS
Reject Block B4

No Agree on
Block B4

Yes
CS == FS Agree on

Block B4
No

Reject Block B4

Yes

Figure 13: Validators verify the FS and reach the consensus protocol

Introduction: Ethereum High Level Design

Peer1

Peer2

Peer3

Peer4

B1 B2 B3

B1 B2 B3B1 B2 B3

B1 B2 B3 B4

B4

B4

B4

Figure 14: Block B4 successfully added to the blockchain

IITH-STM Library

• We have used two protocols implemented in IITH-STM library for

concurrent execution of the smart contracts by miner.

1. Basic Time-stamp Ordering (BTO) Protocol.

2. Multi-Version Time-stamp Ordering (MVTO) Protocol.

Basic Time-stamp Ordering (BTO) Protocol8

• If pi (x) and qj(x), i ̸= j, are operations in conflict, the following has

to hold:

• pi (x) is executed before qj(x) iff ts(ti) < ts(tj).

w2(x , 10) w2(y , 10)

A1
r1(y ,A)r1(x , 0)

T2

T1

C2

Figure 15: BTO

8
Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory, Algorithms, and the Practice of Concurrency

Control and Recovery, 2002.

Multi-Version Time-stamp Ordering (MVTO) Protocol9

• MVTO maintains multiple versions corresponding to each shared

data-objects.

• It reduces the number of aborts and improves the throughput.

w2(x , 10) w2(y , 10)

A1
r1(y ,A)r1(x , 0)

T2

T1

C2

Figure 16: BTO

w2(x , 10) w2(y , 10)

C1
r1(y , 0)

T2

T1

C2

r1(x , 0)

Figure 17: MVTO

9
Kumar et al. A TimeStamp Based Multi-version STM Algorithm. In ICDCN, 2014

Concurrent Validator: Fork-Join Approach

Master
Thread

List of
Atomic

Units (AUs)

Worker
Thread 1

(WT1)

Worker
Thread 2

(WT2)

Worker
Thread n

(WTn)

Thread Pool

ts AU InCnt
0 1 0

ts AU InCnt
5 2 1

ts AU InCnt
10 3 1

5 10 NULL

NULL

NULL

NULL

AU1

AU2 AU3

Conflict Graph

On completion of
Task (AU) execution =>
AU.InCnt = -1;
AU.OutEdge.InCnt -= 1;
ExeCount++;

Get AU to
execute

Status
Task

WT1 WT2 WTn

- AU1 -

0 1 0 Status

-1 => Join
 0 => Available
 1 => Execute

 Task

Submit
Task

AU1

Figure 18: Fork-Join Approach

Concurrent Validator: Decentralized Approach

List of
Atomic Units

(AUs)

Thread 1
(T1)

Thread 2
(T2)

Thread n
(Tn)

ts AU InCnt
0 1 0

ts AU InCnt
5 2 1

ts AU InCnt
10 3 1

5 10 NULL

NULL

NULL

NULL

AU1

AU2 AU3

Conflict Graph

On completion of
AU Execution =>
AU.InCnt = ­1;
AU.OutEdge.InCnt ­= 1;
ExeCount++;

Get AU to
execute

AU1
Threads join when
all AUs executed
(ExeCount ==
NumAUs)

Threads keep on traversing the
conflict graph to find AU nodes with
InCount 0; If find a node then claim
node and execute corresponding

AU.

Figure 19: Decentralized Approach

Proposed Methodologies: OptSmart

• Since static analysis fails to identify the conflicts precisely.

• We introduce OptSmart: A Space Efficient Optimistic Concurrent

Execution of Smart Contracts to exploit multi-processing on a

multi-core system to improve throughput.

• Miners and validators use multiple threads to parallelly execute

smart contract transactions (SCTs) in a block.

• A miner concurrently executes SCTs using optimistic read-write

software transactional memory systems (RWSTMs) and saves the

non-conflicting SCTs in the concurrent bin and conflicting SCTs in

the block graph (BG).

• Later, decentralized validators re-execute SCTs deterministically in

parallel to validate the block by using information appended by the

concurrent miner.

Proposed Methodologies: OptSmart

• Since static analysis fails to identify the conflicts precisely.

• We introduce OptSmart: A Space Efficient Optimistic Concurrent

Execution of Smart Contracts to exploit multi-processing on a

multi-core system to improve throughput.

• Miners and validators use multiple threads to parallelly execute

smart contract transactions (SCTs) in a block.

• A miner concurrently executes SCTs using optimistic read-write

software transactional memory systems (RWSTMs) and saves the

non-conflicting SCTs in the concurrent bin and conflicting SCTs in

the block graph (BG).

• Later, decentralized validators re-execute SCTs deterministically in

parallel to validate the block by using information appended by the

concurrent miner.

Proposed Methodologies: OptSmart

• Since static analysis fails to identify the conflicts precisely.

• We introduce OptSmart: A Space Efficient Optimistic Concurrent

Execution of Smart Contracts to exploit multi-processing on a

multi-core system to improve throughput.

• Miners and validators use multiple threads to parallelly execute

smart contract transactions (SCTs) in a block.

• A miner concurrently executes SCTs using optimistic read-write

software transactional memory systems (RWSTMs) and saves the

non-conflicting SCTs in the concurrent bin and conflicting SCTs in

the block graph (BG).

• Later, decentralized validators re-execute SCTs deterministically in

parallel to validate the block by using information appended by the

concurrent miner.

Proposed Methodologies: OptSmart

• Since static analysis fails to identify the conflicts precisely.

• We introduce OptSmart: A Space Efficient Optimistic Concurrent

Execution of Smart Contracts to exploit multi-processing on a

multi-core system to improve throughput.

• Miners and validators use multiple threads to parallelly execute

smart contract transactions (SCTs) in a block.

• A miner concurrently executes SCTs using optimistic read-write

software transactional memory systems (RWSTMs) and saves the

non-conflicting SCTs in the concurrent bin and conflicting SCTs in

the block graph (BG).

• Later, decentralized validators re-execute SCTs deterministically in

parallel to validate the block by using information appended by the

concurrent miner.

Proposed Methodologies: OptSmart

• Since static analysis fails to identify the conflicts precisely.

• We introduce OptSmart: A Space Efficient Optimistic Concurrent

Execution of Smart Contracts to exploit multi-processing on a

multi-core system to improve throughput.

• Miners and validators use multiple threads to parallelly execute

smart contract transactions (SCTs) in a block.

