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Introduction: Blockchain

• Blockchain is a distributed, decentralized database or ledger of

records.

Block-1

T1 T2 T3 T4

Block-2

T1 T2 T3

• Miners add blocks to the blockchain, and validators validate each

block added to the blockchain.

• Example: Bitcoin1, Ethereum2, Fabric, Sawtooth3, etc.

Execution of Ethereum

1
https://bitcoin.org/en/

2
https://www.ethereum.org/

3
https://www.hyperledger.org/
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Bottleneck in Existing Blockchain: Ethereum

• Serial execution of the transactions by miners and validators fails to

harness the power of multi-core processors’, thus degrading

throughput.

• By leveraging multiple threads

to execute transactions, we

can achieve better efficiency

and higher throughput.

Listing 1: Transfer function

1 transfer(s_id , r_id , amt) {
2 if(amt > bal[s_id])
3 throw;
4 bal[s_id] -= amt;
5 bal[r_id] += amt;
6 }

(b) Concurrent Execution(a) Serial Execution of transactions

T1

T2

T1

T2

transfer(A,B, $10)
C1

C2

transfer(C ,D, $20)

transfer(A,B, $10)

C1

transfer(C ,D, $20)

C2

Figure 1: Motivation towards concurrent execution over serial
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Parallel Execution Challenges (1/4)

Smart Contract 
A B

data item 
(k)

T1 T2

 

Conflict

Figure 2: Conflicting access to shared data item.

• Identifying the conflicts at run-time is not straightforward.

• Improper use of locks may lead to deadlock.

• Discovering an equivalent serial schedule of concurrent execution of

SCTs is difficult.

Solution: We use Software Transactional Memory Systems (STMs) to

solve these challenges.
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Parallel Execution Challenges (2/4)

• Validator may incorrectly reject a valid block proposed by the miner.

We call such error the False Block Rejection (FBR) error.

transfer(A, B, $10)T1

A

B

T2 transfer(B, A, $20)

Time

T1 transfer(A, B, $10)

T2 transfer(B, A, $20)

Account IS FS

A $10 $20

B $10 $0

(b) Equivalent execution by miner (T1T2)

C1

C2

T1 transfer(A, B, $10)

T2 transfer(B, A, $20)

(c) Equivalent execution by validator (T2T1)

C1

A2

Account IS FS

A $10 $0

B $10 $20

Miner Final State

Validatror Final State

(a) Concurrent execution
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Parallel Execution Challenges (3/4)

Solution: Miner appends the Block Graph (BG)4,5 in the block to avoid

the FBR error.

T1

A

B

T2

transfer(A, B, $10)

transfer(A, C, $5)

(a) Concurrent execution by malicious miner

T1

A

B

T2

transfer(A, B, $10)

transfer(A, C, $5)

Validator Final State

(b) Concurrent execution by validator

C1 C1

A2A2

Account IS FS
A $10 $0
B $10 $20
C $10 $10

Validator's Final 
State is the same as
Miner's Final State 

so Accepts the block

TimeTime

Account IS FS
A $10 $0
B $10 $20
C $10 $10

T1 T2

Block Graph (BG)

Block Miner Final State Miner Final State

Block Graph (BG)

Block

T1 T2

Account IS FS
A $10 $0
B $10 $20
C $10 $10

4
Dickerson et al., “Adding Concurrency to Smart Contracts.” PODC, 2017

5
Anjana et al., “An efficient framework for optimistic concurrent execution of smart contracts.” PDP, 2019
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Parallel Execution Challenges (4/4)

• A Malicious miner can send an incorrect Block Graph to harm the

blockchain, missing some edges, e.g., to cause double spending. We

call such error the Edge Missing BG (EMB) error.

T1

A

B

T2

Validator's Final 
State is the same as
Miner's Final State 

so Accepts the block

transfer(A, B, $10)

transfer(A, C, $5)

(a) Concurrent execution by malicious miner

T1

A

B

T2

transfer(A, B, $10)

transfer(A, C, $5)

Validator Final State

(b) Concurrent execution by validator

C1
C1

C2C2

Account IS FS
A $10 $5
B $10 $20
C $10 $15

Time Time

Miner Final State

Block Graph (BG)

Block

T1 T2

Account IS FS
A $10 $5
B $10 $20
C $10 $15

Account IS FS
A $10 $5
B $10 $20
C $10 $15

T1 T2

Block Graph (BG)

Block Miner Final State

Solution: We propose a Smart Multi-threaded Validator (SMV) to

detect EMB error and rejects the corresponding blocks.
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Proposed Approach: DiPETrans Framework

• We proposed a DiPETrans framework6 for parallel execution of the

transactions at miners and validators, based on transaction shards

identified using static analysis.

