
Practical Multi-threaded Graph Coloring Algorithms for
Shared Memory Architecture

Nandini Singhal, Sathya Peri, Subrahmanyam Kalyanasundaram
Department of Computer Science & Engineering

Indian Institute of Technology Hyderabad
{cs15mtech01004, sathya_p, subruk}@iith.ac.in

ABSTRACT
In this paper, we present multi-threaded algorithms for graph
coloring suitable to the shared memory programming model.
Initially, we describe shared memory implementations to the
algorithms widely known in the literature like Jones Plass-
man graph coloring. Later, we propose new approaches
to solve the problem of coloring using mutex locks while
making sure that deadlocks do not occur. Using datasets
from real world graphs, we evaluate the performance of all
these algorithms on the Intel platform. We compare the
performance of sequential graph coloring v/s our proposed
approaches and analyze the speedup obtained against the
existing algorithms from the literature. The results show
that the speedup obtained by our proposed algorithms in
terms of the time taken for coloring is consequential. We
also provide a direction for future work towards improving
the performance further in terms of different metrics.

CCS Concepts
•Computing methodologies → Shared memory algo-
rithms; Concurrent algorithms; Distributed algorithms;

Keywords
Graph coloring; multi-threaded; shared memory; locks; bar-
rier

1. INTRODUCTION
The Graph Coloring Problem pertains with attributing col-
ors to the vertices of a simple graph such that no two ad-
jacent vertices get the same color (also termed as vertex
coloring). Proper coloring of an arbitrary graph using num-
ber of colors equal to its chromatic number is known to be
an NP-hard problem. Thus, the primary goal in the graph
coloring problem is to reduce the coloring time and minimize
the number of colors used (ensuring proper coloring).

With the growing use of multi-core systems, hardware
capability can be completely exploited with parallel algo-
rithms. Each core can independently process a subtask and
this can speed up the overall performance of the algorithm.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICDCN ’17, January 04-07, 2017, Hyderabad, India
c© 2017 ACM. ISBN 978-1-4503-4839-3/17/01. . . $15.00

DOI: http://dx.doi.org/10.1145/3007748.3018281

However, sequential algorithms act only on single core, al-
beit availability of multi-cores. The development of multi-
core systems has been followed by the advent of shared mem-
ory programming paradigms like OpenMP and Pthreads,
which are very easier to program. In this paper, we sim-
ulate using Pthreads for fine grained control over thread
management.

The basic motivation behind this paper is to limit the
number of threads being created at runtime (irrespective
of the size of the graph to be colored). It is a very com-
mon practice in the literature dealing with parallel graph
algorithms to create a thread corresponding to each vertex
in the input graph. This is not practically feasible owing
to the constraints on the resources (stack size, etc.) avail-
able. Also, increasing the number of threads beyond the
hardware capacity does not lead to any improvement in the
performance of the algorithm. To highlight this point, we
have evaluated a parallel algorithm for increasing number of
threads as shown in Figure 1. We see that with continuous
increase in number of threads, the performance starts wors-
ening. In this paper, we present algorithms for graph color-
ing which facilitate the user to input the number of threads
to be acted upon depending on the hardware architecture
(hardware threads, number of cores) available.

Figure 1: Time Taken in secs v/s Number of Threads

We look at four different approaches: (1) barrier synchro-
nization; (2) jones plassman; (3) locking variants and (4)
transactions. The first algorithm deals with the most widely
studied technique of coloring using barrier synchronization
[1, 2, 5]. A barrier is a command in the source code for
a set of threads/processes which acts as a synchronization
point for all of them. When the threads execute the barrier
point, they must stop and cannot proceed until all remaining

1

http://dx.doi.org/10.1145/3007748.3018281

threads/processes have reached the barrier. The literature
about parallel graph coloring refers mainly to the algorithm
using barrier synchronization. However, they do not prove
the correctness of the algorithm. This is crucial because
all the threads run in an asynchronous manner and the be-
haviour of a thread at a particular time instant cannot be
determined. In this paper, we present a modified version of
this algorithm in section 3 and give a proof of correctness of
the algorithm. Subsequently, we also present a shared mem-
ory implementation of the Jones Plassman Algorithm. The
later subsections puts forth new approaches for graph color-
ing using some standard locking techniques. We ensure that
deadlocks do not occur. In Section 4, we then evaluate the
performance of the presented algorithms against the sequen-
tial greedy coloring algorithm. We see that the performance
of our proposed approach (using locks) outweighs the other
existing algorithms on shared memory architecture. Finally,
section 5 concludes and provides a direction of future work
in this area.

