
1

A Quorum-Based Group Mutual Exclusion

Algorithm for a Distributed System with

Dynamic Group Set

Ranganath Atreya, Web Services Technologies, Amazon.com, Inc., Seattle, WA

98101 USA

Neeraj Mittal, Department of Computer Science, The University of Texas at

Dallas, Richardson, TX 75083, USA

Sathya Peri, Department of Computer Science, The University of Texas at Dallas,

Richardson, TX 75083, USA

Abstract

The group mutual exclusion problem extends the traditional mutual exclusion problem by associating

a type (or a group) with each critical section. In this problem, processes requesting critical sections of

the same type can execute their critical sections concurrently. However, processes requesting critical

sections of different types must execute their critical sections in a mutually exclusive manner.

We present a distributed algorithm for solving the group mutual exclusion problem based on the

notion of surrogate-quorum. Intuitively, our algorithm uses the quorum that has been successfully locked

by a request as a surrogate to service other compatible requests for the same type of critical section.

Unlike the existing quorum-based algorithms for group mutual exclusion, our algorithm achieves a

low message complexity of O(q), where q is the maximum size of a quorum, while maintaining both

synchronization delay and waiting time at two message hops. Moreover, similar to existing quorum-based

algorithms, our algorithm has high maximum concurrency of n, where n is the number of processes in

the system.

As opposed to some existing quorum-based algorithms, our algorithm can adapt without perfor-

mance penalties to dynamic changes in the set of groups. Our simulation results indicate that our
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algorithm outperforms the existing quorum-based algorithms for group mutual exclusion by as much as

45% in some cases.

We also discuss how our algorithm can be extended to satisfy certain desirable properties such as

concurrent entry and unnecessary blocking freedom. Further, we provide a generalized algorithm for

group mutual exclusion based on the information structure of a mutual exclusion algorithm.

Index Terms

message-passing system, resource management, mutual exclusion, group mutual exclusion, quorum-

based algorithm.

I. I

Mutual exclusion is one of the most fundamental problems in concurrent systems including

distributed systems. In this problem, access to a shared resource (that is, execution of critical

section) by different processes must be synchronized to ensure its integrity by allowing at

most one process to access the resource at a time. Numerous solutions [2], [3], [4], [5], [6]

and extensions [7], [8], [9], [10] have been proposed to the basic mutual exclusion problem.

More recently, another extension to the basic mutual exclusion problem, called group mutual

exclusion, has been proposed [11]. In the group mutual exclusion problem, every critical section

is associated with a type or a group. Critical sections belonging to the same group can be

executed concurrently while critical sections belonging to different groups must be executed in

a mutually exclusive manner.

The readers/writers problem can be modeled as a special case of group mutual exclusion using

n + 1 groups, where n denotes the number of processes. In this case, all read requests belong

to the same group and write requests by each process belongs to a different group. As another

application of the problem, consider a CD-jukebox where data is stored on disks and only one

disk can be loaded for access at a time [11]. In this example, when a disk is loaded, users that

need data on the currently loaded disk can access the disk concurrently. While users that need

data on different disks have to wait for the currently loaded disk to be unloaded.

Solutions for the group mutual exclusion problem have been proposed under both shared-

memory and message-passing models. Solutions under shared-memory model can be found in

[11], [12], [13], [14]. In this paper, we investigate the group mutual exclusion problem under

message-passing model. For message-passing model, solutions to group mutual exclusion have

been proposed for ring networks [15], [16] and tree networks [17]. Typically, solutions for ring

and tree networks incur high synchronization delay and have high waiting time. For a fully
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connected network, two group mutual exclusion algorithms based on modification of the Ricart

and Agrawala’s algorithm for mutual exclusion [4] have been proposed in [18]. These algorithms

have high message complexity of O(n). The first algorithm has low expected concurrent of O(1),

whereas the second algorithm has high message overhead of O(n).

The quorum-based mutual exclusion algorithm by Maekawa [19] has also been modified to

derive two quorum-based algorithms for group mutual exclusion [20]. These algorithms use a

special type of quorum system called the group quorum system. In a group quorum system, two

quorums belonging to the same group need not intersect while quorums belonging to different

groups must intersect. The maximum number of pair-wise disjoint quorums offered by a group

quorum system is called the degree of the quorum system. In [20], Joung introduced a group

quorum system called the surficial quorum system, which has a degree of
√

2n
m(m−1) , where m is the

number of groups. When used with Maekawa’s algorithm, the surficial quorum system can only

allow up to the degree number of process of the same group to execute concurrently. To achieve

unrestricted maximum concurrency, Joung also proposed two quorum-based algorithms, namely

Maekawa M and Maekawa S, based on two separate modifications to the original Maekawa’s

quorum-based algorithm. The first modification enables quorum nodes to issue multiple locks

for requests belonging to the same group. The draw-back of this approach is that, in the event

of conflict between requests of different groups, deadlock resolution requires multiple locks to

be taken back. This results in a high (worst-case) message complexity of O(n min{m, √n}). To

overcome this draw-back, Joung proposed a second modification that avoids deadlocks altogether.

Specifically, deadlocks are avoided by locking quorum nodes in some fixed order. Although this

approach reduces message complexity to O(q), the synchronization delay evidently increases

from two to O(q) messages hops, where q is the maximum size of a quorum. In addition, both

these algorithms need an a priori knowledge of the number of groups, which cannot change

with time.

For some applications, the number of groups in the system may change dynamically during

the course of execution. For instance, in the CD jukebox example, new CDs may be added

at runtime. Hence it is desirable for a group mutual exclusion algorithm to be able to handle

dynamic changes in the number of groups. Toyomura et al have proposed a quorum-based

algorithm that uses a traditional quorum system [21]. Their algorithm is similar to Maekawa M

and therefore has high message complexity of O(nq).

In this paper, we take a slightly different approach and introduce the notion of surrogate-

quorums. The existing quorum-based algorithms [20] can either provide a low synchronization
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delay of two message hops or low message complexity of O(q) but not both together. Hence,

they are either inefficient or non-scalable. Our algorithm, on the other hand, achieves a low

message complexity of O(q) while maintaining both synchronization delay and waiting time at

two message hops, thereby satisfying both of the seemingly opposing qualities—efficiency and

scalability. To accomplish this, we introduce a relatively low message overhead of O(b) per

message, where b denotes the largest number of processes in whose quorum a node can belong

to. Furthermore, unlike the existing quorum-based algorithms [20] which require a group quorum

system, our algorithm assumes minimal properties of the underlying quorum system. This implies

that our algorithm is decoupled from the underlying quorum system and more importantly does

not need an a priori knowledge of the number of groups. In fact, our algorithm can adapt without

performance penalties to dynamic changes (at runtime) in the number of groups. Finally, like the

other quorum-based algorithms, the maximum concurrency is n. This implies that it is possible

for all processes to execute their critical sections concurrently, provided all of them request

critical sections of the same group.

We also explain how our algorithm can be extended to satisfy certain desirable properties

such as concurrent entry [18] and unnecessary blocking freedom [22]. Further, we provide a

generalized algorithm for group mutual exclusion based on the information structure of a mutual

exclusion algorithm [23].

The rest of the paper is organized as follows. We present our system model and formally

describe the group mutual exclusion problem in Section II. Section III provides the background

information necessary to understand our algorithm. We then present our surrogate-quorum based

algorithm for group mutual exclusion in Section IV. We prove its correctness in Section V,

analyze its performance in Section VI and present our simulation results in Section VII. In

Section VIII, we discuss several extensions to our basic algorithm. Finally, we present our

conclusions in Section IX.