• A miner concurrently executes SCTs using optimistic read-write

software transactional memory systems (RWSTMs) and saves the

non-conflicting SCTs in the concurrent bin and conflicting SCTs in

the block graph (BG).

• Later, decentralized validators re-execute SCTs deterministically in

parallel to validate the block by using information appended by the

concurrent miner.

OptSmart Results

100 200 300 400 500 600

1

2

3

4

SCTs/BlockS
p
ee
d
u
p
ov
er

S
er
ia
l
M
in
er

(a) Concurrent Miner

100 200 300 400 500 600
1

3

6

9

SCTs/Block

S
p
ee
d
u
p
ov
er

S
er
ia
l
V
al
id
at
or

(b) Concurrent Dec-Validator

Serial Def-BTO
Opt-BTO Def-MVTO

Opt-MVTO SpecBin

100 200 300 400 500 600

0.5

1

1.5

2

SCTs/Block
(c) Concurrent FJ-Validator

Figure 20: Speedup achieved by optimized concurrent miner and validator over serial miner and

validator.

• OptSmart achieves an average speedup of 4.49× and 5.21× for

optimized concurrent miners using BTO (Opt-BTO) and MVTO STM

(Opt-MVTO) protocol than a serial miner.

• Optimized decentralized BTO and MVTO concurrent validator

outperform average 7.68× and 8.60× than serial validator.

• The proposed efficient BG saves an average of 2.29× block space over

existing approaches.

Read-Write STM (RWSTM) v/s Object-based STM (OSTM)

i1(A3, $150)l1(A3, $100)l1(A1, $100)

r1(A1)

r1(A2)

r1(A3)

w1(A1)

r1(A1)

r1(A2)

r1(A3)

r1(A1) r1(A1)

w1(A3) r2(A2) r2(A4)

w2(A4)

r2(A3)L0 : RWSTMs

A3 A4A2A1

l2(A2, $100) l2(A4, $100) d2(A2, $30) i2(A4, $170)

r2(A1)

r2(A2)

r2(A1)r2(A1)

r2(A2)

w2(A2)

r2(A4)

r2(A3)

r2(A2)

r2(A1)

L1 : OSTMs

B

r − w

r − w
T1 T2 T1 T2

1

2

d1(A1, $50)

(d): No cycle at OSTMs(c): Cycle at RWSTMs(b): Underlying Data Structure

(a): Tree Structure

T1: transfer1(A1,A3, $50) T2: transfer2(A2,A4, $70)

Figure 21: (a) Two SCTs T1 and T2 in the form of a tree structure which is working on a

hash-table with B buckets where four accounts (shared data items) A1,A2,A3 and A4 are stored in

the form of a list depicted in (b). T1 transfers $50 from A1 to A3 and T2 transfers $70 from A2 to

A4. After checking the sufficient balance using lookup (l), SCT T1 deletes (d) $50 from A1 and

inserts (i) it to A3 at higher-level (L1). At lower-level 0 (L0), these operations involve read (r) and

write (w) to both accounts A1 and A3. Since, its conflict graph has a cycle either T1 or T2 has to

abort (see (c)); However, execution at L1 depicts that both transactions are working on different

accounts and the higher-level methods are isolated. So, we can prune this tree and isolate the

transactions at higher-level with equivalent serial schedule T1T2 or T2T1 as shown in (d).

Proposed Methodology: ObjSC

• We develop an efficient framework for the concurrent execution of

SCTs by miners using an optimistic Object-Based STMs (OSTMs).10

• STMs are convenient programming paradigms for a programmer to

access shared memory using multiple threads.

• Traditional STMs work on read-write primitives. We refer to these

as Read-Write STMs (RWSTMs).

• OSTMs operate on higher level objects rather than primitive reads

and writes which act upon memory locations.

• OSTMs provide greater concurrency than RWSTMs.

• Hash Table based OSTMs export the following methods:

• STM begin()

• STM insert()

• STM delete()

• STM lookup()

• STM tryC()

• STM Abort()

10
Peri, S., Singh, A., Somani, A.: Efficient means of Achieving Composability using Transactional Memory. NETYS, 2018.

Proposed Methodology: ObjSC

• We develop an efficient framework for the concurrent execution of

SCTs by miners using an optimistic Object-Based STMs (OSTMs).10

• STMs are convenient programming paradigms for a programmer to

access shared memory using multiple threads.

• Traditional STMs work on read-write primitives. We refer to these

as Read-Write STMs (RWSTMs).

• OSTMs operate on higher level objects rather than primitive reads

and writes which act upon memory locations.

• OSTMs provide greater concurrency than RWSTMs.

• Hash Table based OSTMs export the following methods:

• STM begin()

• STM insert()

• STM delete()

• STM lookup()

• STM tryC()

• STM Abort()

10
Peri, S., Singh, A., Somani, A.: Efficient means of Achieving Composability using Transactional Memory. NETYS, 2018.

Proposed Methodology: ObjSC

• We develop an efficient framework for the concurrent execution of

SCTs by miners using an optimistic Object-Based STMs (OSTMs).10

• STMs are convenient programming paradigms for a programmer to

access shared memory using multiple threads.

• Traditional STMs work on read-write primitives. We refer to these

as Read-Write STMs (RWSTMs).

• OSTMs operate on higher level objects rather than primitive reads

and writes which act upon memory locations.

• OSTMs provide greater concurrency than RWSTMs.

• Hash Table based OSTMs export the following methods:

• STM begin()

• STM insert()

• STM delete()

• STM lookup()

• STM tryC()

• STM Abort()

10
Peri, S., Singh, A., Somani, A.: Efficient means of Achieving Composability using Transactional Memory. NETYS, 2018.

Proposed Methodology: ObjSC

• We develop an efficient framework for the concurrent execution of

SCTs by miners using an optimistic Object-Based STMs (OSTMs).10

• STMs are convenient programming paradigms for a programmer to

access shared memory using multiple threads.

• Traditional STMs work on read-write primitives. We refer to these

as Read-Write STMs (RWSTMs).

• OSTMs operate on higher level objects rather than primitive reads

and writes which act upon memory locations.

• OSTMs provide greater concurrency than RWSTMs.

• Hash Table based OSTMs export the following methods:

• STM begin()

• STM insert()

• STM delete()

• STM lookup()

• STM tryC()

• STM Abort()

10
Peri, S., Singh, A., Somani, A.: Efficient means of Achieving Composability using Transactional Memory. NETYS, 2018.

Proposed Methodology: ObjSC

• We develop an efficient framework for the concurrent execution of

SCTs by miners using an optimistic Object-Based STMs (OSTMs).10

• STMs are convenient programming paradigms for a programmer to

access shared memory using multiple threads.