2. BACKGROUND

2.1 Problem Definition
A graph G is represented as a pair (V,E) of a set of vertices
V and a set of edges E. The edges are unordered pairs of
the form {i, j} where i, j ∈ V . Two vertices i and j are said
to be adjacent if and only if {i, j} ∈ E and non-adjacent
otherwise. The degree of a vertex v is the number of ver-
tices adjacent to v and is denoted by deg(v).

The Graph Coloring Problem:
A vertex coloring of a simple graph is an allotment of col-
ors to the vertices such that no two adjacent vertices are
assigned the same color. It is easy to see that any arbitrary
simple graph can be colored with ∆ + 1 colors where ∆ is
the maximum degree of the simple graph.

2.2 Related Work
The problem of parallel graph coloring has been studied ex-
tensively, even on multi and many-core architectures [1–4].
Jones & Plassman [8] proposed a distributed graph color-
ing algorithm in which they process the vertices of a graph
in a random order. The difficulty with this approach lies
in identifying the most effective ordering of the vertices ac-
cording to the graph in question. Hasenplaugh, et al. [6]
proposed two ordering schemes which performs efficiently on
the shared memory implementation of the Jones Plassman
Algorithm. Gebremedhin & Manne [5] presented a basic
parallel graph coloring algorithm using block partitioning.
However, it can be seen that it is highly inefficient owing
to the synchronization in each iteration of tentative coloring
phase. Also, all the vertices with conflicting colors are col-
ored sequentially. This leads to reduced parallelism in the
algorithm where number of conflicts are high. Gebremedhin,
Manne & Woods [4] propose several enhancement over [5] to
reduce the number of conflicts by the use of graph partition-
ing packages. However, since the underlying algorithm itself
does not completely exploit the parallelism, this algorithm
does not fare too well.

Boman, et al. [1] presented a novel distributed graph coloring
algorithm based on the previous notions, by improving the
parallelism. This algorithm also assumed that the number of

processors available would be significantly less as compared
to the number of vertices in the graph. Hence it partitioned
the input graph and assigned a subset of vertices to each
processor. Çatalyürek, et al. [2] extend the previous notion
for shared memory model. However, the algorithm create
threads for each vertex in the input graph in each iteration
of the algorithm. This increases the overhead significantly.
Also, the paper does not provide a proof as to why the algo-
rithm would terminate in a finite number of steps or would
result in proper coloring of the graph eventually (without
the use of locks for accessing shared memory).

2.3 System Model
In this paper, we assume that our system consists of n pro-
cessors, accessed by p threads/processors that run in a com-
pletely asynchronous manner. Hence, we make no assump-
tion about the relative speeds of the processors. We also
assume that none of these processors and threads fails.

3. SOLUTION APPROACHES
In this section, we present various approaches suitable for
dealing with the Graph Coloring problem on a shared mem-
ory programming model which means that threads commu-
nicate only by writing to and reading from the shared mem-
ory. We begin by assuming that all the vertices in the graph
are assigned unique id’s from {1, 2, . . . , |V |}. Initially, the
graph G = (V,E) has been preprocessed by partitioning it
uniformly into p partitions where p is the number of threads.
Then the vertices with their corresponding id’s in {1, . . . ,
|V |/p} are assigned to partition V1, {|V |/p+ 1, . . . , 2|V |/p}
get assigned to partition V2 and so on until Vp. It seems
only fair that the graph partitioning preprocessing time be
included in the overall time taken for graph coloring. Hence,
using this random heuristic based partitioning helps us bring
down the overall time taken for coloring. Therefore, we do
not use a graph partitioning software for minimizing the
crossing edges between various partitions because it effec-
tively increases the coloring time.

The vertices in each partition/block can be classified into:-
internal vertices (whose all the neighbouring vertices lie in
the same partition) and boundary vertices (those who have
neighbours belonging to other partitions). Each thread is
responsible for proper coloring of all the vertices in its par-
tition. The subsequent subsections present algorithms using
the First Fit Coloring strategy, which assigns each vertex
the least legal color available. All the algorithms can be
easily adapted to other coloring strategies like Largest De-
gree First, etc.

3.1 Using Barrier Synchronization
The barrier synchronization based algorithm has been widely
explored in the literature [1, 2, 5]. However, the major dif-
ference in the algorithm presented here is that [2] has not
explicitly used barriers for synchronization. We use barri-
ers because it is more efficient than creating new threads
as in [2]. As discussed before, a barrier is a synchroniza-
tion point amongst threads. This algorithm has two phases:
tentative coloring and conflict detection phase. Each thread
maintains a copy of colors assigned to its neighbours locally
in ForbiddenColors List. In the first phase, a thread as-
signs a color to all the vertices in its partition by taking
into account all its previously colored neighbours from the
local copy. However, it might result in two threads simul-

2

taneously coloring the vertices adjacent to each other with
the same color. Hence, in the second phase, each thread Ti

checks whether the vertices in Vi have been assigned valid
colors by comparing the color of each vertex against all its
neighbours. If any vertex and its neighbor have the same
color, then the vertex in the partition with lower partition
id is marked for recoloring.