• We implement this technique using a distributed leader–follower

approach within a mining community of servers.

• The leader shards the transactions in the block and the followers

concurrently execute (mining) or verify (validation) them.

• When mining, the PoW is also partitioned and solved in parallel by

the members of the community.

6∗Accepted at the journal of “Concurrency and Computation: Practice and Experience

(CCPE),” Wiley, 2021.
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Proposed Approach: Sharding of Block Transactions

• DiPETrans groups the block transactions into independent shards

and executes them parallelly in a distributed fashion using a

leader-follower approach.

Follower1

Follower2

Follower3

Sharding

Dependencies 

A0 A5

A9

Shard2

A4 A6

A7

Shard3

Transaction 
Dependency Graph

A1

A2

A3

A8

T1
T5 T7Shard1

T2T3 T9

T6

T4

T8

T1 (A1, A3) 
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T2 (A9, A0)
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T5 (A1, A8) A1        A8
T6 (A6, A7) A6        A7
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T8 (A4) A4             
T9 (A5, A9) A5        A9

Figure 3: Sharding of transactions in a block using static graph analysis
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DiPETrans Architecture: Miner Community

1 8 Sequence During Proposing a Block

(a) Community Acting as Miner

 

Pending 
Transaction Queue

Chain/Global State

 g

Block
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BH O
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1
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4

5

S LS

S LS

S LS

6
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Followern

 Tk

Shard Tx Execution

PoW (BH < D)

N1 N2 Np

7 Nonce

8

i

ii

MI: Miner ID

BH: Block Hash

FS: Final State
LS: Local State

PH: Previous Hash

TS: Timestamp

Tx: Transaction

D: Difficulty

p: # Nonce Set
g: Genesis Block

k: # Transactions

O: Other Information
S: Shard
m: # Shards

n: # Followers at Miner
v: # Followers at Validator

Leader Node
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DiPETrans Architecture: Validator Community

9 15 Sequence During Validating a Block

(b) Community Acting as Validator 
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DiPETrans: Theoretical Running Time Complexity

• Analyze() takes O(n) to build transaction graph with n edges and

between 2 - 2n vertices. So, static analysis using WCC takes O(n).

• With m shards and f follower nodes in the community. The

LoadBalance() takes O(m · log(m)) to sort the shards.

• Using a priority queue to load balance shards (transactions) assigned

to each follower, we get a time complexity of O(m · log(f )).

• For the LoadBalance phase the combined time complexity is

O(m · (log(m) + log(f ))).

• So overall time complexity of O(n+m · (log(m) + log(f ))). Usually,

with m > f , expected complexity is O(n +m · log(m)).

• The worst-case time complexity for transaction execution is O(n · tx)
and the best-case time complexity is Ω( nf · tx), where, tx is a

transaction execution time.7

7
The time to complete the transaction execution is limited by the follower with the most number of transactions.
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DiPETrans: Experimental Evaluation

• We empirically evaluated DiPETrans using 5 million actual

transactions from the Ethereum blockchain.

• We extracted ≈ 80K blocks consisting of 5,170,597 total

transactions.

• There are two types of transactions: monetary and smart contracts.

• We used a commodity cluster to run the leader and followers.

• The implementation is in C++ using Apache thrift cross-platform

micro-services library.

• Each node in the cluster has an 8-core AMD CPU with 32 GB

memory, running CentOS, and connected using 1 Gbps Ethernet.

