
Received: 20 May 2021 Revised: 10 November 2021 Accepted: 28 November 2021

DOI: 10.1002/cpe.6804

R E S E A R C H A R T I C L E

DiPETrans: A framework for distributed parallel execution of
transactions of blocks in blockchains

Shrey Baheti1 Parwat Singh Anjana2 Sathya Peri2 Yogesh Simmhan3

1Cargill Business Service India Pvt. Ltd.,

Bangalore, India

2Department of Computer Science and

Engineering, Indian Institute of Technology

Hyderabad, Kandi, India

3Department of Computational and Data

Sciences (CDS), Indian Institute of Science

(IISc), Bangalore, India

Correspondence

Parwat Singh Anjana, Department of

Computer Science and Engineering, Indian

Institute of Technology Hyderabad, Kandi

502285, Telangana, India.

Email: cs17resch11004@iith.ac.in

Funding information

Ministry of Electronics and Information

Technology, Grant/Award Numbers:

4(20)/2019-ITEA, 4(4)/2021-ITEA

Summary

Contemporary blockchain such as Bitcoin and Ethereum execute transactions serially

by miners and validators and determine the Proof-of-Work (PoW). Such serial execu-

tion is unable to exploit modern multi-core resources efficiently, hence limiting the

system throughput and increasing the transaction acceptance latency. The objective

of this work is to increase the transaction throughput by introducing parallel transac-

tion execution using a static analysis over the transaction dependencies. We propose

the DiPETrans framework for distributed execution of transactions in a block. Here,

peers in the blockchain network form a community of trusted nodes to execute the

transactions and find the PoW in-parallel, using a leader–follower approach. Dur-

ing mining, the leader statically analyzes the transactions, creates different groups

(shards) of independent transactions, and distributes them to followers to execute

concurrently. After execution, the community’s compute power is utilized to solve the

PoW concurrently. When a block is successfully created, the leader broadcasts the

proposed block to other peers in the network for validation. On receiving a block,

the validators re-execute the block transactions and accept the block if they reach

the same state as shared by the miner. Validation can also be done in parallel, follow-

ing the same leader–follower approach as mining. We report experiments using over

5 million real transactions from the Ethereum blockchain and execute them using our

DiPETrans framework to empirically validate the benefits of our techniques over a tra-

ditional sequential execution. We achieve a maximum speedup of 2.2× and 2.0× and

an average speedup of 1.6× and 1.5× for the miner and the validator, respectively, with

100–500 transactions per block when using 6 machines in the community. Further, we

achieve a peak of 5× end-to-end block creation speedup using a parallel miner over a

serial miner.

K E Y W O R D S

blockchain, mining pools, parallel execution, smart contracts, static analysis

1 INTRODUCTION

A blockchain is a distributed decentralized database that is a secure, tamper-proof, publicly accessible collection of the records organized as a chain

of the blocks.1,2 It maintains a distributed global state of the transactions in the absence of a trusted central authority. Due to its usefulness, it has

gained widespread interest both in industry and academia.

All authors contributed equally to this work.

Concurrency Computat Pract Exper. 2022;e6804. wileyonlinelibrary.com/journal/cpe © 2022 John Wiley & Sons, Ltd. 1 of 33
https://doi.org/10.1002/cpe.6804

https://orcid.org/0000-0002-6574-3871

2 of 33 BAHETI ET AL.

A blockchain consists of nodes or peers maintained in a peer-to-peer (P2P) manner. A node in the network may serve as a miner and/or

as a validator. A miner m proposes a block to add to the blockchain, and hence is also referred to as a block producer in literature. A

block generated by the miner consists of transactions typically encoding some business logic. Node m then solves a Proof-of-Work (PoW) to

delay-wait the network and then broadcasts the block through the P2P network. The rest of the peers in the network, on receiving the

block, validate the transactions in that block and the solution to the PoW. Hence, they are called as validators. Clients, also known as users,

external to the system use the blockchain services by sending transactions to the network peers. On receiving a sufficient number of trans-

actions from clients, a node takes the role of a miner to form a block. It then follows the mining and validation process to append the

block to the blockchain. A block in a typical blockchain such as Ethereum3 consists of a set of transactions, its timestamp, block id, nonce,

coin base address (miner address), the hash of the previous block in the chain, the current block’s hash, and so forth. The block is added

to the blockchain through consensus between the peers validating the block. Usually, the entire copy of the blockchain is stored on all

the nodes.

Bitcoin,1 the first blockchain system proposed by Satoshi Nakamoto, is the most popular blockchain to date. It is a cryptocurrency system that

is highly secure where users need not trust others. Further, there is no central controlling agency, like the current day banking system. Ethereum3 is

another popular blockchain that provides complex services in addition to cryptocurrencies such as user-defined scripts, called smart contracts. Such

smart contracts are written in Turing complete language Solidity.4 A smart contract is like an object in the object-oriented programming language,

which consists of methods and data (state). They can be used to automatically define and enforce terms and conditions in the contract without the

intervention of a trusted third party. A client’s request to execute a contract’s methods, also called a transaction, consists of the miner and validator

nodes, invoking a series of these methods and their input parameters. Such contracts can be simple cryptocurrency exchanges between wallets or

more complex logic such as Ballot and Simple Auction.4

Drawback with existing systems: Miners and validators in current blockchain systems execute the transactions serially. Further, finding the PoW,

a computationally intensive brute-force process to create a new block. Miners compete to verify transactions and solve the PoW to create a block.

Dickerson et al.2 observe that the transactions are executed serially in two different contexts. First, executed serially by the miner while creating a

block. Later, validators re-executes the transactions serially to validate the block. Typically, miners execute hundreds of transactions, and validators

cumulatively execute millions of transactions serially for each new block. The serial execution of the transaction leads to poor throughput and is

inefficient in the current era of distributed and multi-core systems. The high transaction fee, poor throughput (transactions/s), high block acceptance

latency, and limited computation capacities prevent widespread adoption of blockchain.5 Hence adding parallelism to the blockchain can improve

efficiency and achieve higher throughput.

Solution approach: There are several solutions proposed and used in Bitcoin and Ethereum to mitigate these issues. One such solution is

that several resource constraint miners form a mining pool or community to solve the PoW. After block acceptance, they share the incentive

among them.6-8

Other solutions2,9,10 suggest concurrent execution of the transactions at runtime in two stages: first while proposing the block, and sec-

ond while validating the block. This helps in achieving better performance while creating the block and when validating, hence increasing the

chance of a miner to receive their fees. However, it is not straightforward; it requires a proper strategy to avoid a valid block being rejected

due to false block rejection (FBR) error9 and to overcome malicious miners. Some of these use runtime techniques based on software transac-

tional memory (STM) to execute transactions concurrently. A miner concurrently executes the block transactions and constructs the block graph

alongside. The graph records dependencies between the transactions where vertices are the transactions and edges between them indicate a

dependency. In the end, the miner adds the block graph to the block to help the validator execute these transactions concurrently and avoid

FBR error.9

In contrast to those approaches, we propose to use a cluster of machines that form a community to execute or validate the transactions in a

distributed manner based on a static analysis of the transactions. This improves the performance of both block mining and validation. The community

has a leader machine and a set of follower machines. The leader is part of the blockchain while the follower nodes are at the disposal of the leader and

are not part of the blockchain. The followers being at the disposal of the leader, form a trusted community with the leader, for example, they belong

to the same organization.

The leader performs static analysis of the transactions in a block to identify dependencies and shards them into independent transactions,

which are each executed in a distributed manner by the followers concurrently (see Figure 2). The miners and validators can each perform this static

analysis for parallel execution. This avoids encoding the block dependency graph within the block, while also preventing FBR errors. When mining,

the solution space for the PoW is also partitioned and solved in parallel by the followers. We implement and empirically validate the benefits of our

approach within the Ethereum blockchain.3 However, the proposed approach is generic and can be integrated into any other permissionless and per-

missioned (by excluding PoW computation of current approach) blockchain platform that follows an order-execute transaction execution model.11

This implies DiPETrans can be integrated with any other consensus-based (such as PBFT) order-execute blockchain platform. To our knowledge, this is

the first work that uses static analysis to identify block transactions that can be executed in parallel and combines them with the benefits of sharding

and mining pools.

BAHETI ET AL. 3 of 33

The key contributions of this article are as follows:

• We propose a DiPETrans: Distributed parallel execution of transactions of blocks in blockchain framework in Section 2 for parallel execution of the

transactions at miners and validators, based on transaction shards identified using static analysis.

• We implement this technique using a distributed leader–follower approach within a mining community of servers, where the leader shards the

transactions in the block and the followers concurrently execute (mining) or verify (validation) them. When mining, the PoW is also partitioned

and solved in parallel by the members of the community.

• We report experiments in Section 3 using over 5 million real transactions from the Ethereum blockchain and execute them using DiPETrans to

empirically validate the benefits of our techniques over traditional sequential execution. We achieve a maximum speedup of 2.2× and 2.0× and an

average speedup of 1.64× and 1.52× for the parallel miner and parallel validator, respectively, with 100–500 transactions per block. Further, we

achieve a maximum of 5× end-to-end block creation speedup using the parallel miner over a serial one, when using 6 machines in the community,

including the leader.

We present related work in Section 4 and conclude with some future research directions in Section 5.

2 PROPOSED FRAMEWORK

This section presents the proposed DiPETrans framework. We first provide an overview of the architecture that describes the functionalities of the

miner and the validator. Following that, the leader–follower approach of a mining community is illustrated. Finally, the algorithms for static analysis

of transactions and distributed mining are explained.

2.1 DiPETrans architecture

Figure 1 shows the architecture of the DiPETrans framework. It shows two mining communities, one acting as a miner node and the other as a val-

idator node in the blockchain. Each community internally has multiple computing servers that use their distributed compute power collaboratively

to execute transactions and solve the PoW in parallel for a block. The resources can all be owned by the same user, or they may participate in parallel

mining and get a part of the incentive fee based on pre-agreed conditions.

One of the community workers is identified as the Leader, while the others are Followers. The Leader represents the community and appears as a

single peer in the blockchain network for all operations. Thus each peer of the blockchain in our architecture is the Leader of its respective community.

1 8 Sequence During Proposing a Block 9 15 Sequence During Validating a Block

(A) Community Acting as Miner

Pending

Chain/Global State

Transaction Queue
g

Block
FS

S1 S2 Sm

MI TS

PH

BH O

Shards

1

3
2

4

5

S LS

S LS

S LS

6

Follower1

Follower2

Followern

Tk

Shard Tx Execution

PoW (BH < D)

N1 N2 Np

7 Nonce

8

i

ii

(B) Community Acting as Validator

Chain/Global State

g

Block FS

S1 S2 Sm

MI TSMI

PH

BH O

Shards

910

11

S LS

S LS

S LS

Follower1

Follower2

Followerv

Tk

12 Shard Tx Re-Execution

State

and PoW

Validation

13

14

Pending
Transaction Queue

15

i

ii

Leader Node Leader Node

MI: Miner ID

TS: Timestamp

D: Difficulty

BH: Block Hash

PH: Previous Hash

Tx: Transaction

FS: Final State

LS: Local State

O: Other Information

S: Shard

m: # Shards

k: # Transactions

p: # Nonce Set

g: Genesis Block

n: # Followers at Miner

v: # Followers at Validator

F I G U R E 1 Overview of the DiPETrans architecture

4 of 33 BAHETI ET AL.

When the user submits transaction request to one of the peers in the blockchain, the transaction is broadcast to every peer, including the Leader of

each community. The broadcasted transaction is then placed in the pending transaction queue of the respective peers (Figure 1A 1). Then all the

miner peers in the blockchain compete to form the next block from these transactions.

2.1.1 Community acting as miner

The leader node is responsible for coordinating the overall functionality of the community (Figure 1A 2). It can be selected based on a leader election

algorithm or some other approach. We assume that there are no server failures within the community. When the community acts as a miner to

create new blocks, there are two phases: one is transaction execution (Figure 1A i , and the other is solving the PoW (Figure 1A ii). Both of these

are parallelized; however, phase 2 may not be needed for permissioned blockchains.

In the first phase, the leader selects the transactions from the pending transaction queue of the community (1) to construct a block (3). Then,

it identifies the independent transactions by performing a static analysis of the transactions (discussed later in Algorithm 1). It groups dependent

transactions into a single shard and independent ones across different shards (4). The leader then sends the shards to the followers, along with

the current state of the accounts (stateful variables) accessed by those transactions (5 , 6).

On receiving a shard from the leader, the follower (worker) executes the transactions present in its shard serially (5), computes the new state

for the accounts locally, and sends the results back to the leader. While transactions across shards are independent, those within a shard may

have dependencies (Figure 2), and hence are executed sequentially. To improve the throughput further, one can perform concurrent execution of

transactions within a shard based on STM to leverage multi-processing on a single device (follower).2,9,10 This is left as a future extension. Once

all followers complete the execution of the shards assigned to them, the leader computes the block’s final state from the local states returned by

the followers.

In the PoW phase of the miner (7 , ii), the leader sends the block header and transactions, and different nonce ranges to the follow-

ers. Each partition forms a solution space that a follower examines to find the block hash that is smaller than the target hash. This is an

iterative brute-force approach that is computationally intensive. When a follower finds the correct hash, it informs the leader. The leader

then notifies the remaining workers to terminate their computation. The leader proposes the block with the executed transactions and the

PoW, updates its local chain (8), and broadcasts it to all peers in the blockchain network for validation. A successful validation by a major-

ity of peers and the addition of the block to the consensus blockchain will result in the mining community receiving the incentive fee for

that block.

2.1.2 Community acting as validator

When the community acts as a validator, its first phase is similar to the miner, while in its second phase, it just validates the PoW done by

the miner.