The first and second phases are synchronized by a barrier
that ensures that all the p threads start their execution at
the same instant. This is crucial because if a thread were
still coloring while other tries to detect conflicts, then this
can lead to false detection eventually leading to improper
coloring. The algorithm has been described in Algorithm 1.

Algorithm 1 Using Barrier

1: Input: p ← no of threads
2: uniform partitioning of V into V1, V2, . . . , Vp in increasing order

of vertex ids
3: m ← maximum degree of graph
4: procedure ParallelGraphColoring(G = (V,E))
5: for all thread Ti | i ∈ {1, ..., p} do
6: Identify boundary vertices of partition i
7: Initialise TotalColors[m + 1] ← {0, 1, . . . , m}
8: for v ∈ Vi do
9: Create List v.ForbiddenColors

10: Initialise v.ForbiddenColors to −1
11: end for
12: Ui ← Vi

13: while Ui 6= ∅ do
14: for each v ∈ Ui do . Phase 1 starts
15: Assign color(v) ← min{TotalColors −

v.ForbiddenColors}
16: for each u ∈ adjacent(v) | u ∈ Vi do
17: Update color(v) in u.ForbiddenColors
18: end for
19: end for
20: Wait for all threads to reach here . Using barrier
21: Ri ← ∅ . Phase 2 starts
22: for each v ∈ Ui | v is a boundary vertex in Ui do
23: for each u ∈ adjacent(v) | u /∈ Vi do
24: Update color(u) in v.ForbiddenColors
25: if color(u) = color(v) | u ∈ Vj and i < j then
26: Ri ← Ri ∪ {u}
27: end if
28: end for
29: end for
30: Ui ← Ri

31: Wait for all threads to reach here . Using barrier
32: end while
33: end for
34: end procedure

Lemma 1: Barrier Synchronization Algorithm results in
proper coloring of the graph.

Proof: Let us prove by contradiction. So, we assume that
the barrier synchronization algorithm does not result in proper
coloring of the graph meaning that two adjacent vertices in
the graph have the same color at the end of the algorithm.

Each round/iteration of the algorithm consists of 2 phases:
coloring and conflict detection phase respectively. We de-
note the coloring phase of ith iteration as i.1 and conflict
detection phase of ith iteration as i.2.

Without loss of generality, let us say that a vertex vx which
is adjacent to a vertex vy, gets colored c in round i.1 and
vertex vy gets assigned the same color in round j.1, both
belonging to different partitions and i ≤ j.

colori.1(vx) = colorj.1(vy) = c where vx, vy belong to
different partitions

Now there are two possibilities as follows:

a) vx was assigned color c in round (j − 1).1: In this case,
in round (j − 1).2, vx and vy would be identified with same
color and the vertex in the lower partition id would get re-
colored in round j.1. Hence either vx or vy would have a
color different from c. Also since i ≤ j, this means that
both vertices get properly colored. Hence this is a contra-
diction to our initial assumption.

b) vx was assigned a color different from c in round (j−1).1:
In this case, vx got recolored back to color c in round j.1,
then a conflict will be detected in round j.2 and it will be
resolved in round (j + 1).1. Hence it again contradicts our
assumption.

Thus we can conclude that eventually all the conflicts get
resolved and no two adjacent vertices get assigned to a same
color.

Lemma 2: Barrier Algorithm terminates after a maximum
of p+ 1 iterations.

Proof: The partitions of the graph are V1, V2, . . . , Vp. In
each round, a vertex in Vi is recolored if it has a conflict
with a vertex in Vi+1, . . . , Vp.

In the 1st round, at least all vertices of Vp get properly col-
ored and all conflicts of the vertices in Vp−1 with vertices of
Vp are identified, which are resolved in the next round.
Similarly, in the 2nd round, all vertices of Vp−1 get properly
colored and all conflicts in Vp−2 with Vp−1 are identified,
which are resolved in the subsequent round.

Thus by induction, it is easy to see that after p + 1 itera-
tions, V1 gets properly colored. Also, the maximum number
of times a vertex in partition Vi gets recolored is (p− i).

3.2 Jones Plassman Algorithm
The Jones Plassman algorithm is a very popularly known
distributed graph coloring algorithm. In this subsection,
we present a shared memory implementation of the Jones
Plassman Algorithm. Initially, each vertex v in the input
graph is assigned a distinct random number ρ(v). This is
helpful in ordering the vertex amongst its neighbours by
computing local data structures, n-wait(v) and send-list(v).
The data structure n-wait(v) maintains the count of those
neighbours u ∈ adj(v) which have ρ(u) greater than ρ(v).
This implies that vertex v should be colored after coloring of
these vertices. Similarly, send-list(v) keeps those neighbours
u ∈ adj(v) which have ρ(u) smaller than ρ(v), meaning that
once vertex v gets colored, the vertices in send-list(v) can
be colored.