II. M  P D

A. System Model

We assume an asynchronous distributed system comprising of a set of processes Π with

|Π| = n. Processes communicate with each other by sending messages over a set of channels.

We assume that there is a channel between every pair of processes. There is no global clock

or shared memory. Processes are non-faulty. Channels are reliable and first-in-first-out (FIFO).

Message delays are finite but may be unbounded. In this paper, we use lower case English letters
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(e.g., x, y and z) to denote processes and upper case English letters (e.g., P, Q and R) to denote

sets of processes.

B. The Group Mutual Exclusion Problem

The problem of group mutual exclusion (GME) was first proposed in [11] as an extension to

the traditional mutual exclusion problem. In this problem, every request for a critical section is

associated with a type or a group. An algorithm for group mutual exclusion should satisfy the

following properties:

• group mutual exclusion: at any time, no two processes, who have requested critical sections

belonging to different groups, are in their critical sections simultaneously.

• starvation freedom: a process wishing to enter critical section succeeds eventually.

Clearly, any algorithm for solving the traditional mutual exclusion problem also solves the

group mutual exclusion problem. However, such algorithms are sub-optimal because they force

all critical sections to be executed in a mutually exclusive manner and therefore do not permit any

concurrency whatsoever. To avoid such degenerate solutions and unnecessary synchronization,

Joung proposed that an algorithm for achieving group mutual exclusion should satisfy the

following desirable property:

• concurrent entry (non-triviality): if all requests are for critical sections belonging to the

same group, then a requesting process should not be required to wait for entry into its

critical section until some other process has left its critical section.

Intuitively, the concurrent entry property states that if processes currently in their critical

sections, if any, never leave their critical sections and no process has or makes any conflicting

request, then any process with a pending request should be eventually able to enter its critical

section. The group mutual exclusion problem can be casted as congenial talking philosophers

(CTP) problem [18]. In the CTP problem, a philosopher can be in one of the three states at

any time: thinking, waiting and talking. Philosophers think alone but talk in fora. A philosopher,

who is currently thinking, may at any time decide to join a specific forum by changing its

state to waiting. Each forum is of a specific type and is held in a meeting room. There is only

one meeting room available and at most one forum (of any type) can be in progress in the

meeting room at any time. However, a forum can be attended by any number of philosophers.

A philosopher, on entering the requested forum, changes its state and starts talking. The first

philosopher to enter a forum initiates a session of that forum type and the last philosopher to

leave it terminates that session.
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Complexity Measures: To measure the performance of a group mutual exclusion algorithm,

we use the following metrics:

• message complexity: the number of messages exchanged per request for critical section

• synchronization delay: the time elapsed between when the current forum terminates and

when the next forum (of some other type) can commence

• waiting time: the time elapsed between when a process issues a request for critical section

and when it actually enters the critical section

• message overhead: the amount of data piggybacked on a message (in terms of number of

integers)

• concurrency: the number of processes that are in their critical sections at the same time

The first four metrics are used to evaluate the performance of a traditional mutual exclusion

algorithm as well. The fifth metric is specific to a group mutual exclusion algorithm. Message-

complexity and message-overhead determine the overhead imposed on the system by the group

mutual exclusion algorithm at runtime. Synchronization delay is usually measured when the

system is heavily loaded and there is a lot of contention among processes for access to the

resource. Intuitively, synchronization delay and concurrency measure the system throughput

that can be achieved when the system is heavily loaded. (The lower the synchronization delay

and higher the concurrency, the greater is the system throughput.) One way to measure the

concurrency of a group mutual exclusion is to determine the maximum number of processes that

can execute their critical sections concurrently. This is referred to as the maximum concurrency

of a group mutual exclusion algorithm. Waiting time captures the amount of time an application

process has to wait for its request to be fulfilled. Waiting time is typically measured when the

system is lightly loaded and, therefore, there is no contention for the resource.

III. B

A. A Quorum System

A quorum is a subset of nodes or processes. Although nodes and processes are identical,

following the convention in [20], we use the term node specifically when referring to the role of

a process as a quorum member. A quorum system C, also referred to as a coterie, for (traditional)

mutual exclusion is a set of quorums satisfying the following properties:

• intersection: ∀P,Q ∈ C :: P ∩ Q , ∅
• minimality: ∀P,Q ∈ C : P , Q : P * Q
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If a process enters its critical section only after it has successfully locked all nodes in some

quorum, then the intersection property ensures that no two processes can execute their critical

sections concurrently. The minimality property ensures that no process is required to lock more

nodes than necessary to achieve mutual exclusion. For a node x, let Bx denote the set of processes

that can send requests to x. If a process randomly chooses its quorum, then the size of Bx can

be as large as n. However in our algorithm, we assume that each process is assigned a fixed

quorum and so Bx = {Q ∈ C|x ∈ Q}. For a grid quorum system, |Bx| = O(
√

n). Henceforth, we

refer to Bx as the membership set of x. In addition to the intersection and minimality properties,

it is desirable that the coterie C also satisfy the following properties:

• ∀P,Q ∈ C :: |P| = |Q|
• ∀x, y ∈ Π :: |Bx| = |By|
Existing quorum-based algorithms [20] for group mutual exclusion use a special type of

quorum system called a group quorum system. In a group quorum system, any two quorums

belonging to the same group need not intersect while quorums belonging to different groups must

intersect. We do not use a group quorum system in this paper; instead we employ a traditional

quorum system. Henceforth, the term “quorum system” is used to refer to the traditional quorum

system.

B. The Maekawa’s Algorithm

Maekawa’s algorithm implements mutual exclusion by using a coterie that satisfies the afore-

mentioned properties. Lamport’s logical clock [3] is used to assign a timestamp to every request

for critical section. A request with a smaller timestamp has a higher priority than a request with

a larger timestamp (ties are broken using process identifiers). Maekawa’s algorithm works as

follows:

1) When a process wishes to enter critical section, it selects a quorum and sends a REQUEST

message to all the quorum members. It enters the critical section once it has successfully

locked all its quorum members. On leaving the critical section, the process unlocks all its

quorum members by sending a RELEASED message.

2) A node, on receiving a REQUEST message, checks to see whether it has already been

locked by some other process. If not, it grants the lock to the requesting process by sending

a LOCKED message to it. Otherwise, the node uses timestamps to determine whether the

process currently holding a lock on it—hereafter referred to as the locking process—should

be preempted. In case the node decides not to preempt the locking process, it sends a
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FAILED message to the requesting process. Otherwise, it sends an INQUIRE message to

the locking process.

3) A process, on receiving an INQUIRE message from a quorum node, unlocks the quorum

node by sending a RELINQUISH message as and when it realizes that it will not be able

to successfully lock all its quorum members. This is ascertained when a FAILED message

is received from one of the quorum members.

4) A node, on receiving a RELINQUISH or RELEASED message, grants the lock to the

process whose request has the highest priority among all the pending requests, if any.

Maekawa [19] prove that the message complexity of the above algorithm is O(q), where q

is the maximum size of a quorum. Further, its (best-case) synchronization delay and waiting

time are both two message hops. (When analyzing the synchronization delay of a quorum-based

algorithm derived from the Maekawa’s algorithm, we ignore the delay incurred due to deadlock

resolution and only analyze the best-case synchronization delay. This is consistent with the

practice used by other researchers [19], [20].)