Follower1

Follower2

Follower3

Sharding

Dependencies

A0 A5

A9

Shard2

A4 A6

A7

Shard3

Transaction
Dependency Graph

A1

A2

A3

A8

T1

T5 T7Shard1

3T
T2

T9

T6

T4

T8

T1 (A1, A3)

T5 (A1, A8)

T7 (A2, A3)

T2 (A9, A0)

T3 (A0, A9)

Shard2

T9 (A5, A9)

T4 (A4, A6)

T6 (A6, A7)

Shard3

T8 (A4)

Shard1

Transaction AccountsAccessed

T1 (A1, A3) A1 A3
A9T2 (A9, A0) A0
A0T3 (A0, A9) A9
A4T4 (A4, A6) A6

T5 (A1, A8) A1 A8
A6T6 (A6, A7) A7

T7 (A2, A3) A2 A3
T8 (A4) A4

T9 (A5, A9) A5 A9

F I G U R E 2 Sharding of transactions in a block using static graph analysis

BAHETI ET AL. 5 of 33

After receiving a block from a miner (Figure 1B 9), the remaining peers of the blockchain network serve as its validators. They validate the

block by re-executing the transactions present in the block and check if the PoW hash matches. Verifying the PoW hash is computationally cheap.

The transaction re-execution is identical to the first phase of mining (Figure 1B 9 – 15 , i), and use the same Algorithm 1 for static analysis of the

dependencies themselves. We will call such validator as Default Validator (we will explain other validators later). They then verify if the block contains

the correct PoW solution (Figure 1B ii), and validate the final state computed by them based on their local chain with the final state supplied by the

miner in the block (Figure 1B 13). If the final state computed does not match with the final state in the block stored by the miner, then the block is

rejected. The miner does not get any incentive in this case.

Alternatively, a validator can also execute the transactions serially if they are not part of any community, that is, stand-alone validators. Yet another

approach for the validator is that miners encode hints on the transaction dependency as part of the block,2,9,10 which allows the validators to avoid

performing the static analysis again. Specifically, the miner includes the shard ID for each transaction in the other field of the block (Figure 1O), and

this can directly be used by the validator to shard the transactions for parallel validation. We refer to these as Sharing Validators. But, the problem

here is that the miners can encode an invalid transaction dependency information that can cause the validation to be incorrect.10 This problem does

not arise in our default validator since the static analysis is done independently by them. In our experiments, we compare the performance benefit

of these approaches.

2.1.3 Sharding of the block transactions

Sharding is the process of identifying and grouping the dependent transactions in a block, with one shard created per group. This is illustrated in

Figure 2, which lists a sequential list of transactions that are received at a node. Transaction T1 accesses the account (stateful variable) A1 and A3, T5

accesses A1 and A8, while T7 accesses A2 and A3. Since T1, T5, and T7 are accessing common accounts, they are dependent on each other and grouped

into the same shard, Shard1. Similarly, transactions T2, T3, and T9 are grouped into Shard2, while T4, T6, and T8 are grouped into Shard3. Transactions in

each shard are independent from those in other shards, and each shard can be executed in parallel by different followers of the community. However,

transactions within a shard must be executed in the original order in which they arrived.

Algorithm 1. Analyze()

Data: txnsList

Result: sendTxnsMap

1 Procedure Analyze(txnsList):

// Prepare AdjacencyMap, ConflictMap, AddressList to find WCC

2 Map<address, List<txID>> conflictMap;

3 Set<address> addressSet;

4 Map<address,address> adjacencyMap;

5 for tx ∈ txnsList do

6 conflictMap[tx.from].put(tx.txID);

7 conflictMap[tx.to].put(tx.txID);

8 addressSet.put(tx.from);

9 addressSet.put(tx.to);

10 adjacencyMap[tx.from].put(tx.to);

11 adjacencyMap[tx.to].put(tx.from);

12 end

13 Map<shardID, Set<txID>> shardsMap;

// Call to WCC till all addresses are visited

14 shardsMap = WCC (addressSet, conflictMap);

15 Map<followerID, List<Transaction>> sendTxnsMap;

// Equally load balance the shards for followers

16 sendTxnsMap = LoadBalance (shardsMap, followerList, txnsList);

17 return sendTxnsMap

We model the problem of finding the shards using static analysis (Algorithm 1) as a graph problem. Specifically, each account serves as a vertex

in the transaction dependency graph, identified by its address. We introduce an undirected edge when a transaction access two accounts, identified

6 of 33 BAHETI ET AL.

Algorithm 2. LoadBalance()

Data: shardsMap, followerList, txnsList

Result: sendTxnsMap

18 Procedure LoadBalance (shardsMap, followerList, txnsList):

19 Map<int, List<Transaction>> sendTxnsMap ;

// Sort the shards in decreasing order of transaction count

20 shardMap = sorted(shardMap, reverse = True)

21 for ccID ∈ shardMap do

// Find the followerID which has least number of transactions and assign them the shard

transactions

22 Map<int, List<Transaction>>::iterator it1, it2;

23 for it1 ∈ sendTxnsMap do

24 for (it2 ∈ sendTxnsMap) do

25 if it1 → second.size()>it2 → second.size() then

// Follower id with least number of transactions

26 id = it2 → first - 1;

// Assignment of shard transactions

27 for txid ∈ shardMap[ccID] do

28 sendTxnsMap[followerList[id].followerID].add(txnsList[txid]);

29 end

30 end

31 end

32 end

33 end

34 return sendTxnsMap

by its transaction ID. A single transaction accessing n addresses will introduce n(n−1)
2

edges, forming a clique among them. Next, we find the Weakly

Connected Component (WCC) in this dependency graph. Each component forms a single shard and contains the edges (transactions) that are part of

that component. The transactions within a single shard are present in their sequential order of arrival. Transactions that are not dependent on any

other transaction are not present in this graph and are placed in singleton shards. This is illustrated in Figure 2.

The number of shards created may exceed the number of followers. In this case, we attempt to load-balance the number of transactions per

follower. To achieve this, the leader sorts the shards in decreasing order of transaction count and assigns each shard to the follower with the least

current load of transactions using Algorithm 2. As long as the number of shards is many and we do not have skewed shards with many transactions

that can overload a single worker by itself, this bin-packing algorithm achieves load balancing.

For example, in experiments for a block with 100 transactions, there are ≈39 shards and ≈6 transactions in the largest shard on an average.

Moreover, load balancing of the shards among the 5 followers results in each follower being assigned ≈25 transactions (refer Figures 10 and 11).

Here, we assume that all transactions take the same execution time, which may not be true in practice since smart contract function calls may

vary in latency, and be costlier than non-smart contract (monetary) transactions as we can observe that in the experiments section. However, if we

have an estimate of the transaction duration, existing scheduling algorithms can be easily adapted to these as well. Similarly, heterogeneity in the

computational capability of followers can be handled as well.

2.1.4 Time complexity analysis

The running time complexity for the DiPETrans approach depends on the number of shards, the number of transactions assigned to each shard, and

the shards assigned to each follower. This has three components: the initial overheads to partition and assign shards to followers, the time to execute

transactions concurrently across followers, and the time for parallel mining of the POW.

Let an input block have n transactions. TheAnalyze function takes(n) to build the transaction graph with n edges and between 2 to 2n vertices.

So finding the dependencies using WCC on this graph also takes (n) to identify the shards. This gives a time complexity of (n) for the Analyze

BAHETI ET AL. 7 of 33

phase. Say we have m shards and f follower nodes in the community. The LoadBalancefunction takes (m ⋅ log(m)) to initially sort the shards.

Then, for faster execution, we can use a priority queue to maintain the number of shards and transactions assigned to each follower. In this case,

we get a time complexity of (m ⋅ log(f)) to assign the shards to followers. This comes from the observation that we are inserting f followers m

times with each insert taking log(f) time. Combining the time taken by both the routines, gives a time complexity of (m ⋅ (log(m) + log(f))) for the

LoadBalance phase. So the initial overheads have an overall time complexity of (n + m ⋅ (log(m) + log(f))). Usually, with m > f, this reduces to an

expected complexity of (n + m ⋅ log(m)).
The time to complete the transaction execution is limited by the follower with the most number of transactions, assuming all transactions take

about the same amount of time, tx . So, in the best case, the peak number of transactions assigned to a follower ranges from n
f

, with perfect load

balancing to n; in the worst case, there is only one shard with all the transactions. So the worst-case time complexity for transaction execution is

(n ⋅ tx) and a best-case time complexity ofΩ(n
f
⋅ tx). Lastly, the PoW can be mined by the followers with perfect parallelism. So if tp is the time to find

the PoW serially, the time complexity for finding it in parallel is a tight bound Θ(tp

f
).

2.2 Sequence of operations

Figure 3 shows the sequence diagram for processing a block by a miner and a validator community in DiPETrans. There are four roles as LeaderMiner,

FollowerMiner, LeaderValidator, and FollowerValidator. At the top of Figure 3, we see the LeaderMiner starts the block execution by creating a block

from the transaction queue. The created block consists of a set of transactions b , including block specific information such as timestamp, miner

details, nonce, hash of the previous block, final state, and so forth. The transactions of the block are formed into a dependency graph for static

analysis. The WCC algorithm used to identify disjoint sets of transactions that form shards c . Load balancing and mapping of shards to followers

are done as well. The LeaderMiner then sends the shards to the follower devices in parallel d , and these are executed locally on each follower e .

After successfully completing the transactions, each FollowerMiner sends the updated account states back to the LeaderMiner f . The LeaderMiner

updates its global account state based on the responses received from all the FollowerMiners g .

Once all FollowerMiner complete executing their assigned shard(s), the LeaderMiner switches to the PoW phase. It assigns followers the task of

finding the PoW for different ranges of the nonce concurrently h . The FollowerMiner searches the range to solve the PoW i and returns a response

either when the PoW is solved, or their nonce range has been completely searched j . A successful detection of a solution by one follower causes

the leader to terminate the PoW search on other followers. Finally, the LeaderMiner broadcasts the block containing the transactions, the updated

account states, the PoW, and optionally the mapping from shards to transactions (required for Sharing Validators) to the peers in the blockchain

network for validation k .

F I G U R E 3 Sequence diagram of operations during mining and validation

8 of 33 BAHETI ET AL.

At the lower part of Figure 3, we see a LeaderValidator receives a block to verify. It needs to re-execute the block transactions and match

the resulting account states with those present in the block. For this LeaderValidator, either use the shard information present in the block

(Sharing Validator) or, if not present, determine it using the same dependency graph approach as the LeaderMiner c . LeaderValidator uses the

Sharing Validator approach if it trusts the LeaderMiner. Then LeaderValidator assigns the shards to the FollowerValidators l . After successfully

executing the transactions assigned by LeaderValidator m , each FollowerValidator returns the account states back to the LeaderValidator n . The

responses are verified by the LeaderValidator with the states present in the block o . The LeaderValidator also confirms that miner has cor-

rectly found the PoW p . After both these checks succeed, the LeaderValidator accepts the block and propagates the message to reach the

consensus.

2.3 Community trust model

Trust is the probability with which an entity will perform a particular action, and how it in turn affects another entity’s behavior.12 In DiPETrans, the

trust model among the peers follows existing blockchain networks, wherein more than half the nodes in the network are trusted and not malicious.13

Depending on the blockchain, the nodes may be permissioned or permissionless—in the former, the identity of each node is known through authenti-

cation or other mechanisms. However, all nodes within each community, which act as a miner or as a validator, are permissioned. We assume implicit

trust between all these nodes and no malicious or faulty behavior.

While we do not discuss the means to ensure this trust model, various security measures can be employed, such as authentication, authorization,

access control, and so forth, to add and validate the identity of new nodes. Any faulty or malicious behavior of a node on the community can cause

that community to behave as a malicious peer in the blockchain network, which as such is handled by the blockchain’s validation requirements. As

future work, we can consider scenarios where nodes in the community may be malicious and the (trusted) leader can identify such nodes based on

the re-execution of a rejected block transactions and final state computation.

3 EXPERIMENTS AND RESULTS

In this section, we first provide an overview of the DiPETrans implementation, followed by a description of the transactions workload, experimental setup,

and performance analysis based on execution time and speedup achieved by our proposed approach over a serial version.

3.1 Implementation

We modeled and implemented DiPETrans as a stand-alone permissioned blockchain framework (such as Quorum14 while excluding PoW in a permis-

sioned setting) that operates on Ethereum blockchain transactions. The leader and followers are designed as a set of micro-services that perform

mining and validation operations. These include the new operations proposed in DiPETrans. Our implementation focuses on operations within

the mining community rather than with the rest of the blockchain network. The leader serves as a node with the usual Ethereum functions. The

implementation is in C++ using the Apache thrift cross-platform micro-services library.

We made several simplifying assumptions to focus on our goal of concurrent executions of block transactions (in the permission or per-

missionless blockchain). As mentioned in Section 1, all nodes within a community (leader and followers) trust each other, for example, they

belong to the same institute or organization or crypto exchange. However, this can be extended in the future to a trustless community using

node profiling, which decreases the reputation of malicious nodes,15 detects and removes them. The peers are assumed to be reliable. In the

future, worker failures can be addressed by distributing the shards of a failed worker to others based on a work-stealing approach. Further,

we assumed a fixed community structure where the leader knows all the followers when processing a block. The addition and removal of follow-

ers or even the leader are not considered here. These issues can partly be addressed using existing techniques8 for both trusted and trustless

communities.

3.2 Transactions workload

Our experiments used real historical transactions from the Ethereum blockchain available from Google’s Bigquery public data archive as on March

13, 2021.16 The transactions used start from block number 4,370,000, which forms a hard fork when Ethereum changed the mining reward from

BAHETI ET AL. 9 of 33

5 to 3 Ethers. We extracted ≈80k blocks containing 5,170,597 transactions. While the original transactions had 17 fields, we selected 6 fields of

interest as part of our workload. These include the from_address of the sender, the to_address of the receiver, value transferred in Wei (the

unit of Ethereum currency), inputdata sent along with the transaction, receipt_contract_address the contract address when it is created

for the first time, and block_numberwhere this transaction was present in.