• Traditional STMs work on read-write primitives. We refer to these

as Read-Write STMs (RWSTMs).

• OSTMs operate on higher level objects rather than primitive reads

and writes which act upon memory locations.

• OSTMs provide greater concurrency than RWSTMs.

• Hash Table based OSTMs export the following methods:

• STM begin()

• STM insert()

• STM delete()

• STM lookup()

• STM tryC()

• STM Abort()

10
Peri, S., Singh, A., Somani, A.: Efficient means of Achieving Composability using Transactional Memory. NETYS, 2018.

Proposed Methodology: ObjSC

• We develop an efficient framework for the concurrent execution of

SCTs by miners using an optimistic Object-Based STMs (OSTMs).10

• STMs are convenient programming paradigms for a programmer to

access shared memory using multiple threads.

• Traditional STMs work on read-write primitives. We refer to these

as Read-Write STMs (RWSTMs).

• OSTMs operate on higher level objects rather than primitive reads

and writes which act upon memory locations.

• OSTMs provide greater concurrency than RWSTMs.

• Hash Table based OSTMs export the following methods:

• STM begin()

• STM insert()

• STM delete()

• STM lookup()

• STM tryC()

• STM Abort()

10
Peri, S., Singh, A., Somani, A.: Efficient means of Achieving Composability using Transactional Memory. NETYS, 2018.

ObjSC: Thread Safe Integration of STMs in Smart Contracts

Listing 1: Transfer function

1 transfer(s_id , r_id , amt) {
2 if(amt > bal[s_id])
3 throw;
4 bal[s_id] -= amt;
5 bal[r_id] += amt;
6 }

Listing 2: Transfer function using STM

7 transfer(s_id , r_id , amt) {
8 t_id = STM_begin ();
9 s_bal = STM_lookup(s_id);

10 if(amt > s_bal) {
11 abort(t_id);
12 throw;
13 }
14 STM_delete(s_id , amt);
15 STM_insert(r_id , amt);
16 if(STM_tryC(t_id)!= SUCCESS)
17 goto Line 8;// Trans aborted
18 }

ObjSC: Thread Safe Integration of STMs in Smart Contracts

Listing 1: Transfer function

1 transfer(s_id , r_id , amt) {
2 if(amt > bal[s_id])
3 throw;
4 bal[s_id] -= amt;
5 bal[r_id] += amt;
6 }

Listing 2: Transfer function using STM

7 transfer(s_id , r_id , amt) {
8 t_id = STM_begin ();
9 s_bal = STM_lookup(s_id);

10 if(amt > s_bal) {
11 abort(t_id);
12 throw;
13 }
14 STM_delete(s_id , amt);
15 STM_insert(r_id , amt);
16 if(STM_tryC(t_id)!= SUCCESS)
17 goto Line 8;// Trans aborted
18 }

ObjSC: Working of multi-threaded miner

4. Com
pute the hash of

 the previous block

3
.
C

re
at

e
B

G

A

B

C

D

E

1. Execute the SCTs concurrently

2. Return the Conflic
t lis

tusing object semantic

5. Create a Block

Block Graph

T1
T2

T3

Final State

Hash of the
Previous Block

of each Accounts

T1

T3

T2

C1T1

send(A,B,$20)

Multi-threaded
Miner

T1: send(A,B,$20) T3: send(D,E,$50)

Client1 Client3

Client2
T2: send(B,C,$10)

C3T3

send(D,E,$50)

C2
T2

(e). Proposed Block(c). Block Graph Previous Hash

(d). Compute

(b). Balance Details

IS

$100
$100
$100

$100

$100

$110
$110

$150

$80

$50

Account FSm

(a). Multi-threaded Execution

send(B,C,$10)

Figure 22: Working of multi-threaded miner

ObjSC: Block Graph (1/2)

• Miner maintains the BG in the form of the adjacency list, where

vertices correspond only to committed SCTs.

• Edges of the BG depends on the conflicts given by the OSTMs.

Conflicting Operations =



STM lookupi () − STM tryCj ()

STM deletei () − STM tryCj ()

STM tryCi () − STM tryCj ()

STM tryCi () − STM deletej ()

STM tryCi () − STM lookupj ()

(1)

• Multi-threaded miner uses addVert() and addEdge() methods of

BG.

• Later, validators re-execute the same SCTs concurrently and

deterministically relying on the BG.

• Two SCTs that do not have a path can execute concurrently.

ObjSC: Block Graph (1/2)

• Miner maintains the BG in the form of the adjacency list, where

vertices correspond only to committed SCTs.

• Edges of the BG depends on the conflicts given by the OSTMs.

Conflicting Operations =



STM lookupi () − STM tryCj ()

STM deletei () − STM tryCj ()

STM tryCi () − STM tryCj ()

STM tryCi () − STM deletej ()

STM tryCi () − STM lookupj ()

(1)

• Multi-threaded miner uses addVert() and addEdge() methods of

BG.

• Later, validators re-execute the same SCTs concurrently and

deterministically relying on the BG.

• Two SCTs that do not have a path can execute concurrently.

ObjSC: Block Graph (1/2)

• Miner maintains the BG in the form of the adjacency list, where

vertices correspond only to committed SCTs.

• Edges of the BG depends on the conflicts given by the OSTMs.

Conflicting Operations =



STM lookupi () − STM tryCj ()

STM deletei () − STM tryCj ()

STM tryCi () − STM tryCj ()

STM tryCi () − STM deletej ()

STM tryCi () − STM lookupj ()

(1)

• Multi-threaded miner uses addVert() and addEdge() methods of

BG.

• Later, validators re-execute the same SCTs concurrently and

deterministically relying on the BG.

• Two SCTs that do not have a path can execute concurrently.

ObjSC: Block Graph (1/2)

• Miner maintains the BG in the form of the adjacency list, where

vertices correspond only to committed SCTs.

• Edges of the BG depends on the conflicts given by the OSTMs.

Conflicting Operations =



STM lookupi () − STM tryCj ()

STM deletei () − STM tryCj ()

STM tryCi () − STM tryCj ()

STM tryCi () − STM deletej ()

STM tryCi () − STM lookupj ()

(1)

• Multi-threaded miner uses addVert() and addEdge() methods of

BG.

• Later, validators re-execute the same SCTs concurrently and

deterministically relying on the BG.

• Two SCTs that do not have a path can execute concurrently.

ObjSC: Block Graph (1/2)

• Miner maintains the BG in the form of the adjacency list, where

vertices correspond only to committed SCTs.