IV. A S-Q  A

We now describe our approach for solving the group mutual exclusion problem. We call two

requests as compatible if they are for the same type; otherwise they are said to be conflicting.

A. The Main Idea

The main focus of our algorithm is to provide the following advantages. Our algorithm should

be scalable and hence achieve low message complexity and low message overhead. To that end,

we choose a quorum-based approach. Our algorithm should be efficient, which means that it

should have low waiting time, low synchronization delay and high maximum concurrency. In

addition, we want our algorithm to be independent of the underlying quorum system and be able

to handle dynamic changes, at runtime, in the number of groups. Therefore, unlike the existing

quorum-based algorithms [20], we do not assume a group quorum system. On the contrary, we

assume minimal properties for the underlying quorum system. Particularly, we only assume the

properties listed in Section III-A.

One approach to achieving concurrency is by enabling nodes to issue multiple locks [20].

However, in this approach deadlock resolution may require multiple locks to be preempted

thereby increasing message complexity. To ensure scalability, we take the leader-follower ap-

proach introduced in [18] along with the notion of surrogate-quorum. In our approach, processes
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requesting entry into their critical sections try to lock their respective quorums. A process that

successfully captures its quorum invites other processes with compatible request to enter the

forum. Therefore a process can enter the forum by either locking all its quorum members or by

receiving an invitation from another process. The process in the former case is called a leader

and that in the latter case is called a follower. In order to inform a leader about other requests,

a quorum member on sending its lock also sends compatible requests that are currently in its

queue. To ensure group mutual exclusion property, the leader does not release its quorum until

all its followers have left the forum. We therefore use the quorum of the leader as a surrogate

for its followers and hence the name surrogate-quorum. To avoid repetition, we only describe

our extensions to Maekawa’s algorithm.

1) A node, when sending a LOCKED message to a process, piggybacks all requests currently

in its queue that are compatible with the request by the locking process.

2) A process, on receiving a LOCKED message, stores all the requests that were piggybacked

on the message. Once it has successfully locked all its quorum members, it sends an INVITE

message to processes who made these requests.

3) A process, on receiving an INVITE message for its current request, unlocks all its quorum

members by sending a CANCEL message. It then enters the forum.

4) A node, on receiving a CANCEL message from a process, removes its request from the

queue, if it exists.

5) Once a follower exits the forum, it sends a LEAVE message to its leader.

6) A leader maintains the lock on its quorum members until it has received a LEAVE message

from all its followers and has itself left the forum. It then sends a RELEASED message

to its quorum members.

7) A node, on receiving a RELEASED message from a process, removes all those requests

from its queue that it piggybacked on the last LOCKED message it sent.

Since processes can enter a forum (as a follower) without locking all its quorum members,

fulfilled requests may persist in the system for some time. We refer to these requests and the

messages generated due to these requests as “stale”. A process may receive stale LOCKED,

FAILED and INVITE messages due to its stale requests. Each of these messages can be piggy-

backed with the timestamp of the request that generated them. As a result, the requesting process

upon receiving a message can easily determine whether the message is stale. A process needs

to send a LEAVE message to the leader that sent a stale INVITE message to it. Stale LOCKED

and FAILED messages should be ignored.
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If a leader exits its forum but has not received a LEAVE message from all its followers, then

the leader is called a surrogate-leader. It should be noted that, a process in the surrogate-leader

mode can execute its underlying program unimpeded. With the above modification, our algorithm

has a message complexity of O(q) and a synchronization delay of three message hops (LEAVE,

RELEASED and LOCKED). Since a node can piggyback at most one compatible request per

process in its membership set, the message overhead of LOCKED messages is O(b), where b is

the size of the largest membership set.

B. Reducing Synchronization Delay

Synchronization delay has a significant impact on efficiency, especially system throughput.

Therefore, it is desirable to reduce it further. It is evident that LEAVE messages can be eliminated

by allowing a follower to directly release the quorum members of its leader. To do so and still

ensure group mutual exclusion property, we make the following modifications:

1) A leader upon entering a forum sets its weight to one.

2) Upon sending an INVITE message a leader reduces its current weight by half and piggy-

backs the other half over the INVITE message.

3) A leader upon exiting its forum, instead of waiting for LEAVE messages, sends a RE-

LEASED message along with its remaining weight to its quorum members.

4) A follower upon exiting its forum, instead of sending a LEAVE message to the leader,

sends a RELEASED message along with the weight it received over the INVITE message

to all quorum members of its leader.

5) A node accumulates all the weights it received over RELEASED messages and maintains

its lock until its cumulative weight becomes one.

An efficient solution for weight distribution and recovery was proposed in [24]. The proposed

approach involved storing rational numbers as integers in fractional form thus avoiding real

numbers. Using this approach, we only incur an overhead of two integers per INVITE and

RELEASED message.

It is clear that a fulfilled request may receive at most q stale INVITE messages, one from

each quorum member. Before this modification, for each stale INVITE message, a node only

sent one LEAVE message and hence the message complexity was O(q). However, according to

the above modifications, for each stale INVITE message a node sends q RELEASED messages

thereby increasing the message complexity to O(q2). To ensure scalability, we propose another

modification that reduces message complexity to O(q) while maintaining the message overhead
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at O(b).

C. Avoiding Stale INVITE Messages

To lower the message complexity to O(q), we need to eliminate stale INVITE messages. It is

clear that a quorum member sends LOCKED message only after receiving RELEASED messages

from all processes in the current forum. The “new” leader, due to the intersection property, has

to obtain LOCKED message from at least one quorum member of an “old” leader. Hence there

exists a causal path from all processes leaving a forum to a process entering a forum later as a

leader. In this modification, we basically exploit this causal path to pass on information about

stale requests to the next leader. We propose the following changes:

1) Each process x maintains a list of timestamps; there is one entry in the list for each process

in the system. The entry for process y in the list contains the timestamp of the latest request

by y that has been fulfilled according to x’s knowledge.

2) A node, on receiving a RELEASED message from a process updates its list with the

timestamp of the request that sent the RELEASED message. If the list already contains a

timestamp from the same process then the latest timestamp is retained.

3) Upon sending a LOCKED message to a process, a node in addition to piggybacking

compatible requests, also piggybacks those timestamps from its list that have not been

previously sent to the process.

4) A process, on receiving a LOCKED message from a node, updates its list using the

timestamps (for stale requests) received along with the LOCKED message. (Note that

the list needs to be updated even if the LOCKED message is stale.) Again, if the list

already contains a timestamp from the same process, then the latest timestamp is retained.

5) Upon successfully locking all quorum members, a leader desists from sending INVITE

message to a process y whose request has a timestamp that is less than or equal to the

corresponding entry in its vector.

With the above modifications, we have an algorithm that has a synchronization delay of two

message hops (RELEASED followed by LOCKED) and a message complexity of O(q). However,

we appear to have increased the message overhead of LOCKED messages. Since every process

in the system may concurrently enter a given forum, in the worst-case the message overhead of

a LOCKED message may be O(n). We show later that this overhead in fact amortizes to O(b)

over all messages.
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D. Formal Description of Our Algorithm

We refer to our algorithm as Surrogate. A formal description of Surrogate can be found in

Figure 1 and Figure 2. Due to lack of space, some actions of Surrogate which are identical

to those of the Maekawa’s algorithm (such as those used for deadlock avoidance), have been

omitted. Also, every message is tagged with the timestamp of the request for which it is being

exchanged along with other information (e.g., forum type requested). This is not shown explicitly

in the formal description due to lack of space.