There are two types of transactions we considered: monetary transactions and smart contract transactions.17 In the former, also known as value

transfer or non-contractual transaction, coins are transferred from one account to another account. This is a simple and low-latency operation.

In a contractual transaction, one or more smart contract functions are invoked. We observed that there are 127 unique Solidity functions in 20k

contracts, out of which we implemented the top 11 most frequently invoked ones (Table 2) that cover ≈80% of all contract transactions. These

contract functions implemented in the Solidity language of Ethereum are re-implemented as C++ function calls. These can be invoked by the peers

in our framework as part of their transaction execution.

Of the ≈5 million transactions present in the Ethereum blocks, we considered 193,959 smart contract transactions. We believe that over time,

the wider use of smart contracts will ensure that they form a larger fraction than just monetary transactions. Contract transactions are also more

compute-intensive to execute than monetary transactions. Thus they can benefit more from our distributed framework. Hence, we created work-

loads with different ratios between contract and monetary transactions: 𝜌 ∈
{

1

1
; 1

2
; 1

4
; 1

8
; 1

16

}
. Each block formed by miners has between 100 and

500 transactions in this ratio, depending on the workload used in an experiment. This workload used in our experiments is described in Table 1. Here,

the block data-1-2-300 means 𝜌 = 1

2
is the ratio of contractual to monetary transactions per block while 300 is the total number of transactions in

this block.

TA B L E 1 Summary of transactions in experiment workload

Block type 𝝆 # Txns/block # Blocks
∑

Contract txns
∑

Non-contract txns

data-1-1-100 1
1

100 3880 193,959 194,000

data-1-1-200 200 1940 193,959 194,000

data-1-1-300 300 1294 193,959 194,100

data-1-1-400 400 970 193,959 194,000

data-1-1-500 500 776 193,959 194,000

data-1-2-100 1
2

100 5705 193,959 376,530

data-1-2-200 200 2895 193,959 385,035

data-1-2-300 300 1940 193,959 388,000

data-1-2-400 400 1448 193,959 385,168

data-1-2-500 500 1162 193,959 386,946

data-1-4-100 1
4

100 9698 193,959 775,840

data-1-4-200 200 4849 193,959 775,840

data-1-4-300 300 3233 193,959 775,840

data-1-4-400 400 2425 193,959 776,000

data-1-4-500 500 1940 193,959 776,000

data-1-8-100 1
8

100 16,164 193,959 1,422,432

data-1-8-200 200 8434 193,959 1,492,818

data-1-8-300 300 5705 193,959 1,517,530

data-1-8-400 400 4311 193,959 1,530,405

data-1-8-500 500 3464 193,959 1,538,016

data-1-16-100 1
16

100 32,327 193,959 3,038,738

data-1-16-200 200 16,164 193,959 3,038,832

data-1-16-300 300 10,776 193,959 3,038,832

data-1-16-400 400 8082 193,959 3,038,832

data-1-16-500 500 6466 193,959 3,039,020

10 of 33 BAHETI ET AL.

TA B L E 2 Most frequent functions invoked by contract transactions

Function Function hash Parameter types # Txns %’ile

1 transfer 0xa9059cbb address, uint256 56,654 37.72

2 approve 0x095ea7b3 address, uint256 11,799 45.58

3 vote 0x0121b93f uint256 11,509 53.24

4 submitTransaction 0xc6427474 address, uint256, bytes 8163 58.67

5 issue 0x867904b4 address, uint256 5723 62.49

6 __callback 0x38bbfa50 bytes32, string, bytes 5006 65.82

7 playerRollDice 0xdc6dd152 uint256 4997 69.15

8 multisend 0xad8733ca address, address[], uint256[] 4822 72.36

9 SmartAirdrop 0xa8faf6f0 – 4467 75.33

10 PublicMine 0x87ccccb3 – 4157 78.10

11 setGenesisAddress 0x0d571742 address, uint256, bytes 3119 80.17

We define two transaction workloads with different mixes of these block types. In Workload-1, the number of transactions per block varies from

100 to 500, and within each, we include all available ratios of 𝜌, from 1

1
to 1

16
, that is, all the blocks in Table 2 are used. In Workload-2, only blocks with

500 transactions are used, but with all available ratios 𝜌, that is, data-1-1-500 to data-1-16-500.

3.3 Experimental setup

We used a commodity cluster to run the leader and followers in the mining and validation communities for our DiPETrans blockchain net-

work. Each node in the cluster has an 8-core AMD Opteron 3380 CPU with 32 GB RAM, running CentOS operating system and are con-

nected using 1 Gbps Ethernet. A mining community has a leader running on one node and between one to five followers, each running on

a separate node, depending on the experiment configuration. Similarly, a validation community has one leader and between one to five fol-

lowers. They all run in a single-threaded mode for simplicity, though this can be extended to multi-threading with each thread serving as

a follower.

3.4 Performance analysis

For each workload, blocks are executed for a serial configuration and for a parallel configuration with 1–5 followers. The serial execution

serves as the baseline for comparing the performance improvement of the parallel setup. Further, we executed these in different modes. One,

the miner only executes the transaction and omits the PoW. Since parallelizing the PoW available in the existing literature (e.g., mining PoW

available in the existing literature (e.g., mining pools),6-8,18,19 this setup highlights the novel value of our static analysis technique for both

mining and validation in the permission or permissionless blockchain. Also, we performed experiments with both variants of the validator:

default and sharing. Two, the miner performs both transaction execution and PoW computation with concurrency benefits from both. These are

described next.

3.4.1 Transaction execution time

This section presents the results and analysis for executing transactions at the miner and verifying them at the validator. It omits the time to find the

PoW at the miner and verifying it at the validator. The serial execution serves as a baseline.

Figures 4 and 6 show the average execution time per block (in ms) for Workload 1 and Workload 2, respectively, for the different modes of execution.

For Workload 1, the number of transactions per block increases in the X-axis, while for Workload 2, the contract to monetary transaction ratio 𝜌

varies. Subfigure A is for the miner, and subfigures B and C are for the default and sharing validators.

Figures 5 and 7 show the speedup of our parallel execution, relative to the serial execution.*

BAHETI ET AL. 11 of 33

 0

 200

 400

 600

 800

100 200 300 400 500

(A) Miner: Workload 1 (W1)

T
ra

n
s
a
c
ti
o
n
 E

x
e
c
u
ti
o
n

T
im

e
 (

m
s
)

Transactions/Block

 0

 200

 400

 600

 800

100 200 300 400 500

(B) Default Validator: Workload 1 (W1)

Transactions/Block

Serial 1 Follower 2 Follower 3 Follower 4 Follower 5 Follower

 0

 200

 400

 600

 800

100 200 300 400 500

(C) Sharing Validator: Workload 1 (W1)

Transactions/Block

F I G U R E 4 Workload-1: Average transaction execution time by miner (omitting time to find PoW) and validator

 0.5

 1

 1.5

 2

 2.5

100 200 300 400 500

(A) Miner: Workload 1 (W1)

S
p

e
e

d
u

p
 o

v
e

r
S

e
ri
a

l
M

in
e

r

Transactions/Block

 0.5

 1

 1.5

 2

 2.5

100 200 300 400 500

(B) Default Validator: Workload 1 (W1)

S
p

e
e

d
u

p
 o

v
e

r
S

e
ri
a

l
V

a
lid

a
to

r

Transactions/Block

 0.5

 1

 1.5

 2

 2.5

100 200 300 400 500

(C) Sharing Validator: Workload 1 (W1)

S
p

e
e

d
u

p
 o

v
e

r
S

e
ri
a

l
V

a
lid

a
to

r

Transactions/Block

F I G U R E 5 Workload-1: Average speedup by community miner and validator over serial miner and validator for transaction execution

 0

 200

 400

 600

 800

 1000

1:1 1:2 1:4 1:8 1:16

Fixed 500 Transactions/Block

(A) Miner: Workload 2 (W2)

T
ra

n
s
a

c
ti
o

n
 E

x
e

c
u

ti
o

n
T

im
e

 (
m

s
)

Data Set

 0

 200

 400

 600

 800

 1000

1:1 1:2 1:4 1:8 1:16

Fixed 500 Transactions/Block

(B) Default Validator: Workload 2 (W2)

Data Set

 0

 200

 400

 600

 800

 1000

1:1 1:2 1:4 1:8 1:16

Fixed 500 Transactions/Block

(C) Sharing Validator: Workload 2 (W2)

Data Set

F I G U R E 6 Workload-2: Average transaction execution time by miner (omitting time to find PoW) and validator

 0.5

 1

 1.5

 2

 2.5

 3

1:1 1:2 1:4 1:8 1:16

Fixed 500 Transactions/Block

(A) Miner: Workload 2 (W2)

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
M

in
e
r

Data Set

 0.5

 1

 1.5

 2

 2.5

 3

1:1 1:2 1:4 1:8 1:16

Fixed 500 Transactions/Block

(B) Default Validator: Workload 2 (W2)

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
V

a
lid

a
to

r

Data Set

 0.5

 1

 1.5

 2

 2.5

 3

1:1 1:2 1:4 1:8 1:16

Fixed 500 Transactions/Block

(C) Sharing Validator: Workload 2 (W2)

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
V

a
lid

a
to

r

Data Set

F I G U R E 7 Workload-2: Average speedup by community miner and validator over serial miner and validator for transaction execution

12 of 33 BAHETI ET AL.

Workload-1: As shown in Figure 4, the average execution time per block increases as the number of transactions in a block increases from 100

to 500. Each block size in this workload includes all values of 𝜌, the ratio. This growth is linear, except for the serial execution that shows an increase

in the slope beyond 300 transactions per block.

We also see that the 1 follower configuration is performing worse than the serial execution due to the overhead of static analysis at the leader

and communication between the leader and follower. However, other configurations with 2–5 followers offer faster execution times than serial

execution.

Figure 4B,C shows the line plots for the average transactions execution time per block, taken by Default Validator and Sharing Validator, respec-

tively. The only difference between these two validators is that Default Validator runs static analysis on the block transactions before execution, while

Sharing Validator reuses the dependency graph encoded in the block. The results for both these validators are near-identical and also closely match

the results for the miner. The former indicates that the transaction validation time dominates, and the overheads for static analysis are negligible.

Further, since the miner in this experiment only executes transactions and not the PoW, it is understandable that the validators that use a similar

transaction execution phase exhibit similar results.

When we examine the parallel speedup for this workload relative to the serial execution in Figure 5, we observed that the speedup increases

with an increasing number of followers. As seen before, with 1 follower, the speedup is below 1× while with 5 followers, the peak speedup achieved

is 2.18×. The speedup also improves as the number of transactions per block increases. This causes shards with a larger number of transactions to be

created, and parallelization of the higher computational load amortizes the static analysis and the communication overheads. However, the speedup

efficiency is sub-optimal at about 51% for 4 followers and 44% for 5 followers, with 500 transactions/blocks.

A similar trend is observed for the validators. We also noticed that the speedup curves for Sharing Validator and Default Validator are comparable.

This means that the benefits of a SharingValidator are negligible as compared to the DefaultValidator due to the minimal time taken by the static

analysis. Further, we observed that static analysis is not a bottleneck for the leader in this workload due to presence of only hundreds of transactions

per block. So this leads us to conclude that Default Validator should suffice. Moreover it also avoids encoding the transaction dependency graph into

the block as required by a Sharing Validator. The validators’ average speedup is 1.25×, and their peak is 2.03× with 5 followers and 500 transactions

per block.

Workload-2: In this workload, the transactions per block are fixed at 500 while we vary the ratio 𝜌. Figure 6 shows the average transaction

execution time taken by the miner and the two types of validators in the Y-axis as the value of 𝜌 increases along the X-axis. We observed that

reducing the ratio of contract transactions relative to the non-contractual transactions reduces the average time taken to mine or validate a block.

This can be explained by the higher computational complexity of the smart contracts that execute non-trivial external function calls as part of the

transaction logic.

Unlike Workload 1, the 1 follower scenario is comparable to the serial setup rather than slower. Having more than 1 follower offers consistently

better performance than serial. However, with the increase of non-contractual transactions in a block, the serial execution starts even to match the

time taken by more followers. Here, given the short absolute execution time of about 400 ms per block for 𝜌 = 1

16
due to the simple non-contractual

transactions, it is possible that the round trip communication time between the leader and the follower may start to have a tangible impact. In

Figure 6C, we can observe that the time required to execute more transactions per block decreases as the number of contract transactions decreases.

These trends are common to the miners and the two validators.

Interestingly, in Figure 7, the speedup curve shows improvement as the value of 𝜌 increases until 1

4
and drops after that. This indicates that the

sweet-spot of parallel efficiency lies with this mix of the contract and non-contract transactions, offering a peak speedup of 2.7× with 5 followers

and a favorable speedup efficiency of 73% with 3 followers.

3.4.2 End-to-end mining time

Here we present the analysis for end-to-end block creation time by the miner, which includes the transaction execution time as well as the time to

find the PoW.

Existing blockchain platforms such as Bitcoin, Ethereum maintain, and modulate a factor called difficulty21 in the block creation (mining) process.