Algorithm 2 Jones Plassman

1: Input: p ← no of threads
2: Assign ρ(v) ∀ v ∈ V . distinct, random number
3: procedure ParallelGraphColoring(G = (V,E))
4: for all thread Ti | i ∈ {1, . . . , p} do
5: Identify boundary vertices of partition i
6: Initialise TotalColors[m + 1] ← {0, 1, . . . , m}
7: color list ← ∅
8: Initialise Concurrent List Li . indicating all adjacent

vertices of all vertices in Ti

Since the vertices of different partitions in the graph com-
municate by exchanging messages in the distributed algo-
rithm, we achieve the same in the shared memory by using
a concurrent list data structure. For each thread Ti, a cor-
responding Concurrent Set based List Li is initialised. The

3

algorithm proceeds in iterations until all the vertices in par-
tition local to each thread get colored. In each iteration, all
the vertices with their n-wait as 0, say P , are colored indicat-
ing their turn in the ordering amongst the set of neighbours.
As a result of this, the vertices which have been waiting for
P to get colored (send-list(P)) have to be informed. So, P is
added to the Concurrent List of the corresponding threads
(those partition which contains vertices in send-list(P)).

9: for each v ∈ Vi | v is a boundary vertex do
10: n-wait(v) ← 0
11: send-list(v) ← ∅
12: for each u ∈ adjacent(v) | u is a boundary vertex do
13: if ρ(u) > ρ(v) then
14: n-wait(v) ← n-wait(v) + 1
15: else
16: send-list(v) ← send-list(v) ∪ {u}
17: end if
18: end for
19: if n-wait(v) = 0 then
20: color-list ← color-list ∪ {v}
21: end if
22: end for
23: for v ∈ Vi do
24: Create List v.ForbiddenColors
25: Initialise v.ForbiddenColors to −1
26: end for
27: Invoke Color(color-list)
28: Invoke Append Concurrent List(color-list)
29: n-colored ← | color-list |
30: color list ← ∅
31: while n-colored < no of boundary vertices in Vi do
32: Iterate Li to get v
33: for each u ∈ adjacent(v) | u ∈ Vi and u is a boundary

vertex do
34: n-wait(u) ← n-wait(u) − 1
35: Update color(v) in u.ForbiddenColors
36: if n-wait(u) = 0 then
37: color-list ← color-list ∪ {u}
38: end if
39: end for
40: Invoke Color(color-list)
41: Invoke Append Concurrent List(color-list)
42: n-colored ← n-colored + | color-list |
43: color list ← ∅
44: end while
45: for each v ∈ Vi | v is a internal vertex in Vi do
46: color(v) ← min{TotalColors − color(adjacent(v))}
47: end for
48: end for
49: end procedure
50: procedure Append Concurrent List(color-list)
51: for each v ∈ color-list do
52: temp set ← ∅
53: for each w ∈ send-list(v) do
54: temp set ← temp set ∪ Partition id(w)
55: end for
56: for each k ∈ temp set do
57: Lk.insert(v, color(v))
58: end for
59: end for
60: end procedure
61: procedure Color(color-list)
62: for each v ∈ color-list do
63: color(v) ← min{TotalColors − v.ForbiddenColors}
64: for each u ∈ adjacent(v) do
65: Update color(v) in u.ForbiddenColors
66: end for
67: end for
68: end procedure

A thread keeps iterating through its concurrent set Li to
check if any other vertex (which it has been waiting on) has
been colored. If a new insertion happens in the List then
the corresponding adjacent vertex’s n-wait is decreased by
1. It is to be noted that the Concurrent Set based Linked
List with functions for scan and append can be implemented

using mutexes or atomic CAS operations. Here, delete oper-
ation is not required. Also, the scan function simply checks
if the next pointer is not NULL. If not NULL, it indicates
a new element has been inserted in the List. The complete
algorithm is described in Algorithm 2.

Lemma 3: At least one vertex at every instant in JP Algo-
rithm has its n-wait as 0.

Lemma 4: Jones Plassman Algorithm results in proper col-
oring of the graph.

Proof: This can be seen in a straightforward manner. Im-
proper coloring can only happen if two adjacent vertices of
different partitions are colored at the same time by different
threads wherein they both read the same colors of the neigh-
bours and assign the adjacent vertices to the same color.
Now, as can be seen from Algorithm 2, only vertices with
their n-wait as 0 can be colored at a particular time instant.
Thus, it is to be shown that no two adjacent vertices have
their n-wait as 0 at the same time instant. It is known
that all vertices in the graph are assigned a distinct, ran-
dom number. Hence because of lines 15-18 in Algorithm 2,
all adjacent vertices would be waiting on one another. This
proves that n-wait of two adjacent vertices cannot become
0 at the same instant and thus ensures legal coloring.