Actions for process x:

Variables:
staleList: list of latest stale requests for each process as per x’s knowledge;
leader: the leader of x’s forum (defined only if currently in forum);
weight: weight to be sent back to quorum members (defined only if currently in forum);
inviteS et: processes to which an INVITE message to be sent (defined only if there is

a currently pending request);

� On generating a request for forum:
send REQUEST message to all quorum members;
inviteS et := ∅;

� On receiving a LOCKED(compatibleS et, newEntries) message from node y:
update staleList using newEntries;
update inviteS et using compatibleS et and staleList;
if (all quorums members have been locked) then

leader, weight := x, 1;
for each request in inviteS et do

weight := weight/2;
send INVITE(weight) message to the requesting process;

endfor;
enter the forum;

endif;

� On receiving an INVITE(weightRcvd) message from process y:
leader, weight := y, weightRcvd;
send CANCEL message to all quorum members;
enter the forum;

� On leaving a forum:
send RELEASED(weight) message to all members of leader’s quorum;

Fig. 1. Formal description of Surrogate for a process.
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Actions for node x:

Variables:
staleList: list of latest stale requests for each process as per x’s knowledge;
weight: weight collected so far (defined only if currently locked by some process);

� On deciding to send a LOCKED message to process y:
weight := 0;
compatibleS et := set of requests in the queue that are compatible with y’s request;
newEntries := set of entries in staleList that have changed since the last LOCKED

message sent to y;
send LOCKED(compatibleS et, newEntries) message to y;

� On receiving a CANCEL message from process y:
if (y is not the current lock holder) then

update staleList and remove y’s request from the queue;
else

treat it like a RELEASED message carrying a weight of 1;
endif;

� On receiving a RELEASED(weightRcvd) message from process y:
update staleList and remove y’s request from the queue, if present;
weight := weight + weightRcvd;
if (weight = 1) then

// the lock has been released
<do what Maekawa’s algorithm would do here>;

endif;

Fig. 2. Formal description of Surrogate for a node.

V. P  C

In this section, we formally prove that Surrogate in fact satisfies the first two properties of a

group mutual exclusion algorithm, namely group mutual exclusion and starvation freedom. In

Section VIII, we describe a simple extension to Surrogate that achieves concurrent entry.

Note that a request for critical section may have to wait for one or more requests to release

locks on its quorum members. These wait relationships may recursively grow to form what we

call wait-for-subgraphs emanating from a request. Wait-for-subgraphs may branch out and form

more wait-for-subgraphs. However, as we show later, these wait-for-subgraphs eventually unlink.

In the following proofs, we model the execution of the system as an infinite alternating

sequence of global states and events, σ = S 0e1S 1 . . . S i−1eiS i . . .. For executions with finite

number of such global states, we assume the existence of a hypothetical nop event for no-
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Ri , set of all requests for critical section made in some global state up to (and

including) global state S i

α.proc , process to which request α belongs

type(α) , type of request α

quorum(α) , quorum selected by request α

forum(α, i) , α.proc is in a forum at global state S i and α is the latest request of α.proc

leader(α) , request α is satisfied as a leader (assuming α is eventually satisfied)

follower(α) , request α is satisfied as a follower (assuming α is eventually satisfied)

weight(x, i) , weight of node x at global state S i

locked(x, α, i) , node x has sent its lock to request α but has not recovered some part of it at

global state S i, that is,

〈∃ j : j ≤ i : (x sent a LOCKED message to α at global state S j) ∧
〈∀ k : j < k ≤ i : (x did not send a LOCKED message at

global state S k) ∧ (weight(x, k) < 1)〉〉

Fig. 3. Notation used in the safety proof.

operation that remains enabled in all states following the last global state. A nop event does

nothing and so in our model for executions with finite sequence of global states, the final state

is repeated infinitely. The system is assumed to transition from a global state S i−1 on executing

an enabled event ei to state S i. We assume that a continuously enabled is eventually executed.

In this paper, we use lower case Greek letters (e.g., α, β and γ) to denote requests for critical

section. When a node x sends a message MSG (LOCKED, INQUIRE or FAILED) to a process

y for a request α, we say that x sent MSG to α (or, equivalently, α received MSG from x).

Likewise, when a process x sends a message MSG (RELINQUISH or RELEASED) to a node y

for request α, we say that α sent MSG to y.

A. Proving Safety (Group Mutual Exclusion)

For proving the safety property, we use the notation described in Figure 3. Using the notation

in the figure, we state some properties about our algorithm, which can be verified easily. The

first property states that if a request is currently being satisfied, then there exists a request of

the same type that currently holds locks on all its quorum members.

forum(α, i) ⇒ 〈∃β : β ∈ Ri : leader(β) ∧ (type(α) = type(β)) ∧
〈∀ x : x ∈ quorum(β) : locked(x, β, i)〉〉

(1)

The second property states that a node cannot be locked by two different requests at the same
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time. Formally,

locked(x, α, i) ∧ locked(x, β, i) ⇒ α = β (2)

We now prove that our algorithm is safe.

Theorem 1 (safety property): Surrogate satisfies the group mutual exclusion property, that is,

two requests of different types cannot be satisfied concurrently. Formally,

forum(α, i) ∧ forum(β, i) ⇒ type(α) = type(β)

Proof: Assume that forum(α, i) and forum(β, i) hold. Since forum(α, i) holds, using (1),

there exists a request γ ∈ Ri such that:

leader(γ) ∧ (type(α) = type(γ)) ∧ 〈∀ x : x ∈ quorum(γ) : locked(x, γ, i)〉 (3)

Likewise, since forum(β, i) holds, using (2), there exists a request δ ∈ Ri such that:

leader(δ) ∧ (type(β) = type(δ)) ∧ 〈∀ y : y ∈ quorum(δ) : locked(y, δ, i)〉 (4)

From the intersection property of a quorum system, there is node z in quorum(γ)∩quorum(δ)

such that z has been locked by both γ and δ in global state S i. Observe that a node can be

locked by at most one request in any global state. This means that γ and δ are actually same

requests. From (3) and (4), type(α) = type(γ) = type(δ) = type(β).

B. Proving Liveness (Starvation Freedom)

Our algorithm for group mutual exclusion is derived from Maekawa’s algorithm for mutual

exclusion. Maekawa himself gave a very informal proof for liveness in his paper [19]. We, on

the other hand, provide a more formal proof for starvation freedom of our algorithm in this

paper.

We say that a request is satisfied as soon as the requesting process enters the critical section

because of the request. For proving liveness, we use the notation described in Figure 4 in addition

to the notation used in the safety proof.

Before giving the proof, we formalize the concept of “waiting-on relation” and “wait-for-

graph”. We say that a request α is waiting on another request β if (1) α is still pending, (2) the

timestamp of α is smaller than the timestamp of β (ties are broken using process identifiers),

and (3) α is waiting for a lock that was sent to β. Formally,

waiting-on(α, β, i) , pending(α, i) ∧ (ts(α) < ts(β)) ∧
〈∃x : x ∈ quorum(α) ∩ quorum(β) : (α ∈ queue(x, i)) ∧ locked(x, β, i)〉



16

ts(α) , timestamp of request α

queue(x, i) , set of requests that belong to the request queue of node x at global state S i

failcount(α, i) , number of FAILED messages received by α until (and including) global

state S i

pending(α, i) , request α has not been satisfied until (and including) global state Si, that

is, 〈∀ j : j ≤ i : α ∈ R j ⇒ ¬ forum(α, j)〉

Fig. 4. Additional notation used in the liveness proof.