• Depending on the experiment configuration, a community has a

leader running on one node and between 1 to 5 followers running on

separate nodes.
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DiPETrans: Experiment Workload

Table 1: Summary of transactions in experiment workload

Block type ρ # Txns/ block # Blocks
∑

# Contract txns
∑

# Non-contract txns

data-1-1-100

1
1

100 3,880 193,959 194,000

data-1-1-200 200 1,940 193,959 194,000

data-1-1-300 300 1,294 193,959 194,100

data-1-1-400 400 970 193,959 194,000

data-1-1-500 500 776 193,959 194,000

data-1-2-100

1
2

100 5,705 193,959 376,530

data-1-2-200 200 2,895 193,959 385,035

data-1-2-300 300 1,940 193,959 388,000

data-1-2-400 400 1,448 193,959 385,168

data-1-2-500 500 1,162 193,959 386,946

data-1-4-100

1
4

100 9,698 193,959 775,840

data-1-4-200 200 4,849 193,959 775,840

data-1-4-300 300 3,233 193,959 775,840

data-1-4-400 400 2,425 193,959 776,000

data-1-4-500 500 1,940 193,959 776,000

data-1-8-100

1
8

100 16,164 193,959 1,422,432

data-1-8-200 200 8,434 193,959 1,492,818

data-1-8-300 300 5,705 193,959 1,517,530

data-1-8-400 400 4,311 193,959 1,530,405

data-1-8-500 500 3,464 193,959 1,538,016

data-1-16-100

1
16

100 32,327 193,959 3,038,738

data-1-16-200 200 16,164 193,959 3,038,832

data-1-16-300 300 10,776 193,959 3,038,832

data-1-16-400 400 8,082 193,959 3,038,832

data-1-16-500 500 6,466 193,959 3,039,020
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DiPETrans Results: Transaction Execution Speedup on W1
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Figure 4: Workload-1: speedup by community miner and validator over serial miner and validator.

• With 5 followers, the peak speedup achieved by the community miners’ is

2.18×, the speedup efficiency is sub-optimal at about 51% for 4 followers

and 44% for 5 followers, with 500 transactions/blocks.

• The default community validators’ average speedup is 1.25×, and their

peak is 2.03× with 5 followers and 500 transactions per block.
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DiPETrans Results: Transaction Execution Speedup on W2
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Figure 5: Workload-2: speedup by community miner and validator over serial miner and validator.

• For the community miners’ a peak speedup of 2.7× is achieved with 5

followers and a favorable speedup efficiency of 73% with 3 followers is

achieved when ρ = 1
4
.

• For the default community validators’ a peak speedup of 2.5× is achieved

with 5 followers.
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DiPETrans Results: End-to-end Mining Speedup
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Figure 6: Average end-to-end block creation speedup by community miner over serial miner.

• In Workload 1, a speedup of 1.15× to 4.91× for 1–5 followers that remain

stable as the block size increases, with a speedup efficiency of 57.5 to

81.83%.

• We achieve a maximum speedup of 1.17× to 4.82× for 1–5 followers,

with a speedup efficiency of 58.5 to 80.33% in Workload 2.
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DiPETrans Results: Throughput

 64

 256

 1024

 4096

100 200 300 400 500

(a) Workload 1 (W1)

T
h
ro

u
g
h
p
u
t

(T
ra

n
s
a
c
ti
o
n
s
/S

e
c
) 

# Transactions/Block

 

4
7

8

7
7

0 9
0

0

8
2

4

7
6

6

4
4

9

5
7

9 6
5

9

7
0

9

7
4

2

5
7

0

7
9

9 9
5

0

1
0

4
0

1
1

1
3

6
2

8

9
1

5 1
1

0
9

1
2

4
8

1
3

6
9

6
4

6

9
7

9 1
2

0
5

1
3

8
3

1
5

0
2

6
5

0

1
0

1
0 1
2

6
7

1
4

6
3

1
5

7
7

 64

 256

 1024

 4096

1:1 1:2 1:4 1:8 1:16

(b) Workload 2 (W2)

Data Set

 Serial 1 Follower 2 Follower 3 Follower 4 Follower 5 Follower

5
5

6 6
2

2

6
7

1

1
0

6
9 1

4
3

6

5
5

3 6
6

5 7
7

1 8
8

0

1
0

0
7

8
2

9 9
8

1

1
1

6
7

1
3

3
3

1
5

1
9

1
0

2
3

1
1

9
8

1
4

1
1

1
6

6
3

1
8

9
1

1
0

9
6 1
3

2
5

1
5

8
2

1
8

6
0

2
0

3
1

1
1

3
2 1
4

2
6

1
6

9
0

1
8

9
5

2
1

4
7

Figure 7: Throughput with varying transactions per block and varying ρ.