• Edges of the BG depends on the conflicts given by the OSTMs.

Conflicting Operations =



STM lookupi () − STM tryCj ()

STM deletei () − STM tryCj ()

STM tryCi () − STM tryCj ()

STM tryCi () − STM deletej ()

STM tryCi () − STM lookupj ()

(1)

• Multi-threaded miner uses addVert() and addEdge() methods of

BG.

• Later, validators re-execute the same SCTs concurrently and

deterministically relying on the BG.

• Two SCTs that do not have a path can execute concurrently.

ObjSC: Block Graph (1/2)

• Miner maintains the BG in the form of the adjacency list, where

vertices correspond only to committed SCTs.

• Edges of the BG depends on the conflicts given by the OSTMs.

Conflicting Operations =



STM lookupi () − STM tryCj ()

STM deletei () − STM tryCj ()

STM tryCi () − STM tryCj ()

STM tryCi () − STM deletej ()

STM tryCi () − STM lookupj ()

(1)

• Multi-threaded miner uses addVert() and addEdge() methods of

BG.

• Later, validators re-execute the same SCTs concurrently and

deterministically relying on the BG.

• Two SCTs that do not have a path can execute concurrently.

ObjSC: Block Graph (2/2)

• SMV uses searchGlobal() and decInCount() methods of BG.

V
er

te
x
 L

is
t

0

1

0

Edge List
-∞

+∞

-∞ +∞

-∞ +∞

-∞ +∞

T1

T3

T2

(b). Block Graph

egNext

vrtNext

egNext

vrtNext

vrtNext

egNext vrtRef egNextts

2

(a). Underlying Representation of Block Graph

ts

1

scFun

transfer(A,B,$20)

ts

2

scFun

transfer(B,C,$10)

ts

3 transfer(D,E,$50)

scFun

indegree

indegree

indegree

Figure 23: Data structure of BG

• OSTMs11 have fewer conflicts than RWSTMs which in turn, allows

validators to execute more SCTs concurrently.

• This also reduces the size of the BG leading to a smaller

communication cost than RWSTMs.

11
Herlihy, M., Koskinen, E.: Transactional Boosting: A Methodology for Highly-concurrent Transactional Objects. PPoPP, 2008.

ObjSC: Block Graph (2/2)

• SMV uses searchGlobal() and decInCount() methods of BG.

V
er

te
x
 L

is
t

0

1

0

Edge List
-∞

+∞

-∞ +∞

-∞ +∞

-∞ +∞

T1

T3

T2

(b). Block Graph

egNext

vrtNext

egNext

vrtNext

vrtNext

egNext vrtRef egNextts

2

(a). Underlying Representation of Block Graph

ts

1

scFun

transfer(A,B,$20)

ts

2

scFun

transfer(B,C,$10)

ts

3 transfer(D,E,$50)

scFun

indegree

indegree

indegree

Figure 23: Data structure of BG

• OSTMs11 have fewer conflicts than RWSTMs which in turn, allows

validators to execute more SCTs concurrently.

• This also reduces the size of the BG leading to a smaller

communication cost than RWSTMs.

11
Herlihy, M., Koskinen, E.: Transactional Boosting: A Methodology for Highly-concurrent Transactional Objects. PPoPP, 2008.

ObjSC: Block Graph (2/2)

• SMV uses searchGlobal() and decInCount() methods of BG.

V
er

te
x
 L

is
t

0

1

0

Edge List
-∞

+∞

-∞ +∞

-∞ +∞

-∞ +∞

T1

T3

T2

(b). Block Graph

egNext

vrtNext

egNext

vrtNext

vrtNext

egNext vrtRef egNextts

2

(a). Underlying Representation of Block Graph

ts

1

scFun

transfer(A,B,$20)

ts

2

scFun

transfer(B,C,$10)

ts

3 transfer(D,E,$50)

scFun

indegree

indegree

indegree

Figure 23: Data structure of BG

• OSTMs11 have fewer conflicts than RWSTMs which in turn, allows

validators to execute more SCTs concurrently.

• This also reduces the size of the BG leading to a smaller

communication cost than RWSTMs.

11
Herlihy, M., Koskinen, E.: Transactional Boosting: A Methodology for Highly-concurrent Transactional Objects. PPoPP, 2008.

ObjSC: Block Graph (2/2)

• SMV uses searchGlobal() and decInCount() methods of BG.

V
er

te
x
 L

is
t

0

1

0

Edge List
-∞

+∞

-∞ +∞

-∞ +∞

-∞ +∞

T1

T3

T2

(b). Block Graph

egNext

vrtNext

egNext

vrtNext

vrtNext

egNext vrtRef egNextts

2

(a). Underlying Representation of Block Graph

ts

1

scFun

transfer(A,B,$20)

ts

2

scFun

transfer(B,C,$10)

ts

3 transfer(D,E,$50)

scFun

indegree

indegree

indegree

Figure 23: Data structure of BG

• OSTMs11 have fewer conflicts than RWSTMs which in turn, allows

validators to execute more SCTs concurrently.

• This also reduces the size of the BG leading to a smaller

communication cost than RWSTMs.
11

Herlihy, M., Koskinen, E.: Transactional Boosting: A Methodology for Highly-concurrent Transactional Objects. PPoPP, 2008.

ObjSC: Data Structure of SVOSTM to Maintain Conflicts

T0 T5

T0

i0(A1, v0) C0

C5

C7

i5(A1, v5)

l7(A1, v5)

T7

T5

ts

T5

ts

T7

ts scFun

T0

T0

cl

nili0(A1, v0)

cl clscFun scFun

i5(A1, v5) l7(A1, v5)

T0 T5

(c) Transactions Conflict List

(b) Timeline View

(a) Structure of Shared data-item

57

nextcLlist[]Lock cUlist[]maxL maxU

T7

v5

Account

A1

val

Figure 24: Underlying Data Structure of SVOSTM

ObjSC: Single-version v/s Multi-version OSTMs

• Multi-version OSTMs (MVOSTMs) maintain multiple versions for

each shared data item (object) and provide greater concurrency

relative to traditional single-version OSTMs (SVOSTMs).