Based on the above definition of waiting-on relation, each state of a distributed system running

Surrogate can be represented by a directed graph. For any system state, the set of vertices in

the graph is given by the set of requests that have been made so far and a directed edge exists

from vertex α to vertex β if request α is waiting on request β in the given state. The graph for

a state S i is called the wait-for-graph at state S i and is denoted by WFG(i).

Lemma 2: WFG(i) satisfies the following properties:

1) WFG(i) is acyclic.

2) All paths in WFG(i) are simple paths.

3) If α has been satisfied in S i, then α does not have any outgoing edges in WFG(i).

4) The maximum length of all paths in WFG(i) is bounded by |Π|.
Proof: The first property follows from the fact that the timestamp value along any path

increases monotonically. The second property follows from the first property. The third property

follows from the definition of waiting-on relation (for a request to have an outgoing edge, it

should still be pending). Finally, the fourth property follows from the third property and the fact

that a process does not generate the next request until its current request has been fulfilled.

For a global state S i, the subgraph of WFG(i) emanating from a request α is called the wait-

for-subgraph of α at S i. We define the wait-set of a α at S i, denoted by wait-set(α, i), as the set

of requests that α is directly waiting on at S i, that is, wait-set(α, i) = { β | waiting-on(α, β, i) }.
The wait-set of a fulfilled request is trivially empty. Note that, once every node in quorum(α)

has received the request α, the wait-set of α cannot grow. Formally,

pending(α, i) ∧ 〈∀ x : x ∈ quorum(α) : α ∈ queue(x, i)〉 ⇒
〈∀ r, s : r, s ≥ i : r ≤ s ⇒ wait-set(α, r) ⊇ wait-set(α, s)〉

(5)

Also, note that, for a request to be satisfied as a leader, its wait-set should eventually become

permanently empty. This is relatively easy to prove if a request sends a RELINQUISH message

immediately on receiving an INQUIRE message (that is, without first waiting to receive a FAILED

message). However, the proof is more involved when FAILED messages are also considered.
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In our proof, we use two attributes of a pending request, namely potence and omnipotence,

which are defined as follows. A pending request α is said to be potent in a global state S i,

denoted by potent(α, i), if no request with higher priority (that is, smaller timestamp) is ever

generated in a global state following S i. Further, a potent request α is said to be omnipotent in

S i, denoted by omnipotent(α, i), if it has the highest priority among all pending requests in S i.

Our liveness proof consists of the following steps. First, we show that the wait-set of a pending

request eventually becomes permanently empty. Second, we show that once a request becomes

omnipotent and its wait-set becomes permanently empty it is eventually satisfied. Finally, we

show that a pending request eventually becomes potent and then omnipotent.

1) Wait-set eventually becomes permanently empty: A process that has entered a forum as a

leader may send INVITE messages to other processes. If a process receives an INVITE message for

a request that has already been fulfilled, it simply ignores the message. If that happens, quorum

members of the leader will not be able recover their locks, and no request will be fulfilled

thereafter. Therefore we first show that INVITE messages are never sent to stale requests.

Lemma 3: Surrogate does not generate any stale INVITE messages.

Proof: From the intersection property of a quorum system, there exists a causal path via

RELEASED and LOCKED messages from all requests satisfied in some forum to the leader of

every subsequent forum. Through this causal path, the stale requests vector of a leader is updated

with the requests that have already been satisfied in all earlier forums. Therefore a leader does

not send any stale INVITE message.

We now show that quorum members of a satisfied request eventually recover their locks.

Lemma 4: Once a request has been satisfied, all its quorum members eventually recover their

locks. Formally,

forum(α, i) ∧ locked(x, α, i) ⇒ 〈∃ j : j ≥ i : ¬locked(x, α, j)〉
Proof: There are two cases to consider depending on whether request α is satisfied as a

leader or a follower.

First, assume the former. Note that a leader has only a finite number of followers. The leader,

on leaving the forum, sends its weight to all its quorum members via a RELEASED message.

Further, each of its followers, on leaving the forum, sends the weight it received through an

INVITE message to the members of its leader’s quorum, again via a RELEASED message. A

quorum member recovers its lock once it has received all these RELEASED messages,

Now, assume the latter. A follower, on receiving an INVITE message, sends a CANCEL

message to all its quorum members. A quorum member recovers its lock once it has received
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the CANCEL message.

The next two lemmas establish that no edge in a wait-for-graph is permanent.

Lemma 5: If a request eventually either receives a FAILED message or is satisfied, then no

request can (directly) wait on it forever. Formally,

(β ∈ wait-set(α, i)) ∧
(

forum(β, i) ∨ ( failcount(β, i) > 0)
)
⇒ 〈∃ j : j ≥ i : β < wait-set(α, j)〉

Proof: Consider a node x ∈ quorum(α)∩ quorum(β) such that when x receives the request

α it had granted its lock to the request β. Clearly, x, on receiving α, sends an INQUIRE message

to beta, if it has not done so already. On receiving the INQUIRE message, β waits until it either

receives a FAILED message or is satisfied. By assumption, one of the two conditions eventually

holds. In case the first condition holds before the other, β sends a RELINQUISH message to

node x. Otherwise, in case the second condition holds, from Lemma 4, x eventually recovers its

lock that it had granted to β. Therefore, by universal generalization, eventually every quorum

member of α that had granted the lock to β recovers its lock. Once that happens, β leaves the

wait-set of α.

We define the level of a request α in a global state S i, denoted by level(α, i), as the maximum

length of any path starting from α in WFG(i). From Lemma 2, the level of a request is upper

bounded by |Π|. Further, we define the rank of α in S i, denoted by rank(α, i), as the maximum

value attained by its level in any global state including and following S i. Formally,

rank(α, i) , max
j ≥ i
{ level(α, j) }

Note that, the rank of a request is monotonically non-increasing unlike its level, which is not.

We use the notion of rank to prove the following lemma.

Lemma 6: Every request eventually either receives a FAILED message or is satisfied. Formally,

pending(α, i)⇒ 〈∃ j : j ≥ i : ( failcount(α, j) > 0) ∨ forum(α, j)〉
Proof: Consider a request that never receives a FAILED message. Clearly, when it is

inserted in the queue of its quorum member, it is inserted at the front. Further, it continuously

stays at the front at least until the quorum member sends a LOCKED message to it. As a result,

once its wait-set becomes permanently empty, it eventually receives LOCKED messages from

all its quorum members and gets satisfied. Therefore, we can conclude that once the wait-set

of a request becomes permanently empty, it either receives a FAILED message or is satisfied.

Formally,

〈∀ r : r ≥ i : wait-set(α, r) = ∅〉 ⇒ 〈∃ j : j ≥ i : ( failcount(α, j) > 0) ∨ forum(α, j)〉 (6)

Now, the proof of the lemma is by induction on the rank of a request.
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• Base Case (rank(α, i) = 0): Clearly, wait-set(α, r) is empty for all r ≥ i. Using (6), the

property holds.