These systems calibrate the difficulty using carefully designed difficulty algorithm to keep the mean end-to-end block creation time within limits

like in Bitcoin which ensure that every two weeks, that is, after 2016 blocks the difficulty is calibrated to ensure that the inter-block addition time

is ≈10 min.21

The difficulty is calibrated based on how much time it takes for mining. If it has taken more than 2 weeks, the difficulty is reduced otherwise

it is increased. In addition to this, several other factors are also considered to change the difficulty. While in Ethereum blockchain, roughly tries to

maintain the block production time to be around 10–19 s. So the difficulty is fixed accordingly. After every block creation, if mining time goes below

9 s, then Geth, a multipurpose command line tool that runs Ethereum full node, tries to increase the difficulty. In case when the block creation differ-

ence is more than 20 s, Geth tries to reduce the mining difficulty of the system. Solving PoW is an inherent brute-force task. Blockchain platforms

BAHETI ET AL. 13 of 33

calibrate the difficulty of solving it to ensure that the average block creation time remains within limits as hardware technology improves and the

mix of transactions varies. For simplicity, in our experiments, we fixed the difficulty per block to be a static value.

Figure 8 shows the average execution time for each block on the Y-axis, which includes the transaction execution time and PoW time, as

the number of transactions per block increases (Workload 1) or the value of 𝜌 varies (Workload 2). In contrast to the earlier experiments,

we can clearly see that the execution time has increased by orders of magnitude by introducing the PoW, ranging between 10 and 60 s per

block for the serial execution. We also see an apparent linear growth in time as the transactions per block increases in Workload 1. When

seen along with the speedup plots in Figure 9A, we observe a substantial improvement in the average block creation time as the number of

followers increase. We have a speedup of 1.15× to 4.91× for 1–5 followers that remain stable as the block size increases, with a speedup effi-

ciency of 57.5%–81.83%. Figure 8B for Workload 2, where the monetary transactions increases per block, the mining time sometimes increases

and sometimes decreases. We achieve a maximum speedup of 1.17× to 4.82× for 1–5 followers, with a speedup efficiency of 58.5%–80.33%

in Workload 2.

3.4.3 Sharding analysis

Here in this section, we present the analysis for the number of shards per block, transactions in a shard, and the transactions allocated to a follower

on both the workloads. In Workload 1, the number of transactions per block varies, while in Workload 2 ratio (𝜌) of non-smart contract (monetary)

transactions to smart contract transactions vary where transaction counts per block remained 500 for all the cases. These experiments considered

the community with fixed five followers. From Figures 10 to 14, we use violin plots for better visualization of the data distribution (shards, trans-

actions, memory size, and time) with the mean (in purple color) and median (in red color) distribution. First, we explain the meaning of a violin plot.

Consider Figure 12A. The violin plot shows the minimum, maximum, mean, and median number of shards in a block. For instance, in this plot, for the

entry with 100 transactions per block as shown in the x-axis, the details are as follows: minimum 1, maximum 99, mean 36.19, and median 40. In all

the plots mean is shown in purple while the median is shown in red. Here, the mid-way bulge in the violin plot represents the maximum frequency

of occurrence of the shards. Having explained its meaning, we now analyze the plots.

 0

 20

 40

 60

 80

100 200 300 400 500

(A) Miner: Workload 1 (W1)

B
lo

c
k
 C

re
a
ti
o
n
 T

im
e
 (

s
e
c
)

Transactions/Block

 0

 20

 40

 60

 80

1:1 1:2 1:4 1:8 1:16

Fixed 500 Transactions/Block

(B) Miner: Workload 2 (W2)

Data Set

Serial
1 Follower

2 Follower
3 Follower

4 Follower
5 Follower

F I G U R E 8 Average end-to-end block creation time, including the time to find PoW by community miner

 0

 1

 2

 3

 4

 5

 6

100 200 300 400 500

(A) Miner: Workload 1 (W1)

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l

Transactions/Block

 0

 1

 2

 3

 4

 5

 6

1:1 1:2 1:4 1:8 1:16

Fixed 500 Transactions/Block

(B) Miner: Workload 2 (W2)

Data Set

F I G U R E 9 Average end-to-end block creation speedup by community miner over serial miner

14 of 33 BAHETI ET AL.

(A) Workload 1 (W1)

Fixed 500 Transactions/Block

(B) Workload 2 (W2)

F I G U R E 10 Number of shards with varying transactions per block and varying data set (𝜌)

(A) Workload 1 (W1)

Fixed 500 Transactions/Block

(B) Workload 2 (W2)

F I G U R E 11 Number of transactions in a shard with varying transactions per block and varying data set (𝜌)

(A) Workload 1 (W1)

Fixed 500 Transactions/Block

(B) Workload 2 (W2)

F I G U R E 12 Number of transactions allocated to a follower with varying transactions per block and varying data set (𝜌)

BAHETI ET AL. 15 of 33

(A) Workload 1 (W1)

Fixed 500 Transactions/Block

(B) Workload 2 (W2)

F I G U R E 13 Memory utilized by followers during execution with varying transactions per block and varying data set (𝜌)

(A) Workload 1 (W1)

Fixed 500 Transactions/Block

(B) Workload 2 (W2)

F I G U R E 14 Time taken by Analyze()algorithm with varying transactions per block and varying data set (𝜌)

To determine available parallelism within a block, the violin plot in Figure 10 shows the number of shards per block on both workloads.

Figure 10A shows the number of shards on Workload 1, Figure 10B on Workload 2 with varying ratio 𝜌, and Figure 12 shows the number of trans-

actions allocated to a follower. The larger the number of shards in a block, the higher the possibility of parallelism. The number of shards per block

increases with the increasing number of transactions in a block on Workload 1. Nevertheless, on Workload 2, it remains approximately the same

due to the fixed number of transactions.

It must be observed that more the number of shards better is the parallelism. Thus, if all the transactions get grouped into a few shards then there

is not much parallelism. We observe this to not be the case in our experiments. Since we have used real historical transactions from the Ethereum

blockchain, this shows that the real-world blockchain applications exhibit considerable amount of parallelism.

When the number of shards is higher than the community size, our algorithms load balances between the community followers reasonably well.

Remarkably, the number of blocks with very less number of shards is not high which reinforces our above observation that real-world blockchain

applications exhibiting good amount of parallelism. The maximum shards on both the workloads are ≈370. While the average number of shards in

Workload 1 increases from ≈40 to ≈131 when transactions vary from 100 to 500 per block, respectively.

Figure 11 shows the violin plot of the number of transactions in the largest shard with varying number of transactions per block (Figure 11A)

and varying 𝜌 (Figure 11B) to demonstrate the skewness present within a shard and blocks. The larger the number of transactions in the largest

shard (skewed), the lower the block parallelism. We can observe in Figure 11 that the number of transactions increases in maximum shard in both

workloads. The increase in transactions with varying 𝜌 on Workload 2 is relatively significant compare to Workload 1. It indicates that the correla-

tions between transactions often escalate when monetary transaction increases in the block. As shown in Figure 12, after the load balancing, the

average number of transactions allocated to a follower is balanced. Hence all the followers get approximately even load (we have five followers in

the community).

16 of 33 BAHETI ET AL.

We observed that the maximum number of shards is≈ 370 in a block with 500 transactions in Workload 1. On average, a shard with a maximum

number of transactions is ≈460 in 500 transactions block when 𝜌 is 1

16
. The number of shards and number of transactions (in the maximum size

shard) increases with an increase in the number of transactions per block (Workload 1) and ratio 𝜌 (Workload 2), respectively.

3.4.4 Performance overhead analysis

The analysis of the average memory size taken by the followers during the execution of the transaction and the time taken by the leader for sharding

block transactions (i.e., time taken by Analyze()(Algorithm 1)) using violin plots is discussed in this section.

The maximum memory used by followers increases with an increasing number of transactions in the block, which can be seen in the violin

plot of Figure 13A. This is as expected, because additional transactions in the block may take extra space to store data as well more space during

execution. However, the average memory size remains steady. As shown in the violin plot of Figure 13B, with increasing ratio 𝜌, the average memory

size decreases; this may be because non-smart contract (monetary) transactions are less expensive in computation and latency than smart contract

function calls, hence take lesser space. In contrast, the maximum memory size in Workload 2 reaches≈10,000 kB that is relatively closer to maximum

memory size in Workload 1.

The time taken by Analyze() algorithm can be seen in Figure 14. It is utilized to find shards using static analysis as a graph problem. The

algorithm is explained in Section 2.1.3. We use microseconds (𝜇s) here in Figure 14 for visualization purposes since the analysis algorithm takes

significantly less time than the execution time of the transactions. As shown in Figure 14A, analysis time increases with increasing transactions in the

block since the time taken by graph construction and WCC composition to find different shards increases with the number of transactions. However,

the number of transactions in Workload 2 with varying ratio 𝜌 is fixed to 500 per block; consequently, the average time taken by the static analysis

is almost comparable as shown in Figure 14B.

3.4.5 Throughput analysis

The throughput analysis of the proposed DiPETrans blockchain on community configuration for parallel transaction execution and serial execution is

discussed here.

Figure 15 shows the throughput trend on the Workload 1 and Workload 2. Throughput increases with the increasing number of transactions

per block as well it increases with the increase in the non-smart contract (monetary) transactions per block on Workload 2. The gain in throughput

on Workload 2 is relatively more significant than that of on Workload 1. This gain implies that non-smart contract (monetary) transactions are less

expensive in computation than smart contract transactions; therefore, more transactions can be executed per second and hence higher latency w.r.t

these transactions.

Further, as shown in Figure 15A, the throughput for serial execution increases with the increasing number of transactions to 300 transac-

tions per block and reaches a maximum of 900 tps (transactions per second); after that, there is a drop-down in throughput. However, this is not

the case with community-based parallel execution in the proposed approach; it keeps increasing with the increasing number of transactions per

 64

 256

 1024

 4096

100 200 300 400 500

(A) Workload 1 (W1)

T
h
ro

u
g
h
p
u
t

(T
ra

n
s
a
c
ti
o
n
s
/S

e
c
)

Transactions/Block

4
7
8

7
7
0 9
0
0

8
2
4

7
6
6

4
4
9

5
7
9 6
5
9

7
0
9

7
4
2

5
7
0

7
9
9 9

5
0

1
0
4
0

1
1
1
3

6
2
8

9
1
5 1
1
0
9

1
2
4
8

1
3
6
9

6
4
6

9
7
9 1
2
0
5

1
3
8
3

1
5
0
2

6
5
0

1
0
1
0 1
2
6
7

1
4
6
3

1
5
7
7

 64

 256

 1024

 4096

1:1 1:2 1:4 1:8 1:16

(B) Workload 2 (W2)

Data Set

Serial 1 Follower 2 Follower 3 Follower 4 Follower 5 Follower

5
5
6 6
2
2

6
7
1

1
0
6
9 1

4
3
6

5
5
3 6

6
5 7
7
1 8
8
0

1
0
0
7

8
2
9 9

8
1

1
1
6
7

1
3
3
3

1
5
1
9

1
0
2
3

1
1
9
8

1
4
1
1

1
6
6
3

1
8
9
1

1
0
9
6 1
3
2
5

1
5
8
2

1
8
6
0

2
0
3
1

1
1
3
2 1
4
2
6

1
6
9
0

1
8
9
5

2
1
4
7

F I G U R E 15 Throughput with varying transactions per block and varying data set (𝜌)

BAHETI ET AL. 17 of 33

block and followers in the community, which confirms that DiPETrans improves the throughput. The maximum throughput on Workload 1 is 1577

tps in a community with five followers at 500 transactions per block, which is 2.05× higher than that of serial execution. Nevertheless, this dif-

ference narrows down to 1.49× on Workload 2 as shown in Figure 15B, where parallel execution achieves a maximum throughput of 2147 tps

when ratio 𝜌 = 1

16
. However, the sweet spot of maximum throughput by parallel approach concerning serial is at 2.52× with 1690 tps on Work-

load 2 when 𝜌 = 1

4
. This implies that the proposed approach yields maximum benefit when a block consisting of a small number of monetary

transactions. Since contractual transactions are computation-intensive and executing independent contractual transactions in parallel will increases

the throughput.

3.4.6 Optimal community size

As we saw from the complexity analysis in Section 2.1.4, the choice of an optimal community size (c = f + 1), which has 1 leader and f followers,

depends on several parameters, including the number of transactions per block, the mix of contractual and non-contractual transactions per shard,

the number of shards formed from a block, and so forth. In an ideal scenario, one would have a large number of transactions per block (n) to amortize

the overhead costs across transaction execution, have many contractual transactions that are independent and hence benefit from fully parallel

execution (high value of 𝜌), form as many shards (m) as the number of followers (f) and have an equal number of transactions in each shard to have

good load balancing. Given the heterogeneity and the variation of transaction and their dependencies over time, that is, n, m, and 𝜌 vary per block, it

is difficult to identify the best size f of the community.

One can observe these values in the transaction blocks over time to form an empirical estimate of what values of f would work well. For example,

one could experimentally identify the average shards formed per block and then set the community size to be equal to this average value to maximize

parallelism. However, this can also lead to under-utilization of the followers. Specifically, if there is a skew between the number of transactions in

the largest shard and the rest of the shards, or if one follower is assigned shards with many more transactions than the other followers, then this

slowest follower/largest shard will cause the others to be idle after executing transactions in their shards and thus limiting the resource usage of

the community.

We analyze the effect of the community size and workloads on the utilization of the followers. For a community of size f = 5, Figure 16 reports

the time taken by the follower with the largest shard/most transactions (maximum execution time bar), the average time to a shard by a follower

(average execution time bar), and the cumulative idle time for which the remaining 4 followers are waiting for the slowest follower to complete execu-

tion once they have completed their shard executions (accumulative idle time bar). With an optimal community size, the idle time will be minimized,

tending towards zero. In such a scenario, the average execution time will be similar to the maximum execution time.

Figure 16A reports these values for the workload W1 introduced earlier. With fewer number of transactions per block of n = 100 across a mix

of 𝜌 values, the idle time of the followers is higher (35 ms) relative to the average execution time (23.4 ms). However, this difference decreases as

we increase the number of transactions per block to n = 500. This is because with more transactions, there is a greater number of independent

transactions or WCCs likely to be formed and hence a better chance of balancing the load across the followers. This is also seen from the % difference

between the maximum and the average times, which reduces from 28% to 16%.