Lemma 5: Jones Plassman Algorithm terminates after a
finite iterations.

Proof: In case of a complete graph of n vertices, each ver-
tex in a partition sends a message to each of the concurrent
thread. Say a vertex in the 1st partition is currently having
n-wait as 0. Hence it colors itself and writes to Concur-
rent List of all other p-1 threads. Now all vertices decrease
their n-wait by 1. At least one vertex now has its n-wait
to be 0. Hence it again colors itself and sends messages to
all other p-1 threads. Since each partition contains at max
n/p vertices, the maximum number of messages passed by a
single thread = (p − 1) ∗ n/p = O(n). Now since there are
p threads, the total number of messages are upper bounded
by O(n ∗ p).

3.3 Using Mutex Locks
The motivation behind using an alternative to the barrier
synchronization approach presented in previous subsection
lies in the fact that, since all the threads get synchronized at
two points (Lines 20 & 31 in Algorithm 1) in each iteration,
there is an unfavourable impact on the performance of the
algorithm. The overall goal is to avoid global synchroniza-
tion of threads and let them run independently. We present
algorithms based on the locking of the graph vertices. With
locks, coloring the vertex becomes a critical section and a
thread can only enter the critical section when it has ac-
quired the lock.

3.3.1 Coarse Grained Locking

With Coarse Grained Locking, there exists a big lock on the
complete list of boundary vertices. This implies that at any
point, a thread must acquire a lock on this list to color any
boundary vertex.

3.3.2 Fine Grained Locking

Coarse Grained Locking can be improvised on by making
use of fine grained locks wherein each vertex has a corre-
sponding lock. A thread wishing to color a boundary vertex
has to obtain locks on all the neighboring vertices of that

4

boundary vertex. However, to avoid deadlock, a global or-
dering of vertices is maintained (based on their vertex ids)
and vertices acquire locks in the respective order. The com-
plete algorithm has been described in Algorithm 3.

Algorithm 3 Using Fine Grained Locks

1: Input: p ← no of threads
2: procedure ParallelGraphColoring(G = (V,E))
3: for all thread Ti | i ∈ {1,. . . ,p} do
4: Identify boundary vertices in Vi

5: Initialise TotalColors[m + 1] = {0, 1,, m}
6: for each v ∈ Vi | v is a internal vertex in Vi do
7: color(v) ← min{TotalColors − color(adjacent(v)}
8: end for
9: for each v ∈ Vi | v is a boundary vertex in Vi do

10: List Ai ← adj(v) | adj(v) is a boundary vertex
11: Ai ← Ai ∪ {v}
12: Lock all vertices in Ai in increasing order of vertex ids
13: color(v) ← min{TotalColors − color(adjacent(v)}
14: Unlock all vertices in Ai

15: end for
16: end for
17: end procedure

3.3.3 Cutting Waiting Chains

The drawback of using fine grained locks as described in
the previous subsubsection is that in case of a chain graph,
each vertex could be waiting on its adjacent vertex to ac-
quire the locks. These waiting chains can worsen in denser
graphs. This leads to a motivation to develop an algorithm
for cutting long transitive waiting chains. Here, we present
a variant of the Anderson, et al. [7] algorithm.

The idea here is to maintain a table data structure of boolean
fields with number of rows equal to the number of parti-
tions + 1 of the graph and number of columns equal to
the number of partitions. A request for coloring a vertex v
can be made by positioning itself in the column indexed by
partition id(v), of a particular row. Each true entry present
in a row in the table corresponds to the request positioned
in that row. Each column is indexed by the partition id’s of
the graph. The advantage to using this approach is that the
size of the table is very small (in order of number of parti-
tions) as compared to the size of input graph. The requests
are fulfilled in the increasing order of rows starting from the
first row of the table. To maintain validity, we need to en-
sure that at any instant only one request can be placed by
a particular thread in some row.

To place a request for coloring a vertex v of a particular
partition in a particular row, the thread needs to check the
existing requests placed in the corresponding row. If all ver-
tices corresponding to the requests placed in that row are not
adjacent to v in the graph, then the request can be placed in
the corresponding row. For this, a thread must know about
the vertices which are being colored corresponding to the
partition id’s whose entry is true in the respective row. To
achieve this, an atomic array of the size of the number of
partitions is maintained. Each element of the array indexed
by a partition id corresponds to the vertex being colored
from that partition. This information is updated whenever
a new request is placed.