• Induction Step (rank(α, i) = k with k > 0): From (5), eventually the system reaches a

global state S r after which the wait-set of α stops growing. Consider a request β in

wait-set(α, r). We claim that eventually β leaves the wait-set of α. Assume the contrary, that

is, β never leaves the wait-set of α. This implies that rank(β, r) < rank(α, r) ≤ rank(α, i). By

induction hypothesis, β eventually either receives a FAILED message or is satisfied. From

Lemma 5, β eventually leaves the wait-set of α. By repeatedly using this argument, we can

conclude the wait-set of α eventually becomes empty. Therefore, using (6), the property

holds.

This establishes the lemma.

Combining (5), Lemma 5 and Lemma 6, we can conclude that eventually the wait-set of a

request becomes permanently empty. Formally,

pending(α, i) ⇒ 〈∃ j : j ≥ i : 〈∀ r : r ≥ j : wait-set(α, r) = ∅〉〉 (7)

2) An omnipotent request is eventually satisfied:

Lemma 7: Every omnipotent request is eventually satisfied. Formally,

omnipotent(α, i)⇒ 〈∃ j : j ≥ i : forum(α, j)〉
Proof: From (7), system eventually reaches a state in which the wait-set of α is empty and

stays empty thereafter. Consider a quorum member x of α. Any request that is before α in the

queue of x is a stale request. Clearly, all stale requests are eventually removed from the queue.

As a result, α eventually reaches the front of x’s queue and, moreover, stays in the front. Once

that happens, x sends a LOCKED message to α and never sends an INQUIRE message after that.

By universal generalization, every quorum member of α eventually sends a LOCKED message

to α and never sends an INQUIRE message after that. On receiving these LOCKED messages

from all its quorum members, α enters the forum and is satisfied.

3) A pending request eventually becomes omnipotent: We first show that a pending request

eventually becomes potent (unless it is satisfied).

Lemma 8: Every pending request eventually becomes potent or is satisfied. Formally,

pending(α, i) ⇒ 〈∃ j : j ≥ i : potent(α, j) ∨ forum(α, j)〉

Proof: Assume that α is never satisfied. Thus we need to show that it eventually becomes

potent. We say that a pending request α is potent with respect to a process x in a global state
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S i if x never generates a request with higher priority than α in any global state following S i.

Clearly, to prove the lemma, it suffices to show that α eventually becomes potent with respect

to every process in the system.

Consider a process x. There are two cases to consider: after S i, x either generates an infinite

number of requests or generates only a finite number of requests. First, assume the former. Note

that the logical clock value at x strictly increases every time x generates a request. As a result,

eventually every request generated by x has a higher timestamp than α and therefore α eventually

becomes potent with respect to x. Now, assume the latter. In this case, α becomes potent with

respect to x as soon as x generates its last request.

We now show that a potent request eventually becomes omnipotent (unless it is satisfied).

Lemma 9: Every potent request eventually becomes omnipotent or is satisfied. Formally,

potent(α, i) ⇒ 〈∃ j : j ≥ i : omnipotent(α, j) ∨ forum(α, j)〉
Proof: We define the compete-set of a pending request α in a global state S i, denoted by

compete-set(α, i), as the set of all pending requests in global state S i that have higher priority

than α. Formally,

compete-set(α, i) , { β | pending(β, i) and ts(β) < ts(α) }
Assume that α is potent in S i and is never satisfied. Note that the compete-set of α cannot

grow after S i. Formally,

〈∀ r, s : r, s ≥ i : r ≤ s ⇒ compete-set(α, r) ⊇ compete-set(α, s)〉 (8)

Therefore it suffices to prove that, starting from any global state following (and including) S i,

the compete set of α eventually shrinks. Formally,

〈∀ r : r ≥ i : 〈∃ s : s > r : compete-set(α, r) ) compete-set(α, s)〉〉 (9)

By applying (9) repeatedly, we can show that the compete-set of α eventually becomes empty.

At that time, α becomes omnipotent. To prove (9), observe that, once a request becomes

potent, it stays potent until it is satisfied. Moreover, if α is potent in S r, then every request

in compete-set(α, r) is also potent in S r. Consider the request β with the smallest timestamp in

compete-set(α, r). Clearly, β is omnipotent in S r. Using Lemma 8, β is eventually satisfied and

therefore eventually leaves the compete set of α.

4) Combining the three: It follows from Lemmas 7–9 that:

Theorem 10 (liveness property): Every request is eventually fulfilled. Formally,

pending(α, i) ⇒ 〈∃ j : j ≥ i : forum(α, j)〉
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VI. C A

In this section we analyze the performance of our algorithm with respect to the following

metrics: message complexity, message overhead amortized over all messages, synchronization

delay and maximum concurrency. As usual, q denotes the maximum size of a quorum.

Theorem 11: The worst-case message complexity of Surrogate is O(q).

Proof: For each type of message, we count the maximum number of messages that are

exchanged of that particular type due to a given request. Evidently, the number of REQUEST,

FAILED and CANCEL messages are bounded by q each. We call a LOCKED message from a

quorum node as successful if the locking request never sends a RELINQUISH message to the

quorum node after receiving that LOCKED message. Clearly, the number of successful LOCKED

messages is bounded by q. An INQUIRE message is generated only when a new request arrives

at a quorum node and it is never generated for an old request. We charge an INQUIRE message

to the new request on whose behalf the INQUIRE message was generated. Therefore the number

of INQUIRE, RELINQUISH and unsuccessful LOCKED messages are each bounded by q per

request. All that remains to be bound are the number of INVITE and RELEASED messages. Since

a follower upon exiting its forum, sends RELEASED messages to all nodes in its leader’s quorum,

the number of RELEASED messages is equal to q times the number of INVITE messages. From

Lemma 4, a process can receive at most one INVITE message per request because no INVITE

messages are sent for stale requests. Hence the number of RELEASED messages is bounded by

q per request.

We now bound the worst-case message overhead of Surrogate. It is clear that all messages

except LOCKED messages have an overhead of O(1). The worst-case overhead of LOCKED

messages is O(n). For most systems, it is better to exchange fewer number of large messages

than a large number of smaller messages. Notwithstanding this fact, our algorithm has a low

amortized message overhead of O(b) over all messages, where b denotes the size of the largest

membership set.

Theorem 12: The message overhead of Surrogate is O(b) amortized over all messages.

Proof: All messages except LOCKED messages have an overhead of O(1). Now, LOCKED

messages carry two separate kinds of overhead, namely overhead due to compatible requests and

overhead due to stale requests. Since a node can only receive requests from its membership set,

the number of compatible requests piggybacked over a single LOCKED message is bounded by

b per request. We now bound the overhead due to stale requests. Every node only piggybacks

the timestamp of a stale request once to each process in its membership set. Every time the
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timestamp of a stale request is piggybacked, we charge it towards the stale request. Since a

node can only send LOCKED messages to at most b nodes, each request can be piggybacked

on at most O(qb) LOCKED messages as a stale request. Amortizing the overhead over at least q

messages that are exchanged on behalf of a request, we obtain an amortized message overhead

of O(b).

It is evident that, in a lightly loaded system, on generating a request, a process can enter its

forum in two message hop (REQUEST and LOCKED) delays. In a heavily loaded system, a

process can enter its forum in two message hop (RELEASED and LOCKED) delays after another

process leaves its forum.

Theorem 13: The synchronization delay and the waiting time for Surrogate are both two

message hops.