• In Workload 1, the maximum throughput is 1577 tps in a community with

5 followers at 500 transactions/block, which is 2.05× higher than that of

serial execution.

• In Workload 2, we achieves a maximum throughput of 2147 tps that is

1.49× over serial when ratio ρ = 1
16

for 5 followers, with 500

transactions/blocks. The sweet spot of maximum throughput is 2.52×
with 1690 tps when ρ = 1

4
.
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DiPETrans Results: Optimal Community Size
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Figure 8: Transaction execution time by a follower and accumulative followers idle time on W1

and W2.

• The optimal community size depends on several parameters: #

transactions/block, # shards formed, the mix of contractual and

monetary transactions/shard.

• With an optimal community size, the idle time will be minimized, hence,

the average execution time will be similar to the maximum execution time.
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DiPETrans Conclusion

• We proposed DiPETrans framework to execute block transactions

efficiently in parallel by leveraging distributed resources using

leader-follower approach.

• The proposed techniques prevent transaction parallelization errors

such as FBR, EMB, and FBin.

• We achieve a maximum speedup of 2.2× and 2.0× and an average

speedup of 1.6× and 1.5× for the miner and the validator,

respectively, with 100 to 500 transactions per block when using 6

machines in the community.
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Future Work

• Exploring the possibilities of integrating our ideas into existing

order-execute-based blockchain platforms like Bitcoin, Sawtooth,

Tezos, and EOS is an exciting direction to pursue.

• We plan to integrate it with Ethereum blockchain by deploying a

DiPETrans community smart contract.

• Another interesting direction is to apply concurrency in the nested

execution of SCTs.
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Introduction: Ethereum High Level Design

• Ethereum nodes form a peer-to-peer system.

• Clients (external to the system) wishing to execute smart contracts,

contact a peer of the system.

Peer1

Peer2

Peer3

Peer4

Client1

Client2

Client3

T1

T2

T3

B1 B2 B3

B1 B2 B3B1 B2 B3

B1 B2 B3

Figure 9: Clients send Transaction T1, T2 and T3 to Miner (Peer4)
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Figure 10: Miner forms a block B4 and computes final state (FS) sequentially
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Figure 11: Miner broadcasts the block B4
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Figure 12: Validators (Peer 1, 2, and 3) compute current state (CS) sequentially
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Figure 13: Validators verify the FS and reach the consensus protocol
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IITH-STM Library

• We have used two protocols implemented in IITH-STM library for

concurrent execution of the smart contracts by miner.

1. Basic Time-stamp Ordering (BTO) Protocol.

2. Multi-Version Time-stamp Ordering (MVTO) Protocol.



Basic Time-stamp Ordering (BTO) Protocol8

• If pi (x) and qj(x), i ̸= j, are operations in conflict, the following has

to hold:

• pi (x) is executed before qj(x) iff ts(ti ) < ts(tj).

w2(x , 10) w2(y , 10)

A1
r1(y ,A)r1(x , 0)

T2

T1

C2

Figure 15: BTO

8
Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory, Algorithms, and the Practice of Concurrency

Control and Recovery, 2002.



Multi-Version Time-stamp Ordering (MVTO) Protocol9

• MVTO maintains multiple versions corresponding to each shared

data-objects.

• It reduces the number of aborts and improves the throughput.

w2(x , 10) w2(y , 10)

A1
r1(y ,A)r1(x , 0)

T2

T1

C2

Figure 16: BTO

w2(x , 10) w2(y , 10)

C1
r1(y , 0)

T2

T1

C2

r1(x , 0)

Figure 17: MVTO

9
Kumar et al. A TimeStamp Based Multi-version STM Algorithm. In ICDCN, 2014



Concurrent Validator: Fork-Join Approach
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Figure 18: Fork-Join Approach



Concurrent Validator: Decentralized Approach
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Figure 19: Decentralized Approach



Proposed Methodologies: OptSmart

• Since static analysis fails to identify the conflicts precisely.

• We introduce OptSmart: A Space Efficient Optimistic Concurrent

Execution of Smart Contracts to exploit multi-processing on a

multi-core system to improve throughput.

• Miners and validators use multiple threads to parallelly execute

smart contract transactions (SCTs) in a block.