The terminology used in the pseudo code is consistent
with [7]. The shared memory field head is an atomic field
which points to the currently enabled row in the table. Two
more atomic arrays enabled and numReq are maintained.
Each row in the table has a corresponding entry in these

Figure 2: Illustration of working of variant of Anderson’s
algorithm

arrays indexed by the row number. A true entry in the
enabled array indicates that the requests positioned in the
corresponding row are fulfilled. At a particular instant, only
one row can be enabled. numReq array maintains the count
of the number of requests in each row. The last request in a
row to be fulfilled, marks the next row to be enabled. Locks
are needed to avoid concurrent changes to a row. Hence
the algorithm proceeds in hand-over-hand row wise locking.
This prevents deadlocks and allows fine grained concurrent
access over the table data structure. Figure 2 illustrates the
working of the algorithm when vertices 1 and 3 of partitions
P0 and P1 are being colored concurrently. This can be iden-
tified by atomic VertexFromPartition array. It can be seen
that the request for vertex 1 is placed in first row and ver-
tex 2 in second row respectively. The first row of the table
is referenced by head which corresponds to enabled being
set to true. The number of requests placed in a given row
is stored in numReq. Algorithm 4 describes the complete
pseudo-code of the algorithm.

Algorithm 4 Anderson’s Variant

1: Input: p ← no of threads
2: A ← Atomic array of p indices
3: Initialise a table data structure of boolean fields with #rows =

p+ 1, #cols = p
4: procedure ParallelGraphColoring(G = (V,E))
5: for all thread Ti | i ∈ {1,. . . ,p} do
6: Identify boundary vertices in Vi

7: Initialise TotalColors[m + 1] = {0, 1,, m}
8: for each v ∈ Vi | v is a internal vertex in Vi do
9: color(v) ← min{TotalColors − color(adjacent(v)}

10: end for
11: for each v ∈ Vi | v is a boundary vertex in Vi do
12: Invoke request table(v, i)
13: color(v) ← min{TotalColors − color(adjacent(v)}
14: Invoke release table(v, i)
15: end for
16: end for
17: end procedure
18: procedure request table(v, i)
19: Update A[i] ← v
20: Acquire a lock on the head row of the table
21: start ← head
22: while true do
23: Initialise List L ← ∅
24: for each true entry ∈ table[start][k] do where 1 ≤ k ≤ p
25: List L ← A[k] ∪ L
26: end for
27: flag ← false
28: for each w ∈ L do
29: if w is adjacent to v then

5

30: flag ← true
31: end if
32: end for
33: if flag = false then
34: Goto line 43
35: end if
36: next ← start+ 1
37: Acquire a lock on the next row of the table
38: Release lock on the start row of the table
39: start ← next
40: end while
41: Set table[start][i] ← true
42: numReq[start]++
43: Release lock on the start row of the table
44: Wait until enabled[start] is set to true
45: end procedure
46: procedure release table(v, i)
47: Acquire a lock on the start row of the table
48: Set table[start][i] ← false
49: numReq[start]−−
50: if numReq[start] = 0 then
51: next ← start+ 1
52: enabled[start] ← false
53: head ← next
54: enabled[next] ← true
55: end if
56: Release lock on the start row of the table
57: end procedure

At any instant, only one request for coloring a vertex can
be placed from each partition in this concurrent data struc-
ture. In the case of a complete graph, each request would be
placed in a different row. Also since all the requests are ful-
filled in the increasing order of the rows, there is no request
that cannot be placed on its arrival. Hence the algorithm
terminates when all the requests have been enabled. It can
be seen that in case of a chain graph over n vertices, the
length of the waiting chain equals to 2 only. Every alternate
vertex can be placed in the same row of the table. This is
an improvement over fine grained locking where the length
of the waiting chain could have been n.

3.3.4 Maximal Independent Sets of subgraphs

It is commonly known that computing a Maximal Indepen-
dent set of a graph is an NP-Complete problem. In this sub-
section, we present an algorithm for graph coloring which
maintains small subgraph of the original graph and com-
putes the MIS on it. The keypoint is that at any instant, the
maximum of vertices in the subgraph is equal to the number
of partitions. Since the size of the subgraph is very small as
compared to the input graph; the algorithm is expected to
fare well practically. Whenever a request for coloring a ver-
tex v is made by a thread, a node is added to the subgraph
G′ corresponding to the thread’s partition. If v is adjacent
to any vertex in G, then the corresponding edge is added
to vertex’s partition node in G′, if present. The algorithm
proceeds in iterations until all the vertices in its partition
get colored. In each step, an MIS is identified and those
vertices are marked as active, which means that they can
be colored. Furthermore, after a vertex has been colored, it
is removed from the subgraph along with its corresponding
edges. To avoid concurrent accesses to the shared subgraph
G′, a coarse mutex lock is used. The pseudo code is de-
scribed in Algorithm 5.