(d) MVOSTMs

(c) SVOSTMs

(b) Multi−version OSTMs(a) Single−version OSTMs

(SVOSTMs) (MVOSTMs)

T1

C1 T2T1
T1

get1(A, $10)

T1 T2

A
get1(B ,Abort)

T2
C2 T2

C2

get1(A, $10) get1(B , $10)

get-transfer

transfer -get

get-transfer

transfer2(A,B , $10) transfer2(A,B , $10)

Figure 25: (a) Transaction T1 gets the balance of two accounts A and B (both initially $10),
while transaction T2 transfers $10 from A to B and T1 aborts. Since, its conflict graph has a cycle

(see (c)); (b) When T1 and T2 are executed by MVOSTM, T1 can read the old versions of A and

B. This can be serialized, as shown in (d).

ObjSC: Single-version v/s Multi-version OSTMs

• Multi-version OSTMs (MVOSTMs) maintain multiple versions for

each shared data item (object) and provide greater concurrency

relative to traditional single-version OSTMs (SVOSTMs).

(d) MVOSTMs

(c) SVOSTMs

(b) Multi−version OSTMs(a) Single−version OSTMs

(SVOSTMs) (MVOSTMs)

T1

C1 T2T1
T1

get1(A, $10)

T1 T2

A
get1(B ,Abort)

T2
C2 T2

C2

get1(A, $10) get1(B , $10)

get-transfer

transfer -get

get-transfer

transfer2(A,B , $10) transfer2(A,B , $10)

Figure 25: (a) Transaction T1 gets the balance of two accounts A and B (both initially $10),
while transaction T2 transfers $10 from A to B and T1 aborts. Since, its conflict graph has a cycle

(see (c)); (b) When T1 and T2 are executed by MVOSTM, T1 can read the old versions of A and

B. This can be serialized, as shown in (d).

ObjSC: Multi-Version OSTM based Miner

• Multi-Version OSTMs (MVOSTMs)12 maintain multiple versions for

each shared data item and provide greater concurrency relative to

Single-Version OSTMs (SVOSTMs).

• MVOSTM-based BG has fewer edges than an SVOSTM-based BG,

and further reduces the size of the BG leading to a smaller

communication cost.

12
Juyal, C., Kulkarni, S., Kumari, S., Peri, S., Somani, A.: An innovative approach to achieve compositionality efficiently using

multi-version object based transactional systems. SSS, 2018.

ObjSC: Multi-Version OSTM based Miner

• Multi-Version OSTMs (MVOSTMs)12 maintain multiple versions for

each shared data item and provide greater concurrency relative to

Single-Version OSTMs (SVOSTMs).

• MVOSTM-based BG has fewer edges than an SVOSTM-based BG,

and further reduces the size of the BG leading to a smaller

communication cost.

12
Juyal, C., Kulkarni, S., Kumari, S., Peri, S., Somani, A.: An innovative approach to achieve compositionality efficiently using

multi-version object based transactional systems. SSS, 2018.

ObjSC: Data Structure of MVOSTM to Maintain Conflicts

7

T10 T5

ts vNextval

0 v0 0 nil

ts vNextvalts vNextval

5 7v5 nil10 0 nil

Version List (or vl)

T0

i0(A1, v0) C0

C5

C7

i5(A1, v5)

i10(A1, v10)

l7(A1, v5)

T7

T10 C10

T5

v10

ts

T5

ts

T7

tsts scFun

T0

T0 T5

vlLock next

rvl rvl rvl

cl

nili0(A1, v0)

cl clscFun scFun scFun

i5(A1, v5) l7(A1, v5) T10 i10(A1, v10)

cl

(a) Structure of Shared data-item with Version List

(b) Timeline View

(c) Transactions Conflict List

A1

Account

maxL maxL maxL

Figure 26: Underlying Data Structure of SVOSTM

ObjSC Correctness Criteria: Opacity

w2(x , 10) w2(y , 10)

A1
r1(y , 10)r1(x , 0)

C2

T1

T2

Figure 27: History H is not Opaque

w2(x , 10) w2(y , 10)

A1
r1(y ,A)r1(x , 0)

T2

T1

C2

Figure 28: Opaque History H

ObjSC: Working of multi-threaded validator

Block

Graph each Accounts Previous Block

Hash of theFinal State of

A

B

C

D

E

1. Execute the SCTs concurrently using BG

T1

T2

T3

Multi-threaded
Validator

T1

T3

T2 $100
$100
$100

$100

$100

$110
$110

$150

$80

$50

ISAccount

C2T2

send(B,C,$10)

FSv
Compare

FSm and FSv

2. Re
turn

the fi
nal s

tate
FSv

4. If (FS
m = FS

v) then Block is Valid

C1T1

send(A,B,$20)

C3T3

send(D,E,$50)

(a). Block Graph

else Invalid Block

Block Proposed by Multi-threaded Miner

3.Compare FS
m given by miner

and FS
v computed by itsself

(c). Balance Details(b). Multi-threaded Execution

(d). Compare the

Final States

Figure 29: Working of multi-threaded validator

ObjSC: Smart Multi-threaded Validator (SMV)

SMV maintains two global counters (gUC: global update counter and

gLC: global lookup counter) and two local counters (lUC and lLC) for

each shared data item k to identifies the EMB error.

Lookup(k):

• If(k.gUC == k.lUC)

1. Atomically increment the global lookup counter, k.gLC.

2. Increment k.lLC by 1.

3. Lookup key k from a shared memory.

else miner is malicious.

Insert(k, v)/Delete(k):

• If(k.gLC == k.lLC && k.gUC == k.lUC)

1. Atomically increment the global update counter, k.gUC.

2. Increment k.lUC by 1.

3. Insert/delete key k to/from shared memory.

else miner is malicious.

ObjSC: Smart Multi-threaded Validator (SMV)

SMV maintains two global counters (gUC: global update counter and

gLC: global lookup counter) and two local counters (lUC and lLC) for

each shared data item k to identifies the EMB error.

Lookup(k):

• If(k.gUC == k.lUC)

1. Atomically increment the global lookup counter, k.gLC.

2. Increment k.lLC by 1.

3. Lookup key k from a shared memory.

else miner is malicious.

Insert(k, v)/Delete(k):

• If(k.gLC == k.lLC && k.gUC == k.lUC)

1. Atomically increment the global update counter, k.gUC.

2. Increment k.lUC by 1.

3. Insert/delete key k to/from shared memory.

else miner is malicious.

ObjSC: Smart Multi-threaded Validator (SMV)

SMV maintains two global counters (gUC: global update counter and

gLC: global lookup counter) and two local counters (lUC and lLC) for

each shared data item k to identifies the EMB error.

Lookup(k):

• If(k.gUC == k.lUC)

1. Atomically increment the global lookup counter, k.gLC.

2. Increment k.lLC by 1.

3. Lookup key k from a shared memory.

else miner is malicious.