• A miner concurrently executes SCTs using optimistic read-write

software transactional memory systems (RWSTMs) and saves the

non-conflicting SCTs in the concurrent bin and conflicting SCTs in

the block graph (BG).

• Later, decentralized validators re-execute SCTs deterministically in

parallel to validate the block by using information appended by the

concurrent miner.
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OptSmart Results
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Figure 20: Speedup achieved by optimized concurrent miner and validator over serial miner and

validator.

• OptSmart achieves an average speedup of 4.49× and 5.21× for

optimized concurrent miners using BTO (Opt-BTO) and MVTO STM

(Opt-MVTO) protocol than a serial miner.

• Optimized decentralized BTO and MVTO concurrent validator

outperform average 7.68× and 8.60× than serial validator.

• The proposed efficient BG saves an average of 2.29× block space over

existing approaches.



Read-Write STM (RWSTM) v/s Object-based STM (OSTM)
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(d): No cycle at OSTMs(c): Cycle at RWSTMs(b): Underlying Data Structure

(a): Tree Structure

T1: transfer1(A1,A3, $50) T2: transfer2(A2,A4, $70)

Figure 21: (a) Two SCTs T1 and T2 in the form of a tree structure which is working on a

hash-table with B buckets where four accounts (shared data items) A1,A2,A3 and A4 are stored in

the form of a list depicted in (b). T1 transfers $50 from A1 to A3 and T2 transfers $70 from A2 to

A4. After checking the sufficient balance using lookup (l), SCT T1 deletes (d) $50 from A1 and

inserts (i) it to A3 at higher-level (L1). At lower-level 0 (L0), these operations involve read (r) and

write (w) to both accounts A1 and A3. Since, its conflict graph has a cycle either T1 or T2 has to

abort (see (c)); However, execution at L1 depicts that both transactions are working on different

accounts and the higher-level methods are isolated. So, we can prune this tree and isolate the

transactions at higher-level with equivalent serial schedule T1T2 or T2T1 as shown in (d).



Proposed Methodology: ObjSC

• We develop an efficient framework for the concurrent execution of

SCTs by miners using an optimistic Object-Based STMs (OSTMs).10

• STMs are convenient programming paradigms for a programmer to

access shared memory using multiple threads.

• Traditional STMs work on read-write primitives. We refer to these

as Read-Write STMs (RWSTMs).

• OSTMs operate on higher level objects rather than primitive reads

and writes which act upon memory locations.

• OSTMs provide greater concurrency than RWSTMs.

• Hash Table based OSTMs export the following methods:

• STM begin()

• STM insert()

• STM delete()

• STM lookup()

• STM tryC()

• STM Abort()

10
Peri, S., Singh, A., Somani, A.: Efficient means of Achieving Composability using Transactional Memory. NETYS, 2018.
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ObjSC: Thread Safe Integration of STMs in Smart Contracts

Listing 1: Transfer function

1 transfer(s_id , r_id , amt) {
2 if(amt > bal[s_id])
3 throw;
4 bal[s_id] -= amt;
5 bal[r_id] += amt;
6 }

Listing 2: Transfer function using STM

7 transfer(s_id , r_id , amt) {
8 t_id = STM_begin ();
9 s_bal = STM_lookup(s_id);

10 if(amt > s_bal) {
11 abort(t_id);
12 throw;
13 }
14 STM_delete(s_id , amt);
15 STM_insert(r_id , amt);
16 if(STM_tryC(t_id)!= SUCCESS)
17 goto Line 8;// Trans aborted
18 }
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ObjSC: Working of multi-threaded miner
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ObjSC: Block Graph (1/2)

• Miner maintains the BG in the form of the adjacency list, where

vertices correspond only to committed SCTs.

• Edges of the BG depends on the conflicts given by the OSTMs.

Conflicting Operations =



STM lookupi () − STM tryCj ()

STM deletei () − STM tryCj ()

STM tryCi () − STM tryCj ()

STM tryCi () − STM deletej ()

STM tryCi () − STM lookupj ()

(1)

• Multi-threaded miner uses addVert() and addEdge() methods of

BG.

• Later, validators re-execute the same SCTs concurrently and

deterministically relying on the BG.