3.4 Using Transactions
A transaction is a piece of code which executes atomically.
Since the internal vertices are colored without any interac-
tion amongst threads, they can be colored without creating
any transaction. However, each boundary vertex has to be

Algorithm 5 MIS in subgraphs

1: Input: p ← no of threads
2: uniform random partitioning of V in V1, V2, . . ,Vp

3: Initialise an empty graph data structure G′

4: procedure ParallelGraphColoring(G = (V,E))
5: for all thread Ti | i ∈ {1,. . . ,p} do
6: Identify boundary vertices in Vi

7: Initialise TotalColors[m + 1] = {0, 1,, m}
8: for each v ∈ Vi | v is a internal vertex in Vi do
9: color(v) ← min{TotalColors − color(adjacent(v)}

10: end for
11: for each v ∈ Vi | v is a boundary vertex in Vi do
12: Invoke request graph(v, i)
13: color(v) ← min{TotalColors − color(adjacent(v)}
14: Invoke release graph(v, i)
15: end for
16: end for
17: end procedure
18: procedure request graph(v, i)
19: Acquire a lock on the graph G′

20: Add a vertex i to G′ and mark it inactive
21: Add edges from i to respective vertices ∈ G′ and vice versa
22: if degree of i = 0 then
23: Mark i as active
24: end if
25: Release lock on graph G′

26: Wait until vertex i becomes active
27: end procedure
28: procedure release graph(v, i)
29: Acquire a lock on the graph G′

30: Remove vertex i from G′ and all corresponding edges
31: Identify MIS from the set of inactive vertices and mark active
32: Release lock on G′

33: end procedure

colored by creating a transaction. A read operation is per-
formed for reading the colors of all the adjacent vertices
and finally a write is invoked for assigning a valid color to
the boundary vertex. If at any point, an operation fails,
the transaction has to be restarted. Once the transaction
commits, this implies that the vertex has been colored (by
writing its color to shared memory graph). This algorithm
ensures proper coloring of the graph. We simulate this using
Basic Timestamp Ordering (BTO) Protocol. This has been
described in Algorithm 6.

4. SIMULATION RESULTS & ANALYSIS
We performed our tests on 24 core Intel Xeon server (X5675)
running at 3.07 GHz core frequency. Each core supports
6 hardware threads, clocked at 1600 MHz. In the experi-
ments conducted, the time taken for coloring the graph in
the multi-threaded version includes the time taken for parti-
tioning of graph as well. However, time taken for coloring in
all versions (sequential & parallel) excludes the time taken
to read the graph input. Each data point is obtained af-
ter averaging for 10 iterations. To test the performance of
the algorithms, we have used real world graph, Live Journal
from SNAP [9]. We have evaluated for two metrics: Time
Taken to color the graph and Number of Colors Used. We
have tested it for all algorithms in previous section by vary-
ing the number of threads in the range 1-1000 and noted it
for the best result.
As can be clearly observed from the performance results,
the barrier synchronization and Jones Plassman Algorithm
do not fare well and are not comparable to the sequential
coloring. On the other hand, locks and transactions seem
to perform fairly well in terms of time taken for coloring
maintaining a reasonable number of colors used. We ob-
serve that fine grained locking performs significantly better

6

Algorithm 6 Using Transactions

1: Input: p ← no of threads
2: Declare color(v) ∀v ∈ V in shared memory
3: aborts ← 0
4: Initialise Protocol (BTO/SGT)
5: procedure ParallelGraphColoring(G = (V,E))
6: for all thread Ti | i ∈ {1,. . . ,p} do
7: Identify boundary vertices in Vi

8: Initialise TotalColors[m + 1] = {0, 1,, m}
9: for each v ∈ Vi | v is a internal vertex in Vi do

10: color(v) ← min{TotalColors − color(adjacent(v)}
11: end for
12: for each v ∈ Vi | v is a boundary vertex in Vi do
13: Begin Transaction
14: List C ← read color(adj(v))
15: if read fails then
16: Abort transaction & goto line 15
17: end if
18: write color(v) ← min{TotalColors − C}
19: try commit() transaction
20: if try commit() fails then
21: Increment aborts & goto line 15
22: end if
23: end for
24: end for
25: end procedure

as compared to the sequential coloring. It is important to
realise that Jones Plassman Algorithm does not fare well in
terms of the time taken for coloring, partly because of the
inefficient random ordering assigned to vertices. Hence even
though it uses a reasonable number of colors, it is not prac-
tically feasible.