 0

 20

 40

 60

 80

 100

100 200 300 400 500

(A) Workload 1 (W1)

T
im

e
 (

m
s
)

Transactions/Block

3
5

.0
2

3
2

.8
0

3
1

.9
2

3
3

.8
2

3
8

.2
3

3
2

.1
1 4
0

.0
4

4
6

.6
0

5
3

.6
5 6
0

.9
9

2
3

.3
6 3
1

.8
4

3
8

.6
2

4
5

.2
0

5
1

.4
3

 0

 20

 40

 60

 80

 100

1:1 1:2 1:4 1:8 1:16

(B) Workload 2 (W2)

Data Set

Accumulative Idle Time Maximum Execution Time Average Execution Time

3
.0

6 8
.5

8

2
3

.0
8

3
6

.6
7

4
0

.3
7

8
2

.0
6

6
6

.1
1

5
8

.2
0

5
5

.6
6

4
9

.9
0

8
1

.3
0

6
3

.9
6

5
2

.4
3

4
6

.4
9

3
9

.8
0

F I G U R E 16 Transaction execution time by a follower and accumulative followers idle time with varying transactions per block and varying
data set (𝜌)

18 of 33 BAHETI ET AL.

In Figure 16B which reports the timing values for workload W2 with n = 500 transactions per block but varying the mix of transaction types,

we see that the idle time increases with 𝜌. When we have more contractual transactions with 𝜌 = 1

1
, there are fewer dependencies from the

non-contractual monetary transactions, allowing for better load balancing across followers. When the number of monetary transactions per block

increases to 𝜌 = 1

16
, the dependencies increases, consequently increasing the shard sizes and the potential skew across them. For example, with

𝜌 = 1

1
, the difference between the maximum and average times is only 1% while this grows to 20% for 𝜌 = 1

16
.

While these types of analysis can be used to guide the selection for a community size, determining the ideal size is challenging due to the inher-

ent variability of n and 𝜌. In future, one could conceive of a machine-learning technique to dynamically determine the optimal community size and

elastically provision such followers on-demand.

In addition to these experiments, we have done few additional experiments. The additional results are presented as follows in the appendix:

Additional results for transaction execution time and speedup in Appendix C. Block execution time (end-to-end time) at miner in Appendix D. For

varying number of transaction from 500 to 2500 in Appendix E.

4 RELATED WORK

This section presents an overview of existing techniques to improve the throughput and performance of the blockchains. We first give a brief

overview of the work on concurrent execution of the smart contracts then presents the work on sharding based techniques.

4.1 Multi-threaded techniques

Several challenges prevent widespread adoption of the public blockchain, such as high transaction fees, poor throughput, high latency, and limited

computation capacities5 as explained in Section 1. Also, most blockchain platforms execute the transaction serially, one after another, and fail to

exploit the parallel execution provided by current-day multi-core systems.2,9 Therefore to improve the throughput and to utilize parallelism available

with multi-core systems, researchers have developed solutions to execute the transactions in parallel.

For the concurrent execution of the smart contract within the single multi-core system, Dickerson et al.2 and Anjana et al.10,11 proposed

STM based multi-threaded approaches. They achieve better speedup over serial execution of the transactions. However, their techniques are

limited to concurrent smart contract transaction executions and based on the assumption of non-nested contract calls. Saraph and Herlihy17 per-

form an empirical analysis and exploited simple speculative concurrency in Ethereum smart contracts using a lock-based technique. They group

the transactions of a block into two bins—one with non-conflicting transactions that can be executed concurrently, while another with conflict-

ing transactions that are executed serially. Zhang and Zang22 propose a multi-version concurrency control based concurrent validator in which

miner can use any concurrency control protocol to generate the read-write set to help the validators to execute the transactions concurrently.

In Reference 23, Bartoletti et al. presented a statistical analysis-based theoretical perspective of concurrent execution of the smart contract

transactions.

In contrast, the solution we propose focuses on the distributed computing power across multiple servers to parallelly execute and verify the

block transactions and determine the PoW. This complements concurrency techniques within a single machine.

4.2 Sharding-based techniques

Mining pools use distributed computing power of multiple peers to find the PoW in parallel and share the incentive based on pre-agreed mechanisms,

for example, proportional, pay-per-share, and pay-per-last-N-shares.6,7 Both centralized and decentralized mining pools are practically used in Bit-

coin and Ethereum. For example, in the Bitcoin, ≈95% of the mining power resides with less than 10 mining pools, while 6 mining pools hold ≈80%

of the mining power in Ethereum.8 Our work goes beyond executing the PoW in parallel and utilizes the pool to execute and verify the transactions

parallelly, without affecting the correctness.

Recent studies have focused on sharding based techniques to improve the blockchain’s throughput and scalability. A majority of these

divide the network into multiple clusters and work on the assumption that there is no malfunction in most of the nodes, for example, there

are no more than t byzantine nodes in a cluster with n nodes, where n ≫ t. Additionally, several sharding solutions use a leader-based BFT

consensus protocol, including Tendermint,24 Elastico,25 Hyperledger Fabric,11 and RedBelly.26 However, in the proposed work, we do not par-

tition the network into different clusters. Instead, a node itself serves as a representative for a cluster of distributed resources. Moreover,

there is no need to change underlining blockchain consensus protocols, allowing drop-in replacement of our proposed solution into existing

platforms.

BAHETI ET AL. 19 of 33

Elastico25 is a sharding-based open blockchain protocol where participants join various clusters at random. The PBFT consensus protocol

is used by a leader-based committee to verify the cluster transactions and add a block to the global chain stored by all nodes. However, run-

ning PBFT on a large number of nodes reduces its performance and increases the probability of failure on a few nodes. Hyperledger Fabric,11

the most widely used permissioned blockchain platform, introduces the concept of channels. Multiple nodes in the fabric form clusters called

channels and the users submit their transactions to their channel. The channel nodes maintain the partitioned state of the whole system as they

execute transactions. Different channels process the transactions in parallel to improve the performance. RedBelly26 blockchain performs a par-

tially synchronous consensus run by permissioned nodes to create new blocks, while permissionless nodes issue transactions. Usually, a transaction

in a cluster is verified by all the nodes in the cluster. However, in RedBelly, this verification is done by between t + 1 to 2t + 1 nodes in the clus-

ter to improve throughput by committing more transactions per consensus instance, where t is the maximum number of byzantine nodes in the

cluster. RapidChain27 is a completely trustless sharding-based blockchain that achieves high throughput through inter-shard transaction execu-

tion via block pipelining and gossiping protocol. However, it also requires reconfiguration by the block creators for robustness. OmniLedger28

offers a protocol to assign nodes to different clusters and processes intra-shard transactions using a lock-based atomic consensus protocol based

on a partial-synchrony assumption. AHL29 proposes a trusted hardware-assisted solution to reduce the nodes in a cluster. Nodes are randomly

assigned to clusters and can ensure high security much fewer nodes per cluster than OmniLedger. SharPer30 uses flattened consensus protocol

and maintains the chain as a directed acyclic graph where each cluster stores only a view of the chain and supports intra-shard and inter-shard

transactions.

Another closely related work by Leshkowitz et al.31 proposes a leader–follower paradigm where the miner (leader) executes the block trans-

actions serially and provides the information (write sets) to perform the validation in parallel to one or more committees of blockchain nodes

in a permissioned blockchain setting. Each block is divided into multiple segments of sequential transactions, each of which is executed con-

currently by a node in a validation committee. The validation committees with a fixed number of nodes in each are formed by partitioning the

nodes of the blockchain network, and multiple committees may validate the same block to ensure correctness by the leader. This approach

poses several downsides. Since adjacent transactions are segmented without regard to inter-dependencies, parallel execution of dependent trans-

actions by different nodes of a committee can lead to a FBR error.9 Further, having fixed size committees formed from existing nodes in the

network limits flexibility. In contrast, our approach (1) uses sharding to form independent transactions, which prevents incorrect validation of

dependent transactions, (2) employs parallel execution during both mining and validation phases using communities (committees) that can have

a dynamic size, and (3) exposes only the leader of the community to the public blockchain network as a single logical node while the followers

remain private.

In summary, the UTXO model is used to achieve the atomicity of cross-shard transactions without the use of a distributed commit protocol in

OmniLedger,28 RedBelly,26 and RapidChain.27 However, RapidChain fails to achieve isolation, and OmniLedger causes blocking for cross-shard trans-

actions. A few approaches support transactions that are cross-shard while others do not. Compared to AHL,29 SharPer30 uses the account-based

model and allows cross-chain transactions using a global consensus protocol based on PBFT to achieve correctness. In contrast, Hyperledger

Fabric11 also supports the account-based model, but requires a trusted channel among the participants to execute cross-shard transactions. More-

over, almost all existing blockchains that focus on sharding divide the network into multiple clusters and process transactions independently, using

variants of the BFT consensus protocol or atomic commit protocol to increase transaction throughput and achieve scalability for the dependent

transaction.

In our proposed approach, we do not partition the network into different clusters. Instead, we follow a leader–follower approach among the

distributed clusters of cooperating nodes, where the leader serves as a representative node in the existing blockchain network such as Bitcoin and

Ethereum. The leader performs the static analysis of the transactions it receives to create shards, while the followers perform the computation over

the different shards concurrently. The PoW is also solved in parallel. This can be both permissioned or permissionless and can be done independently

for the mining and the validation phases in a transparent manner. The coordination overheads are minimal, as all nodes within a cluster are assumed

to be trusted. These allow DiPETrans to be trivially adopted within existing blockchain systems (permissioned or permissionless) and benefit from

parallel execution without the complexity of additional distributed consensus protocols while ensuring correctness.

5 CONCLUSIONS AND FUTURE WORK

In this article, we propose a distributed leader–follower framework DiPETrans to execute transactions of block parallelly on multiple nodes that are

part of the same community. We test our prototype on actual transactions extracted from Ethereum blockchain. We achieve gains in performance

proportional to the number of followers. We also see performance gains in the execution time of contract and monetary transactions. We evaluate

DiPETrans on various workloads, where the number of transactions ranges from 100 to 500 in a block, with a varying ratios of contract and monetary

transactions. We observe that the speedup often increases in a distributed setting with an increase in the number of transactions per block, thus

increasing the throughput. We also observe that a block execution time increases with the number of contract calls, and the speedup increases

linearly with the community size.

20 of 33 BAHETI ET AL.

There are several directions for future research. Assuming the number of transactions will increase over time, we can conceive a commu-

nity that proposes multiple blocks in parallel. An alternative way to boost performance is to use software transaction memory (STM) for follower

nodes and run the transactions concurrently in each follower using multi-cores rather than serially. In this work, we assume that there are no

nested contract calls, but in practice nesting is common with contracts of blockchains. So incorporating nesting is in our framework can be a useful

future work.

We have seen performance gains with just 5 followers in the community. It would be interesting to see how the system scales and the peak

speedup with hundreds or thousands of transactions per block and a larger number of community followers. Apart from the above optimization, we

are also planning to adopt a wholly distributed approach within the community instead of the leader–follower approach that is resilient to failures

and other faults. We plan to integrate it with Ethereum blockchain by deploying a DiPETrans community smart contract.

ACKNOWLEDGMENTS

This research was supported by the Ministry of Electronics and Information Technology, India, Grant/Award Numbers: 4(20)/2019-ITEA and

4(4)/2021-ITEA. Shrey Baheti was an M.Tech. student at CDS, IISc when contributing to this article, supported by a Fellowship from Cargill.

DATA AVAILABILITY STATEMENT

Data openly available in a public repository that does not issue DOIs. Source code is available on Github at: https://github.com/dream-lab/DiPETrans.

Full technical report is available at: https://arxiv.org/abs/1906.11721.20

ENDNOTE
∗The additional experiments and raw values for these plots are reported in the Appendix.

ORCID

Parwat Singh Anjana https://orcid.org/0000-0002-6574-3871

REFERENCES

1. Nakamoto S. Bitcoin: a peer-to-peer electronic cash system; 2009. http://www.bitcoin.org/bitcoin.pdf

2. Dickerson T, Gazzillo P, Herlihy M, Koskinen E. Adding concurrency to smart contracts. Proceedings of the ACM Symposium on Principles of Distributed

Computing, PODC ’17; 2017:303-312; ACM, New York, NY.

3. Ethereum (ETH); 2020. [Online]. Accessed October 15, 2020. https://www.ethereum.org/

4. Solidity documentation; 2020. [Online]. Accessed October 15, 2020. https://solidity.readthedocs.io/en/v0.5.3/

5. EOS.IO Technical white paper v2; 2020. [Online]. Accessed October 15, 2020. https://github.com/EOSIO/Documentation/blob/master/

TechnicalWhitePaper.md

6. Lewenberg Y, Bachrach Y, Sompolinsky Y, Zohar A, Rosenschein JS. Bitcoin mining pools: a cooperative game theoretic analysis. Proceedings of Inter-

national Conference on Autonomous Agents and Multiagent Systems, AAMAS ’15, International Foundation for Autonomous Agents and Multiagent

Systems; 2015:919-927.

7. Cong LW, He Z, Li J. Decentralized mining in centralized pools. Working paper 25592, National Bureau of Economic Research Cambridge, MA; Vol. 02138,

2019.

8. Luu L, Velner Y, Teutsch J, Saxena P. SmartPool: practical decentralized pooled mining. Proceedings of the 26th USENIX Security Symposium (USENIX

Security 17), Usenix Security ’17; 2017:1409-1426; USENIX Association, Vancouver, BC.