Clearly, if all processes make compatible requests, then all of them can be in the forum at

the same time.

Theorem 14: The maximum concurrency of Surrogate is n.

VII. E E

We experimentally compare the performance of Surrogate with Joung’s first algorithm Maekawa M

using a discrete-event simulation. We compare the performance of the two algorithms with respect

to three metrics, namely message complexity, waiting time and system throughput. To make it

easier to compare the two algorithms, we report the ratio
Surrogate’s performance

Maekawa M’s performance for each

metric. Note that, for message complexity and waiting time, a ratio of less than one would

imply that Surrogate has better performance than Maekawa M. On the other hand, for system

throughput, a ratio of greater than one would imply that Surrogate has better performance than

Maekawa M.

Our experimental study has the following parameters. There are n processes requesting entry

into m different forums. A process, on generating a request, randomly selects a forum to join.

The inter-request delay (that is, duration of non-critical section) at each process is exponentially

distributed with mean µncs. Once a process enters a forum, it departs after a delay that is

uniformly distributed in the range [0, 2 ∗µcs] (duration of critical section). Message transmission

delay (or channel delay) is modeled to follow an exponential distribution with mean µcd. In our

experiments, parameters that have fixed values throughout are number of processes n, which is

set to 25, channel bandwidth, which is set to 1000 integers per unit time, and number of requests

per process, which is set to 1000. All other parameters are varied one by one to study their effect

on the relative performance of the two algorithms.
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Fig. 5. Relative performance of the two algorithms as a function of various parameters.

For Maekawa M, the maximum number of simultaneous locks that a quorum node can grant

is set to the maximum, that is, n. Also, to construct the surficial quorum system,
√

2n
m(m−1) has

to be an integer. If not, we add processes until
√

2 n̄
m(m−1) becomes an integer, where n̄ is the new

value for n. The new processes are mapped onto existing processes in a round-robin fashion.

A. Simulation Results

Figure 5 depicts the variation in the ratios for the three metrics as a function of various

parameters. The ratios are averaged over several runs to obtain 95% confidence level.

1) Variation with the number of forums: We vary the number of forums from 2 to 100 with

the values for other parameters as follows: µncs = 4 time units, µcs = 2 time units and µcd = 4
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time units. Figure 5(a) shows the variation in the ratios for the three metrics. When the number of

forums is small (≤ 15), Maekawa M has better message-complexity than Surrogate. However, in

almost all the cases, Surrogate has better waiting time and system throughput than Maekawa M.

Further, for larger values for number of forums, Surrogate outperforms Maekawa M with respect

to all three metrics. Specifically, when the number of forums is large (≥ 90), message complexity

and waiting time decrease by around 35% and system throughput increases by 48%.

2) Variation with the mean inter-request delay: We vary the mean inter-request delay from

0 to 100 time units with the values for other parameters as follows: m = 20, µcs = 2 time units

and µcd = 4 time units. The results of our experiments are shown in Figure 5(b). As shown

in the figure, Surrogate consistently outperforms Maekawa M in all three complexity measures.

However, the improvements in message complexity, waiting time and system throughput remain

relatively constant at around 10%, 20% and 15%, respectively.

3) Variation with the mean time in critical section: We vary the mean time in critical section

from 0 to 100 time units with the values for other parameters as follows: m = 100, µncs = 4 time

units and µcd = 4 time units. The variation in the three metric ratios is shown in Figure 5(c).

The message complexity for Surrogate is 40% better than that for Maekawa M. Further, our

experiments demonstrate that, although Surrogate has better waiting time and system throughput

than Maekawa M, the gap in the performance decreases as the mean time in critical section

increases. Nevertheless, if a process stays in its critical section for a relatively short amount of

time, then Surrogate provides almost 35% improvement in waiting time and 45% improvement

in system throughout.

4) Variation with the mean channel delay: We vary the mean channel delay from 0 to 10

time units with the values for other parameters as follows: m = 20, µncs = 4 time units and

µcs = 2 time units. Figure 5(d) shows the variation in the three metric ratios. For small values of

mean channel delay, Maekawa M has better performance than Surrogate. However, as the mean

channel delay increases, the performance of Surrogate relative to Maekawa M improves as well.

Specifically, at larger values of mean channel delay, message complexity decreases by 20%,

waiting time decreases by 30% and system throughput increases by 34%.

B. Discussion of Results

As our simulation results demonstrate, when the number of forums (m) or the mean channel

delay (µcd) is small, Maekawa M has somewhat better performance than Surrogate. In almost all

other cases, Surrogate has better performance than Maekawa M. Specifically, message complexity
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and waiting time decreases by as much as 40% and system throughput increases by as much as

48%. One of the reasons for the better performance of Surrogate may be the addition of new

(logical) processes so that the surficial quorum system can be constructed. However, even when

Maekawa M is used with a grid quorum system (Toyomura et al’s algorithm), our simulation

results show that Surrogate continues to have much better performance.

VIII. D

In this section, we discuss several extensions to Surrogate for improving its performance.

A. Achieving Concurrent Entry

Surrogate does not satisfy the concurrent entry property. Once a requesting process enters

a forum as a leader, any request generated thereafter has to wait until the current forum is

dissolved even if all requests are of the same type. However, we can achieve concurrent entry

by making the following modifications. Whenever a locked (quorum) node receives a request

that is compatible with its locking request, it simply forwards that request to the locking process

(via a FORWARD message) unless it is aware of a conflicting request that has not yet been

fulfilled. A leader, on receiving a forwarded request, sends an INVITE message to the requesting

process. In case a process receives a forwarded request before it has successfully locked all its

quorum members, the request is stored along with other requests that it has received (or is going

to receive) with LOCKED messages.

This forwarding of requests by a quorum node to the locking process continues until the node

learns about a pending conflicting request. Specifically, a quorum node, on receiving a request

that conflicts with that of the locking process, sends a STEPDOWN message to the process.

If, at the time of sending a LOCKED message to a request, the node is aware of a conflicing

request, then the STEPDOWN message is piggybacked on the LOCKED message itself. The

purpose of the STEPDOWN message is to instruct the process to stop inviting followers into

the forum. Otherwise, a conflicting request may get starved. This is because some other quorum

node may continue to forward compatible requests to the process due to which the current forum

may never dissolve. A leader stops inviting followers into the forum after either (1) receiving a

STEPDOWN message from some quorum member sent on behalf of a conflicting request that

has not yet been fulfilled or (2) leaving the critical section without inviting any follower (that

is, its weight is one).

Clearly, with the above modifications, our algorithm satisfies the concurrent entry property.

If all requests in the system are of the same type as the current forum and no conflicting
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request is ever generated, then each request is fulfilled within three message hops. Starvation

freedom is guaranteed because a leader stops sending INVITE messages after it has received

any STEPDOWN message. Once a conflicting request is generated, leader of the current forum

receives a STEPDOWN message within two message hops. In other words, a leader can send

only a finite number of INVITE messages once a conflicting request is generated in the system.

As regards to the message complexity, note that a FORWARD or a STEPDOWN message is

generated only when a new request arrives at a quorum node and never for an old request already

present in the queue. Therefore at most one FORWARD or STEPDOWN message is sent by a

quorum member for every request it receives. Therefore the message complexity remains at O(q).

The synchronization delay remains at two message hops because, at heavy loads, STEPDOWN

message is piggybacked on the LOCKED message itself. The waiting time also does not increase.