• Two SCTs that do not have a path can execute concurrently.
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• SMV uses searchGlobal() and decInCount() methods of BG.
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• OSTMs11 have fewer conflicts than RWSTMs which in turn, allows

validators to execute more SCTs concurrently.

• This also reduces the size of the BG leading to a smaller

communication cost than RWSTMs.

11
Herlihy, M., Koskinen, E.: Transactional Boosting: A Methodology for Highly-concurrent Transactional Objects. PPoPP, 2008.
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ObjSC: Data Structure of SVOSTM to Maintain Conflicts
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ObjSC: Single-version v/s Multi-version OSTMs

• Multi-version OSTMs (MVOSTMs) maintain multiple versions for

each shared data item (object) and provide greater concurrency

relative to traditional single-version OSTMs (SVOSTMs).
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Figure 25: (a) Transaction T1 gets the balance of two accounts A and B (both initially $10),
while transaction T2 transfers $10 from A to B and T1 aborts. Since, its conflict graph has a cycle

(see (c)); (b) When T1 and T2 are executed by MVOSTM, T1 can read the old versions of A and

B. This can be serialized, as shown in (d).
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ObjSC: Multi-Version OSTM based Miner

• Multi-Version OSTMs (MVOSTMs)12 maintain multiple versions for

each shared data item and provide greater concurrency relative to

Single-Version OSTMs (SVOSTMs).

• MVOSTM-based BG has fewer edges than an SVOSTM-based BG,

and further reduces the size of the BG leading to a smaller

communication cost.

12
Juyal, C., Kulkarni, S., Kumari, S., Peri, S., Somani, A.: An innovative approach to achieve compositionality efficiently using

multi-version object based transactional systems. SSS, 2018.
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ObjSC Correctness Criteria: Opacity
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ObjSC: Working of multi-threaded validator
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ObjSC: Smart Multi-threaded Validator (SMV)

SMV maintains two global counters (gUC: global update counter and

gLC: global lookup counter) and two local counters (lUC and lLC) for

each shared data item k to identifies the EMB error.

Lookup(k):

• If(k.gUC == k.lUC)

1. Atomically increment the global lookup counter, k.gLC.

2. Increment k.lLC by 1.

3. Lookup key k from a shared memory.

else miner is malicious.

Insert(k, v)/Delete(k):

• If(k.gLC == k.lLC && k.gUC == k.lUC)

1. Atomically increment the global update counter, k.gUC.

2. Increment k.lUC by 1.

3. Insert/delete key k to/from shared memory.

else miner is malicious.
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ObjSC: SMV Counter Based Solution

Algorithm 1: SMV(scFun): Execute scFun with atomic global lookup/update counter.

// scFun is a list of steps.

while (scFun.steps.hasNext()) do
curStep = scFun.steps.next(); //Get the next step to execute.

switch (curStep) do

case lookup(k): do

// Check for update counter (uc) value.

if (k.gUC == k.lUCi ) then
Atomically increment the global lookup counter, k.gLC ;

Increment k.lLCi by 1;//Maintain k.lLCi in transaction local log.

Lookup k from a shared memory;

end

else
return ⟨Miner is malicious⟩;

end

end

case insert(k, v): do

// Check lookup/update counter value.

if ((k.gLC == k.lLCi ) && (k.gUC == k.lUCi )) then
Atomically increment the global update counter, k.gUC ;

Increment k.lUCi by 1;//Maintain k.lUCi in transaction local log.

Insert k in shared memory with value v ;

end

else
return ⟨Miner is malicious⟩;

end

end

end

end

Atomically decrements the k.gLC and k.gUC corresponding to each shared data-item key k;



ObjSC: SMV Counter Based Solution

// scFun is a list of steps.

while (scFun.steps.hasNext()) do
curStep = scFun.steps.next(); //Get the next step to execute.

switch (curStep) do

case delete(k): do

// Check lookup/update counter value.

if ((k.gLC == k.lLCi ) && (k.gUC == k.lUCi )) then
Atomically increment the global update counter, k.gUC ;

Increment k.lUCi by 1; //Maintain k.lUCi in transaction local.

Delete k in shared memory;

end

else
return ⟨Miner is malicious⟩;

end

end

end

end

Atomically decrements the k.gLC and k.gUC corresponding to each shared data-item key k;



ObjSC: Experimental Evaluation (1/2)

• In Ethereum blockchain, smart contracts are written in Solidity

language, which runs on Ethereum Virtual Machine (EVM).