9. Anjana PS, Kumari S, Peri S, Rathor S, Somani A. An efficient framework for optimistic concurrent execution of smart contracts. Proceedings of the 27th

Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP ’19; 2019:83-92; IEEE.

10. Anjana PS, Attiya H, Kumari S, Peri S, Somani A. Efficient concurrent execution of smart contracts in blockchains using object-based transactional memory.

Proceedings of the International Conference on Networked Systems, NETYS ’20; 2020:77-93; Springer International Publishing, Cham.

11. Androulaki E, Barger A, Bortnikov V, et al. Hyperledger fabric: a distributed operating system for permissioned blockchains. Proceedings of the

Thirteenth EuroSys Conference, EuroSys ’18; 2018; ACM, New York, NY.

12. Abdul-Rahman A, Hailes S. A distributed trust model. Proceedings of the 1997 Workshop on New Security Paradigms, NSPW ’97; 1998:48-60; ACM,

New York, NY.

13. Hawlitschek F, Notheisen B, Teubner T. The limits of trust-free systems: a literature review on blockchain technology and trust in the sharing economy.

Electron Commerce Res Appl. 2018;29:50-63.

14. Chase JPM. A permissioned implementation of ethereum. ; 2020. [Online]. Accessed October 15, 2020. https://github.com/jpmorganchase/quorum

15. Li W, Wang Y, Li J, Au MH. Toward a blockchain-based framework for challenge-based collaborative intrusion detection. Int J Inf Secur. 2021;20:127-139.

16. Ethereum blockchain public dataset. [Online]. Accessed October 15, 2020. https://bigquery.cloud.google.com/dataset/bigquery-public-data:ethereum_

blockchain?pli=1

17. Saraph V, Herlihy M. An empirical study of speculative concurrency in ethereum smart contracts. Proceedings of the International Conference on

Blockchain Economics, Security and Protocols (Tokenomics 2019):OpenAccess Series in Informatics (OASIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik; 20194:1-4:15; Dagstuhl, Germany.

18. Sui D, Ricci S, Pfeffer J. Are miners centralized? a look into mining pools; 2018. Online. Accessed May 17, 2019. https://media.consensys.net/are-miners-

centralized-a-look-into-mining-pools-b594425411dc

19. Eyal I. TheMiner’s Dilemma. Proceedings of the 2015 IEEE Symposium on Security and Privacy, S&P ’15; 2015:89-103; IEEE.

20. Baheti S, Anjana PS, Peri S, Simmhan Y. DiPETrans: a framework for distributed parallel execution of transactions of blocks in blockchain. CoRR.

2019;abs/1906.11721.

https://github.com/dream-lab/DiPETrans
https://arxiv.org/abs/1906.11721
https://orcid.org/0000-0002-6574-3871
https://orcid.org/0000-0002-6574-3871
http://www.bitcoin.org/bitcoin.pdf
https://www.ethereum.org/
https://solidity.readthedocs.io/en/v0.5.3/
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/jpmorganchase/quorum
https://bigquery.cloud.google.com/dataset/bigquery-public-data:ethereum_blockchain?pli=1
https://bigquery.cloud.google.com/dataset/bigquery-public-data:ethereum_blockchain?pli=1
https://media.consensys.net/are-miners-centralized-a-look-into-mining-pools-b594425411dc
https://media.consensys.net/are-miners-centralized-a-look-into-mining-pools-b594425411dc

BAHETI ET AL. 21 of 33

21. Ilie DI, Werner SM, Stewart ID, Knottenbelt WJ. Unstable throughput: when the difficulty algorithm breaks. Proceedings of the IEEE International

Conference on Blockchain and Cryptocurrency, ICBC ’21; 2021:1-5; IEEE.

22. Zhang A, Zhang K. Enabling concurrency on smart contracts using multiversion ordering. In: Cai Y, Ishikawa Y, Xu J, eds. Web and Big Data, APWeb-WAIM
’18. Springer; 2018:425-439.

23. Bartoletti M, Galletta L, Murgia M. A true concurrent model of smart contracts executions. Coordination Models and Languages, COORDINATION ’20.

Springer International Publishing; 2020:243-260.

24. Kwon J. Tendermint: consensus without mining. Draft v. 0.6, fall; Vol. 1, 2014:11.

25. Luu L, Narayanan V, Zheng C, Baweja K, Gilbert S, Saxena P. A secure sharding protocol for open blockchains. Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, CCS ’16; 2016:17-30; ACM, New York, NY.

26. Crain T, Natoli C, Gramoli V. Evaluating the red belly blockchain. CoRR. 2018;abs/1812.11747.

27. Zamani M, Movahedi M, Raykova M. RapidChain: scaling blockchain via full sharding. Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’18; 2018:931-948; ACM, New York, NY.

28. Kokoris-Kogias E, Jovanovic P, Gasser L, Gailly N, Syta E, Ford B. OmniLedger: a secure, scale-out, decentralized ledger via sharding. Proceedings of the

2018 IEEE Symposium on Security and Privacy (SP), SP ’18; 2018:583-598; IEEE.

29. Dang H, Dinh TTA, Loghin D, Chang EC, Lin Q, Ooi BC. Towards scaling blockchain systems via sharding. Proceedings of the 2019 International Conference

on Management of Data, SIGMOD ’19; 2019:123-140; New York, NY.

30. Amiri MJ, Agrawal D, El Abbadi A. SharPer: sharding permissioned blockchains over network clusters. Proceedings of the 2021 International Conference

on Management of Data, SIGMOD/PODS ’21; 2021:76-88; ACM, New York, NY.

31. Leshkowitz M, Benattasse O, Wertheim O, Rottenstreich O. Scalable block execution via parallel validation. Proceedings of the IEEE International

Conference on Blockchain and Cryptocurrency, ICBC ’20; 2020:1-9; IEEE.

How to cite this article: Baheti S, Anjana PS, Peri S, Simmhan Y. DiPETrans: A framework for distributed parallel execution of transactions

of blocks in blockchains. Concurrency Computat Pract Exper. 2022;e6804. doi: 10.1002/cpe.6804

APPENDIX A. BACKGROUND

In most popular blockchain systems such as Bitcoin1 and Ethereum,3 transactions in a block are executed in an ordered manner, first by the miners

later by the validators.2 When a miner creates a block, it typically chooses transactions from a pending transaction queue based on their preference,

for example, higher priority to transactions with higher fees. After selecting the transactions, the miner (1) serially executes the transactions, (2)

adds the final state of the system to the block after execution, (3) next finds the PoW, and (4) broadcasts the block in the network to other peers

for validation to earn the reward. A PoW is an answer to a mathematical puzzle in which miners try to find a block’s hash smaller than the given

difficulty.

Later, after receiving a block, a node validates the contents of the block. Such a node is called the validator. Thus, when a node Ni is a

block-producer, every other node in the system acts as a validator. Similarly, when another node Nj is the miner, then Ni acts as a validator. The val-

idators (1) re-execute the transactions in the block received serially, (2) verify to see if the final state computed by them is the same as the final

state provided by the miner in the block, and (3) also validate if the miner solved the puzzle (PoW) correctly. The transaction re-execution by the

validators is done serially in the same order as proposed by the miner to attain consensus.2 After validation, if the block is accepted by the major-

ity (accepted by more than 50%) of the validators, the block is added to the blockchain, and the miner gets the incentive (in the case of Bitcoin

and Ethereum).

Further, blockchain is designed in such a way that it forces a chronological order between the blocks. Every block which is added to the chain

depends on the cryptographic hash of the previous block. This ordering based on cryptographic hashes makes it exponentially challenging to make

any change to the previous blocks. To make any small change to already accepted transactions or a block stored in the blockchain requires recalcula-

tion of the PoW of all subsequent blocks and acceptance by the majority of the peers. Also, if two blocks are proposed simultaneously and added to

the chain, they form a fork, the branch with the longest chain is considered the final. This allows mining to be secure and maintain a global consensus

based on processing power.

APPENDIX B. PROPOSED ALGORITHMS

This section describes the proposed algorithms and a short description of them.

Algorithm 3: LeaderMinerTask()—The LeaderMiner starts block creation by calling CreateBlock() (Algorithm 5). The candidate block con-

sists of the block number, nonce, previous hash, miner detail (coin base address), transaction list, and so forth. Analyze() (Algorithm 1) is used to

analyze the candidate block transactions for sharding. The leader receives a response sendTxnsMap from Analyze(), which consist a map of follow-

erID and transactions list. Each follower is allocated a unique id during the initialization of the leader server. The leader connects to the follower by

22 of 33 BAHETI ET AL.

Algorithm 3. LeaderMinerTask(ethereumData)

Data: ethereumData, followerList, dataItemMap

Result: blockchain (blockList)

35 Procedure LeaderMinerTask(ethereumData):

36 Block block;

37 for data ∈ ethereumData do

// Creates candidate block.

38 block = CreateBlock(data);

39 if block.txnsList.size()> 0 then

// Identify disjoint sets of txns (Weakly Connected Components).

40 sendTxnsMap = Analyze(block.txnsList);

// Parallel call to each follower to assign transactions.

41 for follower ∈ followerList do

42 ConnectFollower(follower, sendTxnsMap);

43 end

// Wait till all follower execution completes.

44 end

// Start Block Mining

45 miningStatus = false;

46 for follower ∈ followerList do

// Parallel call to each Follower to mine block.

47 FollowerMineBlock(follower, block);

48 end

49 while !miningStatus do

50 wait();
51 end

// Broadcast the block for validation to all other peers.

52 blockchain.append(block);

53 end

54 return blocklist

creating parallel threads with a call toConnectFollower() (Algorithm 8). The leader waits for the followers to complete the transaction execution.

So as soon as the leader receives the follower response (SResponse), it makes changes to its state in dataItemMap.

After transaction execution, the leader starts mining (determining PoW) by setting miningStatus to false. For this, the leader dis-

tributes the task among the followers to mine the block using an asynchronous call to FollowerMineBlock() (Algorithm 7). The leader

calls on each follower to mine from a different starting nonce in sequence. In this way, search space is distributed among the fol-

lowers for PoW calculation. The leader waits until the miningStatus turned out to be true by a follower. The follower who finds the

correct PoW sends the information to the leader. Finally, the leader saves the nonce and broadcasts the block in the network for

validation.

Algorithm 4: DefaultValidator()—When a validator receives a block for validation, it re-executes the transactions. It then matches

the final state of the dataItemMap state. Since in this approach, dependency (shard) information is not added to the block by the miner,

the leader validator needs to call Analyze() to determine the disjoint sets of transactions. Then the leader validator follows the same

approach as the miner to distribute transactions to the followers and waits for all followers to complete. The leader validator does not

have to mine the block. The leader validator updates its dataItemMap state based on the responses from the followers. Finally, it veri-

fies its dataItemMap state with the block’s dataItemMap state. If dataItemMap state matches after successful execution of a block’s trans-

action, then it checks for PoW by verifying hash(block) < difficulty. If both the checks come out to be successful, an acceptance message is

propagated in the network. Otherwise, the validator rejects the block. After majority acceptance or consensus, the block is added to the

blockchain.

SharingValidator()—In this function, sharding information is added to the block by the miner, so the leader validators do not callAnalyze()

at line 3 in Algorithm 4. Therefore, the analyze function’s overhead can be avoided, and the validator utilizes the analysis work done by the miner for

BAHETI ET AL. 23 of 33

Algorithm 4. LeaderValidator(block)

Data: block

Result: blocklist

55 Procedure LeaderValidator(block):

56 if block.txnsList.size()> 0 then

// Identify disjoint sets of txns (Weakly Connected Components).

57 sendTxnsMap = Analyze(block.txnsList);

// Parallel call to each follower to assign transactions.

58 for follower ∈ followerList do

59 ConnectFollower(follower, sendTxnsMap);

60 end

// Wait till all follower execution completes.

61 reject = false;

// Verify PoW.

62 if hash(block)> difficulty then

// PoW is incorrect.

63 reject = true;

64 else

// Verify dataItemMap with block’s dataItemMap state.

65 for adr, value ∈ block.dataItemMap do

66 if dataItemMap[adr] != value then

67 reject = true;

68 break;

69 end

70 end

71 end

72 end

// If Accepted than add to local blockchain.

73 if !reject then

74 blockchain.append(block);

75 end

76 return

parallel execution. So, in the Sharing Validator, the LeaderValidator deterministically assigns the different shards based on the dependency information

in the block to the different FollowerValidator along with the current state of the data items from its local chain for transaction execution. The rest of

the functionality of this algorithm is the same as the Default Validator.

Algorithm 5: CreateBlock()—In this function, the leader creates the candidate block by picking pending transactions from the pend-

ing transactions pool. The leader also assigns the block number, previous hash, and miner (coin base address) to the block. There can

be some uncle blocks, which are valid blocks, and the miner who proposed those blocks deserves an incentive for their work. If these

blocks are added by the upcoming blocks (<8), also called nephew blocks, they are given partial incentives based on Equation (B1). Some

incentive based on Equation (B2) is also given to the miner who adds the uncle blocks. The maximum limit on the inclusion of uncle

blocks is 2.

nephewMinerReward = baseReward
32

(B1)

uncleMinerReward = (uncleBlockNumber + 8 − nephewBlockNumber) ∗ baseReward
8

. (B2)

24 of 33 BAHETI ET AL.

Algorithm 5. CreateBlock(data, prevHash)

Data: data, prevHash

Result: block

77 Procedure CreateBlock(data, prevHash):

78 Block block ;

79 block.number = data.number;

80 block.prevHash = prevHash;

81 block.miner = data.miner;

// creates candidate block

82 for tx ∈ data.txns do

83 Transaction txn(tx.txID, tx.to, tx.from, tx.value, tx.input, tx.creates);

84 block.txnsList.append(txn);

85 end

86 for u ∈ data.uncles do

87 Uncle unc(u.number, u.miner);

88 block.unclesList.append(unc);

89 end

90 return block

Algorithm 6. MiningStatus(block, nonce, number)

Data: block, nonce, number

Result: miningStatus

91 Procedure MiningStatus(block, nonce, number):

92 if block.number == number && !miningStatus then

93 block.nonce = nonce;

94 miningStatus = true;

95 end

96 return miningStatus

Algorithm 6:MiningStatus()—A follower calls this function to send the block’s nonce value to the leader and signal that mining has completed.