In the literature, there exists many ordering schemes which
can further reduce the number of colors used such as Largest
Degree First, Saturation Degree, etc [10]. It is important
to note that since these orderings require some sorting of
the vertices to order them, these will incur additional cost
in terms of time taken. For parallel graph coloring, such
heuristics can be used to order the vertices of each parti-
tion. Hence if such techniques are employed, they will lead
to a rise in the time taken proportionally amongst all the al-
gorithms (including the greedy sequential one). Thus, there
will be no impact on the relative performance of the algo-
rithms employed for a different ordering heuristic.

Table 1: Results of Live Journal Dataset

Algorithm #threads
Time
Taken
(secs)

#colors
used

Fine Grained Locks 70 6.18 334
Transactions (BTO) 200 8.26 335
Sequential algorithm 1 13.86 334
Coarse grained locks 100 17.75 333
Maximal Independent
Set

2 18.36 336

Anderson’s variant 14 19.26 335
Barrier synchroniza-
tion

400 21.99 334

Jones Plassman 40 64954 334

5. CONCLUSION & FUTURE WORK
We have presented parallel algorithms for graph coloring
suitable to the shared memory programming model. We
have looked into the most commonly used approach for col-
oring using barrier synchronization and Jones Plassman Al-
gorithm. We have also proposed new approaches using locks.

Using the SNAP dataset, we evaluated the performance of
the algorithms on the Intel platform. The results show that
the improvement is noteworthy. This gives a motivation that
the overhead of locking and unlocking operations is less and
they do scale well with increasing number of threads as com-
pared to the existing approaches.

We intend to test these algorithms for other types of graphs
including dense ones. It seems that the algorithm can be im-
proved by exploring pushing ahead of requests in the table
used in Anderson’s algorithm. Also these locking ideas can
be extended for specific categories of graphs such as trees,
star, etc. Furthermore, cutting the waiting chains caused by
fine grained locking in graphs is an active research problem.

6. REFERENCES
[1] Erik G Boman, Doruk Bozdağ, Umit Catalyurek,

Assefaw H Gebremedhin, and Fredrik Manne. A
scalable parallel graph coloring algorithm for
distributed memory computers. In Euro-Par 2005
Parallel Processing, pages 241–251. Springer, 2005.

[2] Ümit V. Çatalyürek, John Feo, Assefaw Hadish
Gebremedhin, Mahantesh Halappanavar, and Alex
Pothen. Graph coloring algorithms for multi-core and
massively multithreaded architectures. Parallel
Computing, 38(10-11):576–594, 2012.

[3] Mehmet Deveci, Erik G. Boman, Karen D. Devine,
and Sivasankaran Rajamanickam. Parallel graph
coloring for manycore architectures. In 2016 IEEE
International Parallel and Distributed Processing
Symposium, IPDPS 2016, Chicago, IL, USA, May
23-27, 2016, pages 892–901, 2016.

[4] Assefaw H Gebremedhin, Fredrik Manne, and Tom
Woods. Speeding up parallel graph coloring. In Applied
Parallel Computing. State of the Art in Scientific
Computing, pages 1079–1088. Springer, 2006.

[5] Assefaw Hadish Gebremedhin and Fredrik Manne.
Scalable parallel graph coloring algorithms.
Concurrency - Practice and Experience,
12(12):1131–1146, 2000.

[6] William Hasenplaugh, Tim Kaler, Tao B. Schardl, and
Charles E. Leiserson. Ordering heuristics for parallel
graph coloring. In 26th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA
’14, Prague, Czech Republic - June 23 - 25, 2014,
pages 166–177, 2014.

[7] Catherine E. Jarrett, Bryan C. Ward, and James H.
Anderson. A contention-sensitive fine-grained locking
protocol for multiprocessor real-time systems. In
Proceedings of the 23rd International Conference on
Real Time and Networks Systems, RTNS 2015, Lille,
France, November 4-6, 2015, pages 3–12, 2015.

[8] Mark T. Jones and Paul E. Plassmann. A parallel
graph coloring heuristic. SIAM J. Scientific
Computing, 14(3):654–669, 1993.

[9] Jure Leskovec and Andrej Krevl. SNAP Datasets:
Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[10] Md Mostofa Ali Patwary, Assefaw H Gebremedhin,
and Alex Pothen. New multithreaded ordering and
coloring algorithms for multicore architectures. In
Euro-Par 2011 Parallel Processing, pages 250–262.
Springer, 2011.

7

http://snap.stanford.edu/data

	Introduction
	Background
	Problem Definition
	Related Work
	System Model

	Solution Approaches
	Using Barrier Synchronization
	Jones Plassman Algorithm
	Using Mutex Locks
	Coarse Grained Locking
	Fine Grained Locking
	Cutting Waiting Chains
	Maximal Independent Sets of subgraphs

	Using Transactions

	Simulation Results & Analysis
	Conclusion & Future Work
	References