Insert(k, v)/Delete(k):

• If(k.gLC == k.lLC && k.gUC == k.lUC)

1. Atomically increment the global update counter, k.gUC.

2. Increment k.lUC by 1.

3. Insert/delete key k to/from shared memory.

else miner is malicious.

ObjSC: SMV Counter Based Solution

Algorithm 1: SMV(scFun): Execute scFun with atomic global lookup/update counter.

// scFun is a list of steps.

while (scFun.steps.hasNext()) do
curStep = scFun.steps.next(); //Get the next step to execute.

switch (curStep) do

case lookup(k): do

// Check for update counter (uc) value.

if (k.gUC == k.lUCi) then
Atomically increment the global lookup counter, k.gLC ;

Increment k.lLCi by 1;//Maintain k.lLCi in transaction local log.

Lookup k from a shared memory;

end

else
return ⟨Miner is malicious⟩;

end

end

case insert(k, v): do

// Check lookup/update counter value.

if ((k.gLC == k.lLCi) && (k.gUC == k.lUCi)) then
Atomically increment the global update counter, k.gUC ;

Increment k.lUCi by 1;//Maintain k.lUCi in transaction local log.

Insert k in shared memory with value v ;

end

else
return ⟨Miner is malicious⟩;

end

end

end

end

Atomically decrements the k.gLC and k.gUC corresponding to each shared data-item key k;

ObjSC: SMV Counter Based Solution

// scFun is a list of steps.

while (scFun.steps.hasNext()) do
curStep = scFun.steps.next(); //Get the next step to execute.

switch (curStep) do

case delete(k): do

// Check lookup/update counter value.

if ((k.gLC == k.lLCi) && (k.gUC == k.lUCi)) then
Atomically increment the global update counter, k.gUC ;

Increment k.lUCi by 1; //Maintain k.lUCi in transaction local.

Delete k in shared memory;

end

else
return ⟨Miner is malicious⟩;

end

end

end

end

Atomically decrements the k.gLC and k.gUC corresponding to each shared data-item key k;

ObjSC: Experimental Evaluation (1/2)

• In Ethereum blockchain, smart contracts are written in Solidity

language, which runs on Ethereum Virtual Machine (EVM).

• EVM does not supports multi-threading.

• We converted smart contracts from Solidity to C++ language for

multi-threaded execution.

ObjSC: Experimental Evaluation (1/2)

• In Ethereum blockchain, smart contracts are written in Solidity

language, which runs on Ethereum Virtual Machine (EVM).

• EVM does not supports multi-threading.

• We converted smart contracts from Solidity to C++ language for

multi-threaded execution.

ObjSC: Experimental Evaluation (1/2)

• In Ethereum blockchain, smart contracts are written in Solidity

language, which runs on Ethereum Virtual Machine (EVM).

• EVM does not supports multi-threading.

• We converted smart contracts from Solidity to C++ language for

multi-threaded execution.

ObjSC: Experimental Evaluation (2/2)

• We consider four benchmark contracts Coin, Ballot, Simple Auction,

and Mix from Solidity documentation.

1. Coin: A simple cryptocurrency contract.

2. Ballot: An electronic voting contract.

3. Simple Auction: An online auction contract.

4. Mix: Combination of above three contracts in equal proportion.

• We ran our experiments on Intel (R) Xeon (R) CPU E5-2690 that

supports 56 hardware threads and 32GB RAM.

• We consider two workloads:

Workload SCTs Threads Shared data items

Workload 1 (W1) 50 - 300 50 500

Workload 2 (W2) 100 10 - 60 500

ObjSC: Experimental Evaluation (2/2)

• We consider four benchmark contracts Coin, Ballot, Simple Auction,

and Mix from Solidity documentation.

1. Coin: A simple cryptocurrency contract.

2. Ballot: An electronic voting contract.

3. Simple Auction: An online auction contract.

4. Mix: Combination of above three contracts in equal proportion.

• We ran our experiments on Intel (R) Xeon (R) CPU E5-2690 that

supports 56 hardware threads and 32GB RAM.

• We consider two workloads:

Workload SCTs Threads Shared data items

Workload 1 (W1) 50 - 300 50 500

Workload 2 (W2) 100 10 - 60 500

ObjSC: Experimental Evaluation (2/2)

• We consider four benchmark contracts Coin, Ballot, Simple Auction,

and Mix from Solidity documentation.

1. Coin: A simple cryptocurrency contract.

2. Ballot: An electronic voting contract.

3. Simple Auction: An online auction contract.

4. Mix: Combination of above three contracts in equal proportion.

• We ran our experiments on Intel (R) Xeon (R) CPU E5-2690 that

supports 56 hardware threads and 32GB RAM.

• We consider two workloads:

Workload SCTs Threads Shared data items

Workload 1 (W1) 50 - 300 50 500

Workload 2 (W2) 100 10 - 60 500

ObjSC: Experimental Evaluation (2/2)

• We consider four benchmark contracts Coin, Ballot, Simple Auction,

and Mix from Solidity documentation.

1. Coin: A simple cryptocurrency contract.

2. Ballot: An electronic voting contract.

3. Simple Auction: An online auction contract.

4. Mix: Combination of above three contracts in equal proportion.

• We ran our experiments on Intel (R) Xeon (R) CPU E5-2690 that

supports 56 hardware threads and 32GB RAM.

• We consider two workloads:

Workload SCTs Threads Shared data items

Workload 1 (W1) 50 - 300 50 500

Workload 2 (W2) 100 10 - 60 500

ObjSC: Experimental Evaluation (2/2)

• We consider four benchmark contracts Coin, Ballot, Simple Auction,

and Mix from Solidity documentation.

1. Coin: A simple cryptocurrency contract.

2. Ballot: An electronic voting contract.

3. Simple Auction: An online auction contract.

4. Mix: Combination of above three contracts in equal proportion.

• We ran our experiments on Intel (R) Xeon (R) CPU E5-2690 that

supports 56 hardware threads and 32GB RAM.

• We consider two workloads:

Workload SCTs Threads Shared data items

Workload 1 (W1) 50 - 300 50 500

Workload 2 (W2) 100 10 - 60 500

ObjSC: Experimental Evaluation (2/2)

• We consider four benchmark contracts Coin, Ballot, Simple Auction,

and Mix from Solidity documentation.

1. Coin: A simple cryptocurrency contract.

2. Ballot: An electronic voting contract.

3. Simple Auction: An online auction contract.

4. Mix: Combination of above three contracts in equal proportion.

• We ran our experiments on Intel (R) Xeon (R) CPU E5-2690 that

supports 56 hardware threads and 32GB RAM.