In this function, the follower checks for the block number on which the leader is working, and if the block number and the miningStatus are not true.

Then, the follower updates the nonce value of the block and sets miningStatus to true as soon as the leader notices a change in the miningStatus

variable and comes out of the wait loop. Then they starts working on the next block after sending the current block for its inclusion in the blockchain

and verification by validators.

Algorithm 7: FollowerMineBlock()—In this function, followers receive the starting nonce and interval along with the block to find the

PoW. The PoW is found when hash(block) < difficulty is found for a particular value of nonce. Otherwise, a nonce is incremented by the interval

to try again in an infinite loop. The difficulty we have set for now takes approximately 15 s to mine a block, which is close to the current average

time of Ethereum block execution. The actual difficulty is much greater than what we are using, considering the resources deployed by miners to

find PoW.

Algorithm 8: ConnectFollower()—In this function, followers receive the starting nonce and interval and the block to find the PoW. The

PoW is found when hash(block) < difficulty is found for a particular value of nonce. Otherwise, a nonce is incremented by the interval to try

again in an infinite loop. The difficulty we have set takes approximately 15 s to mine a block, which is close to the current average time of

Ethereum block execution. The actual difficulty is much greater than what we are using, considering the resources deployed by miners to

find PoW.

Algorithm 9: FollowerRecvTxns()—While executing FollowerRecvTxns() (i.e., Algorithm 9), the follower receives the transaction list and

associated dataItemMap state from the leader. The follower first identifies smart contract and non-smart contract calls (transactions). Suppose the

BAHETI ET AL. 25 of 33

Algorithm 7. FollowerMineBlock(block, nonce, interval, difficulty)

Data: block, nonce, interval, difficulty

Result: nonce

97 Procedure FollowerMineBlock(block, nonce, interval, difficulty):

98 while true do

99 if hash256(block)< difficulty then

100 MiningStatus(nonce, block.number);

101 break;

102 end

103 nonce += interval;

104 end

105 return nonce

Algorithm 8. ConnectFollower(follower, sendTxnsMap)

Data: follower, sendTxnsMap

Result: dataItemMap

106 Procedure ConnectFollower(follower, sendTxnsMap):

// Identify Associated dataItemMap for each follower.

107 for tx ∈ sendTxnsMap[SID] do

108 localDataItemMap[tx] = dataItemMap[tx] ;

109 end

// Send txns to follower to execute, receive updated state.

110 SResponse = FollowerRecvTxns(sendTxnsMap[Follower], localDataItemMap);

// Update leader’s dataItemMap state.

111 for adr, dataItem ∈ SResponse.dataItemMap do

112 dataItemMap[adr] = dataItem;

113 end

114 return dataItemMap

transaction is a smart contract call. In that case, the transaction is executed by invoking CallContract() to execute the respective smart contract

method. Otherwise, non-smart contract calls are considered as monetary exchanges and executed within the scope of this function. For CallCon-

tract() transaction execution, we have implemented the top 11 functions calls in Ethereum, which cover 80% of real transactions of block numbers

between 4,370,000 and 4,450,000.

APPENDIX C. ADDITIONAL RESULTS AND OBSERVATION FOR TRANSACTION EXECUTION TIME AND SPEEDUP

This section presents the experimental analysis for transaction execution time for Workload-3 and the speedup achieved in transaction execution

by the parallel miner and validator over serial. First, we present the analysis for transaction execution time for Workload-3. Then we present the

additional analysis for speedup on Workload-1, Workload-2, and Workload-3.

C.1 Transaction execution time analysis

Workload-3: Figure C1 shows the analysis for a fixed number of transactions (500) per block with varying community size. This workload is designed

to see how each block’s transaction ratio (contract call: monetary transaction) will impact the performance. We can observe in Figure C1A–C that

1 follower is performing the worst due to the overhead of static analysis and communication with the leader. Other follower configurations from 2

to 5 outperform serial, and execution time decreases as the number of followers increases. Also, the smaller the number of contractual transactions

per block, the better the performance will be. This is because of the external method called the contractual transaction. Similar to Workload-1 and

Workload-2, also there is no much performance difference in Sharing Validator and Default Validator.

26 of 33 BAHETI ET AL.

Algorithm 9. FollowerRecvTxns(txnsList, dataItemMap)

Data: txnsList, dataItemMap

Result: SResponse

115 Procedure FollowerRecvTxns(txnsList, dataItemMap):

// Execute txns serially.

116 for tx ∈ txnsList do

// Smart Contract txn.

117 if tx is contractCall then

118 CallContract (tx);

// Non-Smart Contract txn.

119 else if tx.value ≤ dataItemMap[tx.from].value then

120 dataItemMap[tx.fromAddress].value -= tx.value;

121 dataItemMap[tx.toAddress].value += tx.value;

122 else

// Invalid txn: txn execution failed!

123 end

124 end

125 return SResponse

 0

 200

 400

 600

 800

 1000

Serial 1 2 3 4 5

Fixed 500 Transactions/Block

(A) Miner

T
ra

n
s
a
c
ti
o
n
 E

x
e
c
u
ti
o
n

T
im

e
 (

m
s
)

Followers (Community Size)

 0

 200

 400

 600

 800

 1000

Serial 1 2 3 4 5

Fixed 500 Transactions/Block

(B) Default Validator

Followers (Community Size)

 Data Set 1:1 Data Set 1:2 Data Set 1:4 Data Set 1:8 Data Set 1:16

 0

 200

 400

 600

 800

 1000

Serial 1 2 3 4 5

Fixed 500 Transactions/Block

(C) Sharing Validator

Followers (Community Size)

F I G U R E C1 Workload-3: Average transaction execution time by miner (omitting time to find PoW) and validator

C.2 Speedup analysis

Here we present the result analysis for all three workloads based on speedup achieved by the parallel miner and the validator over the serial miner

and validator.

Workload-1: Figure 5 shows the average transaction speedup achieved by the miner (omitting time to find PoW) and validator. As shown

in Figures 5A–C, the mean speedup increases as the number of transactions per block increases. Also, one follower is performing worst due

to the small overhead of static analysis and communication with the leader. Other follower configurations from 2 to 5 all work better than

serial. The difference between Default Validator and Sharing Validator is that Default Validator needs to run static analysis on transactions present

in a block before execution. The Default Validator is supposed to take more time compared to the Sharing Validator. However, the experiment

shows no significant benefits of information sharing. The time taken by the static analysis is comparatively significantly less than expected. How-

ever, when the number of transactions per block increases to a very large, it is expected that information sharing by the miners benefits the

validators.

Workload-2: In Figure 7A–C, we can observe that when the number of contract transactions decreases per block, the overall speedup increases

because the contractual transaction includes the external contract method calls. Also, we can see that the speedup increases until 1

4
(contract:

monetary transactions) and decreases with a further decrease in the number of contract transactions per block. The experiment shows there is no

BAHETI ET AL. 27 of 33

significant time taken by analyzing function to gain some performance improvement over the Sharing Validator. Hence both Default Validator and

Sharing Validator are performing almost the same.

Workload-3: As we can see in Figure C2A–C that 1 follower is performing worst due to the obvious reason of overhead of static analysis

and communication with follower. Other follower configurations all outperform over serial. Also, the smaller the number of contractual trans-

actions per block, the performance will be the better. However, there is not much performance benefit due to information sharing with the

validator.

Below tables show the respective numbers for the workloads. Tables C1 and C2 show the transaction execution time while Tables C3 and C4 the

respective speedup.

 0

 0.5

 1

 1.5

 2

 2.5

 3

Serial 1 2 3 4 5

Fixed 500 Transactions/Block

(A) Miner

S
p

e
e

d
u

p
 o

v
e

r
S

e
ri
a

l
M

in
e

r

Followers (Community Size)

 0

 0.5

 1

 1.5

 2

 2.5

 3

Serial 1 2 3 4 5

Fixed 500 Transactions/Block

(B) Default Validator

S
p

e
e

d
u

p
 o

v
e

r
S

e
ri
a

l
V

a
lid

a
to

r

Followers (Community Size)

 Data Set 1:1 Data Set 1:2 Data Set 1:4 Data Set 1:8 Data Set 1:16

 0

 0.5

 1

 1.5

 2

 2.5

 3

Serial 1 2 3 4 5

Fixed 500 Transactions/Block

(C) Sharing Validator

S
p

e
e

d
u

p
 o

v
e

r
S

e
ri
a

l
V

a
lid

a
to

r

Followers (Community Size)

F I G U R E C2 Workload-3: Average speedup by miner (omitting time to find PoW) and validator for transaction execution

TA B L E C1 Workload-1: Average transaction execution time (ms) taken by miner (omitting time to find PoW) and validator

Workload 1: Execution time-averaged across data set

Average transaction execution time (ms) # Transactions/block

100 200 300 400 500

Followers Serial Miner 209.18 259.68 333.51 485.55 652.95

Validator 209.18 259.68 333.52 485.55 652.95

1 Follower Miner 214.93 338.60 449.45 560.49 670.04

Default Validator 222.63 345.58 455.27 564.49 673.89

Sharing Validator 222.77 345.3 454.88 564.66 673.29

2 Follower Miner 163.90 239.59 304.82 372.04 435.4

Default Validator 175.43 250.37 315.85 384.78 449.13

Sharing Validator 175.4 250.08 315.08 383.82 447.84

3 Follower Miner 145.6 202.98 255.48 305.02 352.26

Default Validator 159.25 218.48 270.45 320.62 365.11

Sharing Validator 159.76 218.63 269.39 319.9 363.38

4 Follower Miner 138.35 188.28 231.1 272.98 314.88

Default Validator 154.81 204.33 248.87 289.15 332.95

Sharing Validator 154.42 203.51 247.84 287.51 331.25

5 Follower Miner 137.79 181.98 219.57 255.97 292.88

Default Validator 153.82 198.09 236.75 273.5 316.97

Sharing Validator 155.58 196.92 235.71 270.3 314.15

28 of 33 BAHETI ET AL.

TA B L E C2 Workload-2: Average transaction execution time (ms) taken by miner (omitting time to find PoW) and validator for fixed 500
transactions per block

Workload 2: For fixed 500 transactions/block

Average transaction execution time (ms) 𝝆

1
1

1
2

1
4

1
8

1
16

Followers Serial Miner 899.50 803.57 745.57 467.86 348.23

Validator 899.5 803.58 745.57 467.86 348.23

1 Follower Miner 903.43 752.36 643.28 561.33 489.80

Default Validator 904.01 752.0 648.4 568.38 496.68

Sharing Validator 903.08 752.79 647.33 567.52 495.83

2 Follower Miner 588.78 500.21 416.56 288.77 314.3

Default Validator 602.82 509.83 428.58 375.17 329.25

Sharing Validator 602.51 508.78 428.13 375.17 327.19

3 Follower Miner 476.16 403.2 339.78 288.77 253.37

Default Validator 488.71 417.25 354.41 300.7 264.47

Sharing Validator 487.99 413.73 353.36 299.27 262.56

4 Follower Miner 431.59 361.18 299.18 255.52 226.92

Default Validator 456.4 377.23 316.04 268.87 246.2

Sharing Validator 459.72 373.0 314.46 265.78 243.3

5 Follower Miner 403.52 334.07 278.47 236.43 211.91

Default Validator 441.58 350.67 295.94 263.88 232.86

Sharing Validator 437.9 347.66 293.81 261.89 229.46

TA B L E C3 Workload-1: Average speedup by community miner (omitting time to find PoW) and validator

Workload-1: Execution time-averaged across data set

Average speedup # Transactions/block

100 200 300 400 500

Followers Serial Miner 1 1 1 1 1

Validator 1 1 1 1 1

1 Follower Miner 0.87 0.72 0.72 0.84 0.95

Default Validator 0.84 0.71 0.71 0.84 0.95

Sharing Validator 0.84 0.71 0.71 0.84 0.95

2 Follower Miner 1.15 1.02 1.07 1.27 1.47

Default Validator 1.07 0.98 1.03 1.23 1.42

Sharing Validator 1.07 0.98 1.03 1.23 1.42

3 Follower Miner 1.29 1.21 1.27 1.55 1.81

Default Validator 1.18 1.12 1.20 1.47 1.75

Sharing Validator 1.17 1.12 1.20 1.48 1.75

4 Follower Miner 1.37 1.30 1.41 1.73 2.03

Default Validator 1.28 1.2 1.3 1.64 1.92

Sharing Validator 1.22 1.2 1.31 1.65 1.93

5 Follower Miner 1.39 1.35 1.48 1.85 2.18

Default Validator 1.25 1.24 1.37 1.73 2.022

Sharing Validator 1.24 1.24 1.38 1.78 2.04

BAHETI ET AL. 29 of 33

TA B L E C4 Workload-2: Average speedup by community miner (omitting time to find PoW) and validator

Workload-2: For fixed 500 transactions/block

𝝆

Average speedup 1
1

1
2

1
4

1
8

1
16

Followers Serial Miner 1 1 1 1 1

Validator 1 1 1 1 1

1 Follower Miner 0.99 1.07 1.16 0.83 0.71

Default Validator 0.99 1.07 1.15 0.82 0.7

Sharing Validator 0.99 1.07 1.15 0.82 0.7

2 Follower Miner 1.53 1.6 1.79 1.31 1.11

Default Validator 1.49 1.57 1.74 1.24 1.06

Sharing Validator 1.49 1.58 1.74 1.25 1.06

3 Follower Miner 1.88 1.99 2.19 1.62 1.37

Default Validator 1.84 1.92 2.1 1.55 1.32

Sharing Validator 1.84 1.94 2.12 1.56 1.32

4 Follower Miner 2.08 2.22 2.49 1.83 1.53

Default Validator 1.97 2.13 2.36 1.74 1.41

Sharing Validator 1.96 2.15 2.37 1.76 1.43

5 Follower Miner 2.23 2.4 2.67 1.97 1.64

Default Validator 2.04 2.29 2.52 1.77 1.49

Sharing Validator 2.05 2.31 2.54 1.78 1.52

APPENDIX D. END-TO-END BLOCK CREATION TIME

This section presents the analysis for the end-to-end block creation time, including time to find PoW at the miner for transaction varies from 100 to

500 in Workload-1. At the same time, it is fixed to 500 in Workload-2 and Workload-3 however, other parameters as data set and community size

vary, respectively.