At light loads, a process entering the forum as a leader does not have any followers and therefore

releases its locks on quorum members soon after leaving the critical section. Our experimental

results show that the modification for concurrent entry results in only a small improvement in

the performance.

B. Achieving Unnecessary Blocking Freedom

Consider the CD jukebox example. Suppose some data is replicated on multiple CDs. Therefore

any request for such data can be satisfied using any one of the CDs on which data has been

replicated. In traditional group mutual exclusion, a process has to specify the type of critical

section it wants to execute at the time of the request—which translates into the CD it wants to

access for satisfying its request. This may lead to unnecessary delay (or blocking) in satisfying a

request. To eliminate this unnecessary delay, Manabe and Park extend the group mutual exclusion

problem in [22] to allow a process to specify more than one type when making a request. The

request can be satisfied by allowing a process to execute critical section for any one of those

types (specified at the time of the request).

Surrogate can be easily modified to achieve unnecessary blocking freedom as follows. For a

request α, let type-set(α) denote the set of types that can be used to satisfy α. A quorum member,

on sending a LOCKED message to a request α, piggybacks all requests β on the LOCKED

message for which type-set(α) ∩ type-set(β) , ∅. As before, once a request has successfully

locked all its quorum members, it enters the forum as a leader. However, at the time of entry,

it still has to select a type for the forum (which translates into selecting a CD to be loaded into

the jukebox).
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For a request α satisfied as a leader, let intersecting-set(α) denote the set of requests it has

received from its quorum members along with LOCKED messages. Observe that it is possible for

intersecting-set(α) to contain two requests β and γ such that: (1) type-set(α) ∩ type-set(β) , ∅,
(2) type-set(α) ∩ type-set(γ) , ∅, and (3) type-set(β) ∩ type-set(γ) = ∅. Clearly, α cannot send

INVITE messages to both β and γ. To maximize concurrency, α chooses a type t ∈ type-set(α) for

which the number of requests in intersecting-set(α) that are “compatible” with t is maximized.

All properties of Surrogate are preserved except for message overhead which increases by a

factor of s, where s is the maximum number of types a process can specify at the time of

request.

C. A Generalized Algorithm for Group Mutual Exclusion using Information Structure

Sanders presents a generalized mutual exclusion algorithm in [23] that unifies several

(permission-based) mutual exclusion algorithms using the concept of information structure.

Specifically, each process x has two sets associated with it, namely request set and inform

set, denoted by Rx and Ix, respectively, with x ∈ Ix and Ix ⊆ Rx. Mutual exclusion is guaranteed

under the following condition: for all processes x and y, either Ix ∩ Iy , ∅ or x ∈ Ry ∧ y ∈ Rx

holds. By choosing request and inform sets appropriately, it is possible to derive both Ricart

and Agrawala’s algorithm [4] and Maekawa’s algorithm [19] as special cases of the generalized

algorithm.

The main idea behind the generalized algorithm is as follows. A process sends its request to

all processes in its request set. It can enter the critical section once it has received a GRANT

message (similar to a LOCKED message) from all nodes in its request set. However, on leaving

the critical section, it sends a RELEASED message to nodes in its inform set only. This is because

only nodes in its inform set “remember” sending a GRANT message to it (and are waiting to

receive a RELEASED message from it before they can send another GRANT message). Other

nodes in its request set, which are not in its inform set, simply send a GRANT message to it

without maintaining any state information about the process. This, in turn, implies that a node

can continue to send a GRANT message until it sends a GRANT message to a process such that

it belongs to the inform set of that process. Deadlocks are avoided in a similar fashion as in

Maekawa’s algorithm by using FAILED, INQUIRE and RELINQUISH messages.

The ideas developed in this paper can be combined with the information structure proposed

by Sanders to derive a generalized algorithm for group mutual exclusion. A node, on sending

a GRANT message to a process, piggybacks on the message the list of processes that have
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pending requests compatible with that of the process to which the GRANT message is being

sent. Once a process has received GRANT messages from all nodes in its request set, it enters

the forum as a leader. It then sends INVITE messages to all processes with pending requests

that are compatible with its own request. These processes enter the forum as followers. As in

Surrogate, a list of latest stale requests can be maintained to avoid generating stale INVITE

messages. Further, weight distribution and recovery scheme [24] can be employed to enable a

follower to send RELEASED messages directly to nodes in the leader’s inform set. The proof

of correctness is very similar to that of Surrogate.

Let r denote the maximum size of a request set. It can be verified that the worst-case message

complexity of the generalized algorithm is given by O(r). Further, let s denote the maximum

number of request sets to which a node can belong. The amortized message overhead of the

generalized algorithm is given by O(s). Clearly, its (best-case) synchronization delay and waiting

time are both two message hops.

1) Modification when Inform Sets are Singleton: Note that, in the information structure for

Ricart and Agrawala’s algorithm [4], an inform set of a process only contains itself (inform

set is singleton). In the generalized mutual exclusion algorithm by Sanders, a process sends

RELEASED messages only to nodes in its inform set. As a result, only a GRANT message

contributes towards the synchronization delay (a RELEASED message does not incur any trans-

mission delay).

When Ricart and Agrawala’s information structure is used with the generalized group mutual

exclusion algorithm, however, the synchronization delay increases to two message hops. This

is because a node may now need to wait to receive a RELEASED message from a process

that entered the forum as a follower. Clearly, unlike the RELEASED message of a leader, the

RELEASED message of a follower may incur non-negligible transmission delay. To reduce the

synchronization delay, we make the following modification. A node does not need to wait to

receive RELEASED messages from followers; it resumes sending GRANT messages as soon as

it has received a RELEASED message from itself. A process receiving the GRANT message still

has to wait until it has received RELEASED messages from all processes that entered the current

forum as followers before starting the next forum. A follower, on leaving the forum, sends a

RELEASED message directly to all processes to whose REQUEST set its leader belongs. This

increases the message complexity to O(r+ s), which is O(n) because, with Ricart and Agrawala’s

information structure, r = s = n.
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IX. C

We have proposed an efficient distributed algorithm for solving the group mutual exclusion

problem based on the notion of surrogate-quorum. Unlike the existing quorum-based algorithms

for group mutual exclusion [20], our algorithm achieves a low message complexity of O(q)

while at the same time maintaining both synchronization delay and waiting time at two message

hops. In doing so, we introduce a relatively low message overhead of O(b) amortized over all

messages. If Maekawa’s grid quorum system [19] is used, then the message complexity and

the amortized message overhead are both given by O(
√

n). Our algorithm has high maximum

concurrency of n. Furthermore, unlike the algorithms in [20], which assume that the number of

groups is static and does not change during runtime, our algorithm can adapt without perfor-

mance penalties to dynamic changes in the number of groups. Our experimental results indicate

that Surrogate has better performance than Maekawa M—another quorum-based group mutual

exclusion algorithm—in almost cases except when the number of forums or the mean channel

delay is small.

We have also presented several extensions to our basic algorithm for achieving other desirable

properties. Furthermore, we have provided a generalized algorithm for group mutual exclusion

by combining the concept of surrogate-quorum with that of information structure.

A natural extension of group mutual exclusion is to allow up to k forums to be in session

simultaneously, where k ≥ 1. This corresponds to the scenario when the CD jukebox has more

than player and therefore multiple CDs can be loaded simultaneously. As a future work, we plan

to devise an efficient distributed algorithm for solving this problem.
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