• We consider two workloads:

Workload SCTs Threads Shared data items

Workload 1 (W1) 50 - 300 50 500

Workload 2 (W2) 100 10 - 60 500

ObjSC: Experimental Evaluation (2/2)

• We consider four benchmark contracts Coin, Ballot, Simple Auction,

and Mix from Solidity documentation.

1. Coin: A simple cryptocurrency contract.

2. Ballot: An electronic voting contract.

3. Simple Auction: An online auction contract.

4. Mix: Combination of above three contracts in equal proportion.

• We ran our experiments on Intel (R) Xeon (R) CPU E5-2690 that

supports 56 hardware threads and 32GB RAM.

• We consider two workloads:

Workload SCTs Threads Shared data items

Workload 1 (W1) 50 - 300 50 500

Workload 2 (W2) 100 10 - 60 500

ObjSC: Experimental Evaluation (2/2)

• We consider four benchmark contracts Coin, Ballot, Simple Auction,

and Mix from Solidity documentation.

1. Coin: A simple cryptocurrency contract.

2. Ballot: An electronic voting contract.

3. Simple Auction: An online auction contract.

4. Mix: Combination of above three contracts in equal proportion.

• We ran our experiments on Intel (R) Xeon (R) CPU E5-2690 that

supports 56 hardware threads and 32GB RAM.

• We consider two workloads:

Workload SCTs Threads Shared data items

Workload 1 (W1) 50 - 300 50 500

Workload 2 (W2) 100 10 - 60 500

ObjSC Results: Multi-threaded Miner Speedup

 1

 2

 3

 4

 5

 6

50 100 150 200 250 300

(a) Miner on W1 for Mix Contract

Mix Contract

S
p

e
e

d
u

p
 o

v
e

r
S

e
ri
a

l
M

in
e

r

Number of SCTs

BTO Miner
MVTO Miner

SVOSTM Miner

MVOSTM Miner

StaticBin Miner
SpecBin Miner

Serial

 1

 2

 3

 4

 5

 6

10 20 30 40 50 60

(b) Miner on W2 for Mix Contract

Mix Contract

Number of Threads

Figure 30: Speedup of Multi-threaded miner over Serial miner

• MVOSTM, SVOSTM, MVTO, BTO, Speculative Bin, and Static Bin

miner provide an average speedup of 3.91×, 3.41×, 1.98×, 1.5×, 3.02×,

and 1.12×, over Serial miner, respectively.

ObjSC Results: Average Speedup by Multi-threaded Miner

Table 2: Overall average speedup on all workloads by multi-threaded miner over serial miner

Multi-threaded Miner

Contract BTO

Miner

MVTO

Miner

SVOSTM

Miner

MVOSTM

Miner

StaticBin

Miner

SpecBin

Miner

Coin 1.596 1.959 4.391 5.572 1.279 6.689

Ballot 0.960 1.065 2.229 2.431 1.175 2.233

Auction 2.305 2.675 3.456 3.881 1.524 2.232

Mix 1.596 2.118 3.425 3.898 1.102 3.080

Total Avg. Speedup 1.61 1.95 3.38 3.95 1.27 3.56

ObjSC Results: SMV Speedup

 0

 10

 20

 30

 40

 50

 60

50 100 150 200 250 300

 0

 4

 8

 12

 16

 20

(a) SMV on W1 for Mix Contract

Mix Contract

S
p

e
e

d
u

p
 o

v
e

r
S

e
ri
a

l
V

a
lid

a
to

r

Number of SCTs

BTO SMV
MVTO SMV

SVOSTM SMV

MVOSTM SMV
StaticBin SMV
SpecBin SMV

Serial

 0

 10

 20

 30

 40

 50

 60

10 20 30 40 50 60

 0

 4

 8

 12

 16

 20

(b) SMV on W2 for Mix Contract

Mix Contract

B
in

 S
M

V
 S

p
e

e
d

u
p

Number of Threads

Figure 31: Speedup of SMV over Serial validator

• MVOSTM, SVOSTM, MVTO, BTO, Speculative Bin, and Static Bin

Decentralized SMVs provide an average speedup of 48.45×, 46.35×,

43.89×, 41.44×, 5.39×, and 4.81× over Serial validator, respectively.

ObjSC Results: Average Speedup by SMV

Table 3: Overall average speedup on all workloads by SMV over serial validator

Smart Multi-threaded Validator (SMV)

Contract BTO

SMV

MVTO

SMV

SVOSTM

SMV

MVOSTM

SMV

StaticBin

SMV

SpecBin

SMV

Coin 26.576 28.635 30.344 32.864 5.296 7.565

Ballot 26.037 28.333 33.695 36.698 3.570 3.780

Auction 27.772 31.781 29.803 32.709 4.694 5.214

Mix 36.279 39.304 42.139 45.332 4.279 4.463

Total Avg. Speedup 29.17 32.01 34.00 36.90 4.46 5.26

ObjSC Results: Malicious Block

 0

 20

 40

 60

 80

 100

50 100 150 200 250 300

(a) NonSMV on W1 for Mix Contract

Mix Contract

%
 o

f
V

a
lid

a
to

rs
 A

c
c
e

p
te

d

a
 M

a
lic

io
u

s
 B

o
c
k

Number of SCTs

 0

 20

 40

 60

 80

 100

10 20 30 40 50 60

(b) NonSMV on W2 for Mix Contract

Mix Contract

Number of Threads

BTO NonSMV
MVTO NonSMV

SVOSTM NonSMV

MVOSTM NonSMV

StaticBin NonSMV
SpecBin NonSMV

Figure 32: Percentage of NonSMV accepting a malicious block

• Acceptance of even a single malicious block result in the blockchain going

into inconsistent state.

ObjSC Results: Dependencies in BG

 0

 50

 100

 150

 200

 250

50 100 150 200 250 300

(a) STM Miner on W1
for Mix Contract

Mix Contract

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
D

e
p

e
n

d
e

n
c
ie

s
 i
n

 B
G

Number of SCTs

 0

 10

 20

 30

 40

 50

 60

10 20 30 40 50 60

(b) STM Miner on W2
for Mix Contract

Mix Contract

Number of Threads

 BTO BG MVTO BG SVOSTM BG MVOSTM BG

Figure 33: Average number of dependencies in BG for mix contract on W1 and W2

ObjSC Results: BG Depth

 0

 10

 20

 30

 40

 50

 60

100 200 300 400 500 600
 0

 2

 4

 6

 8

 10
Mix Contract

S
p

e
e

d
u

p
 o

v
e

r
S

e
ri
a

l

D
e

p
th

 o
f

B
G

Number of Shared Objects

BTO SMV

MVTO SMV

 SVOSTM SMV

 MVOSTM SMV

Serial

BTO-BG
MVTO-BG

SVOSTM-BG

MVOSTM-BG

Figure 34: Speedup of SMV over serial and depth of BG for W3

ObjSC Conclusion

• We developed an efficient framework for concurrent execution of

SCTs by a multi-threaded miner using two protocols, SVOSTM and

MVOSTM of optimistic STMs13.