• EVM does not supports multi-threading.

• We converted smart contracts from Solidity to C++ language for

multi-threaded execution.
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ObjSC: Experimental Evaluation (2/2)

• We consider four benchmark contracts Coin, Ballot, Simple Auction,

and Mix from Solidity documentation.

1. Coin: A simple cryptocurrency contract.

2. Ballot: An electronic voting contract.

3. Simple Auction: An online auction contract.

4. Mix: Combination of above three contracts in equal proportion.

• We ran our experiments on Intel (R) Xeon (R) CPU E5-2690 that

supports 56 hardware threads and 32GB RAM.

• We consider two workloads:

Workload SCTs Threads Shared data items

Workload 1 (W1) 50 - 300 50 500

Workload 2 (W2) 100 10 - 60 500
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ObjSC Results: Multi-threaded Miner Speedup
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Figure 30: Speedup of Multi-threaded miner over Serial miner

• MVOSTM, SVOSTM, MVTO, BTO, Speculative Bin, and Static Bin

miner provide an average speedup of 3.91×, 3.41×, 1.98×, 1.5×, 3.02×,

and 1.12×, over Serial miner, respectively.



ObjSC Results: Average Speedup by Multi-threaded Miner

Table 2: Overall average speedup on all workloads by multi-threaded miner over serial miner

Multi-threaded Miner

Contract BTO

Miner

MVTO

Miner

SVOSTM

Miner

MVOSTM

Miner

StaticBin

Miner

SpecBin

Miner

Coin 1.596 1.959 4.391 5.572 1.279 6.689

Ballot 0.960 1.065 2.229 2.431 1.175 2.233

Auction 2.305 2.675 3.456 3.881 1.524 2.232

Mix 1.596 2.118 3.425 3.898 1.102 3.080

Total Avg. Speedup 1.61 1.95 3.38 3.95 1.27 3.56



ObjSC Results: SMV Speedup
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Figure 31: Speedup of SMV over Serial validator

• MVOSTM, SVOSTM, MVTO, BTO, Speculative Bin, and Static Bin

Decentralized SMVs provide an average speedup of 48.45×, 46.35×,

43.89×, 41.44×, 5.39×, and 4.81× over Serial validator, respectively.



ObjSC Results: Average Speedup by SMV

Table 3: Overall average speedup on all workloads by SMV over serial validator

Smart Multi-threaded Validator (SMV)

Contract BTO

SMV

MVTO

SMV

SVOSTM

SMV

MVOSTM

SMV

StaticBin

SMV

SpecBin

SMV

Coin 26.576 28.635 30.344 32.864 5.296 7.565

Ballot 26.037 28.333 33.695 36.698 3.570 3.780

Auction 27.772 31.781 29.803 32.709 4.694 5.214

Mix 36.279 39.304 42.139 45.332 4.279 4.463

Total Avg. Speedup 29.17 32.01 34.00 36.90 4.46 5.26



ObjSC Results: Malicious Block
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Figure 32: Percentage of NonSMV accepting a malicious block

• Acceptance of even a single malicious block result in the blockchain going

into inconsistent state.
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• We developed an efficient framework for concurrent execution of

SCTs by a multi-threaded miner using two protocols, SVOSTM and

MVOSTM of optimistic STMs13.

• To avoid FBR errors, the multi-threaded miner captures the

dependencies among SCTs in the form of a BG.

• To handle EMB error, we proposed SMV that re-executes SCTs

concurrently relying on the BG provided by the miner.

• The proposed approach achieves significant performance gain over

the state-of-the-art SCTs execution framework.
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ObjSC Future Work

• A malicious miner can intentionally append a BG in a block with

additional edges to delay other miners. Preventing such a malicious

miner would be an immediate future work.

• BG consumes space. So, constructing storage optimal BG is an

interesting challenge.

• Implementing our proposed approach in other blockchains such as

Bitcoin, Hyperledger, and EOSIO is an exciting exercise.

• EVM does not support multi-threading, so, another research

direction is to design a multi-threaded EVM.

• Another interesting direction is to apply concurrency in the nested

execution of SCTs.
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