D.1 Transaction execution time analysis

Figure 8A shows the line plots for mean end-to-end block creation time taken by the miner (including time to find PoW) for Workload-1.

The overhead of static analysis and communication is negligible, including time to find PoW. Here, all follower configurations are perform-

ing better than serial. Since the PoW is a random nonce for which the block’s hash is less than the given difficulty, it can take a variable

amount of time to find nonce. Also, the serial and follower configurations have different orders of transactions in the final block. Both

blocks are correct as proposed by the miner and considered as the final order of transaction execution. It is possible that some outliers

in serial execution resulted in a higher mean for the end-to-end time required to create a block than one follower. Another observation is

that the time required to create a block increases linearly as the number of transactions per block increases. Across the different num-

bers of transactions, the trend remains consistent with followers; the higher number of followers takes less time than the less number of

followers.

For Workload-2 results are shown in Figure 8B. The reason for the serial and one follower for these plots remains the same as explained above.

The time required to create blocks across different data sets varies and does not show any pattern based on a contract to monetary transaction

ratio. Since it largely depends on the PoW search. With PoW, we always guarantee that when the number of followers increases, it will take less time

to create a block (including time to find PoW) than the serial.

Similarly, in Workload-3 when the number of transactions per block is fixed to 500 and community size increases (i.e., followers in the community

increases), the time taken to mine a block always takes lesser time than the serial and smaller size community. Figure D1 confirms this observa-

tion; however, it is challenging to claim which data set is doing better than others, and the reason is that mining time dominates the transaction

execution time.

30 of 33 BAHETI ET AL.

 0

 10

 20

 30

 40

 50

 60

 70

Serial 1 2 3 4 5

Fixed 500 Transactions/Block

Miner: Workload-3
T

ra
n
s
a
c
ti
o
n
 E

x
e
c
u
ti
o
n

T
im

e
 (

m
s
)

Followers (Community Size)

 1:1
1:2

1:4
1:8

1:16

F I G U R E D1 Workload-3: Average end-to-end block creation time by miner including time to find PoW

 0

 1

 2

 3

 4

 5

Serial 1 2 3 4 5

Fixed 500 Transactions/Block

Miner: Workload-3

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
M

in
e
r

Followers (Community Size)

1:1
1:2

1:4
1:8

1:16

F I G U R E D2 Workload-3: Average end-to-end block creation speedup by community miner over serial miner including time to find PoW

D.2 Speedup analysis

For Workload-1, Figure 9A shows the mean speedup achieved by the parallel community-based miner over the serial miner (including time to find

PoW). Here, all follower configurations are achieving better speedups than serial. The observation here is that the speedup varies as the number of

transactions per block increases. Across the different numbers of transactions, the trend remains consistent with followers; the higher the number

of followers , the higher the speedup.

Figure 9B shows the line plots for the mean speedup achieved over serial by the parallel miner, including time to find PoW for Workload-2.

The time required to create blocks across different data sets varies and does not show any pattern based on transaction ratio (i.e., contractual vs

momentary transactions). Since it largely depends on the PoW search. With PoW, we always guarantee that more followers will give higher speedups

over serial, including time to find PoW. In Workload-3 the speedup increases with an increase in the size of the community (Figure D2). However,

there are no fixed pattern with varying transaction ratios.

APPENDIX E. RESULTS AND ANALYSIS WHEN NUMBER OF TRANSACTION VARIES FROM 500 TO 2500 PER BLOCK

This section includes the experiments done on a varying number of transactions, from 500 to 2500 per block. Similar to the earlier experiments,

where transactions per block varied from 100 to 500, this experiment for Workload-1 transactions varies from 500 to 2500. The speedup is averaged

over varying the contract to monetary transaction ratio 𝜌 (i.e., from 1

1
to 1

16
). In Workload-2 𝜌 varies from 1

1
to 1

16
while the number of transactions

per block remains fixed at 2500. While in Workload-3, community size varies from 1 follower up to 5 followers, and the number of transactions per

block remains fixed to 2500. In all the figures, serial execution served as a baseline.

BAHETI ET AL. 31 of 33

E.1 Transaction execution time analysis

Workload-1: Figure E1 shows the average transaction execution time taken by the miner and validator. As shown in Figures E1A–C, the time required

to execute transactions per block increases as the number of transactions increases in the block. Also, the one follower performs the worst due to

the overhead of static analysis and communication with the leader. Other follower configurations from 2 to 5 are all better than serial. The difference

between Default Validator and Sharing Validator validators is that Default Validator needs to run static analysis on block transactions before execution.

The Default Validator is supposed to take more time compared to the Sharing Validator. The experiment shows a slight performance improvement for

the Sharing Validator over the Default Validator as the execution time. It is significant enough to see the difference.

Workload-2: In this workload, the number of transactions per block is fixed at 2500, while the contract to monetary transaction ratio 𝜌 varies

from 1

1
to 1

16
. In Figure E2A–C, it can be seen that by decreasing the number of contract transactions than monetary transactions per block, the

overall time required to execute transactions also decreases because a contractual transaction includes the external calls. Further, it can be noticed

that serial execution outperforms the one follower configuration due to the static analysis and communication overhead associated with the one

follower configuration. Although, other configurations (2–5 followers in the community) outperform serial execution with the increase in the number

of followers in the community. However, with the increase of monetary transactions in the block, serial execution started giving better performance

because communication dominates the transaction execution. These figures show that the time required to execute more transactions per block

decreases as the number of contract transactions decreases. The parallel validator always takes less time than the serial one, and we can also observe

a significant gap as we increase the number of monetary transactions per block. The Sharing Validator achieved a slight improvement over the Default

Validator, very close to each other.

Workload-3: Figure E3 shows the analysis for a fixed number of transactions (2500) per block with varying community size. Here we see how

the transaction ratio in each block will have an impact on the performance. We can observe in Figure E3A–C that 1 follower is performing the worst

due to the overhead of static analysis and communication with the leader. Other follower configurations from 2 to 5 work better than serial, and

 0

 500

 1000

 1500

 2000

 2500

 3000

500 1000 1500 2000 2500

(A) Miner

T
ra

n
s
a

c
ti
o

n
 E

x
e

c
u

ti
o

n
T

im
e

 (
m

s
)

Transactions/Block

 0

 500

 1000

 1500

 2000

 2500

 3000

500 1000 1500 2000 2500

(B) Default Validator

Transactions/Block

 Serial 1 Follower 2 Follower 3 Follower 4 Follower 5 Follower

 0

 500

 1000

 1500

 2000

 2500

 3000

500 1000 1500 2000 2500

(C) Sharing Validator

Transactions/Block

F I G U R E E1 Workload 1: Average transaction execution time by miner (omitting time to find PoW) and validator when transactions varies
from 500 to 2500 per block

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1:1 1:2 1:4 1:8 1:16

Fixed 2500 Transactions/Block

(A) Miner

T
ra

n
s
a
c
ti
o
n
 E

x
e
c
u
ti
o
n

T
im

e
 (

m
s
)

Data Set

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1:1 1:2 1:4 1:8 1:16

Fixed 2500 Transactions/Block

(B) Default Validator

Data Set

 Serial 1 Follower 2 Follower 3 Follower 4 Follower 5 Follower

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1:1 1:2 1:4 1:8 1:16

Fixed 2500 Transactions/Block

(C) Sharing Validator

Data Set

F I G U R E E2 Workload 2: Average transaction execution time by miner (omitting time to find PoW) and validator for 2500 transactions per

block

32 of 33 BAHETI ET AL.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Serial 1 2 3 4 5

Fixed 2500 Transactions/Block

(A) Miner

T
ra

n
s
a

c
ti
o

n
 E

x
e

c
u

ti
o

n
T

im
e

 (
m

s
)

Followers (Community Size)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Serial 1 2 3 4 5

Fixed 2500 Transactions/Block

(B) Default Validator

Followers (Community Size)

 Data Set 1:1 Data Set 1:2 Data Set 1:4 Data Set 1:8 Data Set 1:16

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Serial 1 2 3 4 5

Fixed 2500 Transactions/Block

(C) Sharing Validator

Followers (Community Size)

F I G U R E E3 Workload 3: Average transaction execution time by miner (omitting time to find PoW) and validator for 2500 transactions per

block

execution time decreases as the number of followers increases. Also, the smaller the number of contractual transactions per block, the performance

will be better, that is, 1

1
is taking higher time than 1

2
and 1

16
is taking least time among them since it consists of 16× more monetary transactions than

contractual transactions in a block. We can see the slight performance difference in the Sharing Validator and the Default Validator.

E.2 Speedup analysis

Workload-1: Figure E4 shows the mean speedup obtained by the parallel miner (omitting time to find PoW) and validator over the serial miner and

validator. As shown in Figure E4, the mean speedup increases as the number of transactions per block increases, but the serial is outperforming

one follower configuration of community-based parallel execution. This happens due to the static analysis and communication overhead associated

with the leader and one follower communication. While in other settings, that is, 2–5 followers in the community, all achieving better speedup over

serial. Also, there is a drop in speedup going from 500 to 1000, but there is a steady increase in speedup. The Default Validator and Sharing Validator

are outperforming serial.

Workload-2: In this workload, we fixed the number of transactions per block to 2500. However, the contract to monetary transaction ratio𝜌varies

from 1

1
to 1

16
, that is, contractual to monetary transaction ratio varies. In Figures E5A–C, it can be observed that by varying the ratio of contractual to

monetary transactions the overall speedup increases because contractual transactions drops with the increase in monetary transactions per block.

Further, we can observe that speedup increases till 1

8
and then decreases with a further decrease in the number of contract transactions per block.

There is a slight performance improvement in the Sharing Validator over the Default Validator.

Workload-3: Figure E6 shows that one follower is performing worst due to the overhead of static analysis and communication. Other follower

configurations from 2 to 5 are all doing better than serial, and speedup increases as the number of followers increases. Also, the smaller the num-

ber of contractual transactions per block, the better the performance will be. This is because of the external method called by the contractual

transactions, as explained in the Workload-2.

 0

 0.5

 1

 1.5

 2

 2.5

500 1000 1500 2000 2500

(A) Miner

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
M

in
e
r

Transactions/Block

 0

 0.5

 1

 1.5

 2

 2.5

500 1000 1500 2000 2500

(B) Default Validator

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
V

a
lid

a
to

r

Transactions/Block

 Serial 1 Follower 2 Follower 3 Follower 4 Follower 5 Follower

 0

 0.5

 1

 1.5

 2

 2.5

500 1000 1500 2000 2500

(C) Sharing Validator

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
V

a
lid

a
to

r

Transactions/Block

F I G U R E E4 Workload 1: Average speedup by community miner (omitting time to find PoW) and validator for transaction execution when
transactions varies from 500 to 2500 per block

BAHETI ET AL. 33 of 33

 0

 0.5

 1

 1.5

 2

 2.5

1:1 1:2 1:4 1:8 1:16

Fixed 2500 Transactions/Block

(A) Miner

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
M

in
e
r

Data Set

 0

 0.5

 1

 1.5

 2

 2.5

1:1 1:2 1:4 1:8 1:16

Fixed 2500 Transactions/Block

(B) Default Validator

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
V

a
lid

a
to

r

Data Set

 Serial 1 Follower 2 Follower 3 Follower 4 Follower 5 Follower

 0

 0.5

 1

 1.5

 2

 2.5

1:1 1:2 1:4 1:8 1:16

Fixed 2500 Transactions/Block

(C) Sharing Validator

S
p
e
e
d
u
p
 o

v
e
r

S
e
ri
a
l
V

a
lid

a
to

r

Data Set

F I G U R E E5 Workload 2: Average speedup by community miner (omitting time to find PoW) and validator for transaction execution for 2500
transactions per block

 0

 0.5

 1

 1.5

 2

Serial 1 2 3 4 5

Fixed 2500 Transactions/Block

(A) Miner

S
p

e
e

d
u

p
 o

v
e

r
S

e
ri
a

l
M

in
e

r

Followers (Community Size)

 0

 0.5

 1

 1.5

 2

Serial 1 2 3 4 5

Fixed 2500 Transactions/Block

(B) Default Validator

S
p

e
e

d
u

p
 o

v
e

r
S

e
ri
a

l
V

a
lid

a
to

r

Followers (Community Size)

 Data Set 1:1 Data Set 1:2 Data Set 1:4 Data Set 1:8 Data Set 1:16

 0

 0.5

 1

 1.5

 2

Serial 1 2 3 4 5

Fixed 2500 Transactions/Block

(C) Sharing Validator
S

p
e

e
d

u
p

 o
v
e

r
S

e
ri
a

l
V

a
lid

a
to

r
Followers (Community Size)

F I G U R E E6 Workload 3: Average speedup by community miner (omitting time to find PoW) and validator for transaction execution for 2500
transactions per block