• To avoid FBR errors, the multi-threaded miner captures the

dependencies among SCTs in the form of a BG.

• To handle EMB error, we proposed SMV that re-executes SCTs

concurrently relying on the BG provided by the miner.

• The proposed approach achieves significant performance gain over

the state-of-the-art SCTs execution framework.

13
Technical report: https://arxiv.org/abs/1904.00358

https://arxiv.org/abs/1904.00358

ObjSC Conclusion

• We developed an efficient framework for concurrent execution of

SCTs by a multi-threaded miner using two protocols, SVOSTM and

MVOSTM of optimistic STMs13.

• To avoid FBR errors, the multi-threaded miner captures the

dependencies among SCTs in the form of a BG.

• To handle EMB error, we proposed SMV that re-executes SCTs

concurrently relying on the BG provided by the miner.

• The proposed approach achieves significant performance gain over

the state-of-the-art SCTs execution framework.

13
Technical report: https://arxiv.org/abs/1904.00358

https://arxiv.org/abs/1904.00358

ObjSC Conclusion

• We developed an efficient framework for concurrent execution of

SCTs by a multi-threaded miner using two protocols, SVOSTM and

MVOSTM of optimistic STMs13.

• To avoid FBR errors, the multi-threaded miner captures the

dependencies among SCTs in the form of a BG.

• To handle EMB error, we proposed SMV that re-executes SCTs

concurrently relying on the BG provided by the miner.

• The proposed approach achieves significant performance gain over

the state-of-the-art SCTs execution framework.

13
Technical report: https://arxiv.org/abs/1904.00358

https://arxiv.org/abs/1904.00358

ObjSC Conclusion

• We developed an efficient framework for concurrent execution of

SCTs by a multi-threaded miner using two protocols, SVOSTM and

MVOSTM of optimistic STMs13.

• To avoid FBR errors, the multi-threaded miner captures the

dependencies among SCTs in the form of a BG.

• To handle EMB error, we proposed SMV that re-executes SCTs

concurrently relying on the BG provided by the miner.

• The proposed approach achieves significant performance gain over

the state-of-the-art SCTs execution framework.

13
Technical report: https://arxiv.org/abs/1904.00358

https://arxiv.org/abs/1904.00358

ObjSC Future Work

• A malicious miner can intentionally append a BG in a block with

additional edges to delay other miners. Preventing such a malicious

miner would be an immediate future work.

• BG consumes space. So, constructing storage optimal BG is an

interesting challenge.

• Implementing our proposed approach in other blockchains such as

Bitcoin, Hyperledger, and EOSIO is an exciting exercise.

• EVM does not support multi-threading, so, another research

direction is to design a multi-threaded EVM.

• Another interesting direction is to apply concurrency in the nested

execution of SCTs.

ObjSC Future Work

• A malicious miner can intentionally append a BG in a block with

additional edges to delay other miners. Preventing such a malicious

miner would be an immediate future work.

• BG consumes space. So, constructing storage optimal BG is an

interesting challenge.

• Implementing our proposed approach in other blockchains such as

Bitcoin, Hyperledger, and EOSIO is an exciting exercise.

• EVM does not support multi-threading, so, another research

direction is to design a multi-threaded EVM.

• Another interesting direction is to apply concurrency in the nested

execution of SCTs.

ObjSC Future Work

• A malicious miner can intentionally append a BG in a block with

additional edges to delay other miners. Preventing such a malicious

miner would be an immediate future work.

• BG consumes space. So, constructing storage optimal BG is an

interesting challenge.

• Implementing our proposed approach in other blockchains such as

Bitcoin, Hyperledger, and EOSIO is an exciting exercise.

• EVM does not support multi-threading, so, another research

direction is to design a multi-threaded EVM.

• Another interesting direction is to apply concurrency in the nested

execution of SCTs.

ObjSC Future Work

• A malicious miner can intentionally append a BG in a block with

additional edges to delay other miners. Preventing such a malicious

miner would be an immediate future work.

• BG consumes space. So, constructing storage optimal BG is an

interesting challenge.

• Implementing our proposed approach in other blockchains such as

Bitcoin, Hyperledger, and EOSIO is an exciting exercise.

• EVM does not support multi-threading, so, another research

direction is to design a multi-threaded EVM.

• Another interesting direction is to apply concurrency in the nested

execution of SCTs.

ObjSC Future Work

• A malicious miner can intentionally append a BG in a block with

additional edges to delay other miners. Preventing such a malicious

miner would be an immediate future work.

• BG consumes space. So, constructing storage optimal BG is an

interesting challenge.

• Implementing our proposed approach in other blockchains such as

Bitcoin, Hyperledger, and EOSIO is an exciting exercise.

• EVM does not support multi-threading, so, another research

direction is to design a multi-threaded EVM.

• Another interesting direction is to apply concurrency in the nested

execution of SCTs.

Collaborators

Parwat Singh Anjana
Ph.D. Student

IIT Hyderabad, India
cs17resch11004@iith.ac.in

Hagit Attiya
Professor

Technion, Israel
hagit@cs.technion.ac.il

Sweta Kumari
Postdoc Fellow
Technion, Israel

sweta@cs.technion.ac.il

Sathya Peri
Associate Professor

IIT Hyderabad, India
sathya_p@cse.iith.ac.in

Archit Somani
Postdoc Fellow
Technion, Israel

archit@cs.technion.ac.il

Yogesh Simmhan
Professor

IISc, Bangalore, India
simmhan@iisc.ac.in

Shrey Baheti
Software Engineer

Cargill Digital Labs, India

shrey_baheti@cargill.com

Sachin Rathor
Software Engineer
Microsoft, India

cs18mtech01002@iith.ac.in

Thanks!

	Introduction
	Bottleneck in Existing Blockchain Design
	Challenges in Executing Transactions Parallelly
	Current Progress
	Experimental Evaluation
	Conclusion and Future Work
	Appendix

