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Abstract

An important problem in distributed systems is to detect termination of a distributed

computation. A computation is said to have terminated when all processes have become passive

and all channels have become empty. In this paper, we present a suite of algorithms for detecting

termination of a non-diffusing computation for an arbitrary topology. All our termination detec-

tion algorithms have optimal message complexity and optimal detection latency under varying

assumptions.
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topology, optimal algorithm, diffusing and non-diffusing computations, simultaneous and de-

layed initiations, single-hop and multi-hop application messages

1 Introduction

One of the fundamental problems in distributed systems is to detect termination of an ongoing

distributed computation. The problem arises, for example, when computing shortest paths between

pairs of nodes in a network. The distributed computation is modeled as follows. A process can

either be in active state or passive state. Only an active process can send an application message.

An active process can become passive at anytime. A passive process becomes active only on

∗A preliminary version of the paper first appeared in the 18th Symposium on Distributed Computing (DISC),

2004 [26].



receiving an application message. A computation is said to have terminated when all processes

have become passive and all channels have become empty. The problem of termination detection

was independently proposed by Dijkstra and Scholten [11] and Francez [12] more than two decades

ago. Since then, many researchers have worked on this problem and, as a result, a large number of

algorithms have been developed for termination detection (e.g., [10, 25, 28, 29, 22, 9, 23, 16, 15, 4,

24, 31, 14, 20]). Note that termination is a stable property. Thus a simple approach for detecting

termination is to repeatedly take a consistent snapshot of the underlying computation using any

of the algorithms described in [5, 18, 13, 1], and then test the snapshot for termination condition.

More efficient algorithms have been developed which do not depend on taking consistent snapshots

of the computation. Most of the termination detection algorithms can be broadly classified into

four categories, namely computation tree based, invigilator based, double wave based and single wave

based.

In the computation tree based approach, a dynamic tree is maintained based on the messages

exchanged by the underlying computation. A process not currently “participating” in the com-

putation, on receiving an application message, remembers the process that sent the message (and

joins the dynamic tree) until it “leaves” the computation. This creates a parent-child relationship

among processes that are currently “part” of the computation. A process may join and leave the

tree many times. Example of algorithms based on this idea can be found in [11, 29, 4].

In invigilator based approach, a distinguished process called the coordinator, is responsible for

maintaining current status of all processes either directly or indirectly. The coordinator may either

explicitly maintain the number of processes that are currently “participating” in the computation

or may only know whether there exists at least one process that is currently “participating” in

the computation (ascertained via missing credit/weight [15, 23] or some other mechanism [20]).

Many algorithms in this class assume that the topology contains a star and the coordinator is

directly connected to every process [15, 23]. These algorithms can be generalized to work for any

communication topology at the expense of increased message complexity.

The next two classes of algorithms are based on the notion of wave [30]. A wave is a control

message or a subset of control messages that sweep through the entire system visiting all processes

on the way. As the wave travels through processes, it collects their local snapshots, which are then

combined to obtain a snapshot of the entire system.

In double wave based approach, two (possibly inconsistent) snapshots of the computation are

taken in such a way that there is at least one consistent snapshot lying between the two snapshots.
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Termination Detection Algorithm Message Complexity Detection Latency
Communication

Topology

Computation Tree Based (e.g., [11]) O(M)‡ O(N) any

Invigilator Based (e.g., [23]) O(M)‡ O(1)‡ diameter is constant

Modified Invigilator Based∗ (e.g., [23]) O(MD) O(D)‡ any

Double Wave Based† (e.g., [2]) O(MN) O(D)‡ any

Single Wave Based† (e.g., [22]) O(MN) O(D)‡ any

Our Algorithm O(M)‡ O(D)‡ any

Our Algorithm

(non-diffusing computation)
O(M +N)‡ O(D)‡ any

Our Algorithm

(non-diffusing computation

and delayed initiation)

O(M̄ + E)‡ O(D)‡ any

Our Algorithm

(non-diffusing computation

and multi-hop application messages)

O(MH +N)‡ O(D)‡ any

N : number of processes in the system

E: number of channels in the communication topology

M : number of application messages exchanged by the underlying computation

M̄ : number of application messages exchanged by the underlying computation after the termination detection

algorithm began

D: diameter of the communication topology

H: average number of hops traveled by application messages

∗: invigilator based adapted for arbitrary communication topology

†: wave is collected using a breadth-first-search spanning tree to ensure optimality of detection latency

‡: complexity expression is optimal

Table 1: Comparison of various termination detection algorithms (assume diffusing computation,

simultaneous initiation and single-hop application messages unless indicated otherwise).

The interval between the two snapshots is then tested for any possible activity. In case the in-

terval is quiescent (no activity took place), termination can be announced. It can be proved that

evaluating the termination condition for either of the snapshots is actually equivalent to evaluating

the condition for any consistent snapshot lying between the two snapshots [2]. Various algorithms

differ in the manner in which they test for quiescence of an interval and emptiness of channels.

Examples of algorithms based on this idea can be found in [22, 9, 24, 14].

In single wave based approach, a snapshot of the computation is first tested for consistency.
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If the test evaluates to true, then the snapshot is analyzed for the termination condition. The

consistency test is such that if the snapshot is not consistent then the test will definitely evaluate

to false. It is possible that the test may evaluate to false even if the snapshot is consistent. However,

if the snapshot is taken after the computation has terminated, then the test is guaranteed to evaluate

to true. Various algorithm differ in the manner in which they test for consistency of a snapshot

and emptiness of channels. Examples of algorithms based on this idea can be found in [28, 22, 16].

In addition, termination detection algorithms can also be classified based on two other at-

tributes: (1) whether the distributed computation starts from a single process or from multiple

processes (diffusing computation versus non-diffusing computation), and (2) whether the detection

algorithm should be initiated along with the computation or can be initiated anytime after the

computation has started (simultaneous initiation versus delayed initiation). Delayed initiation is

useful when the underlying computation is message-intensive and therefore it is preferable to start

the termination detection algorithm later when the computation is “close” to termination.

Table 1 shows the (worst-case) message complexity and detection latency for the best algorithm

in each of the four classes and for our algorithms. The table also indicates assumption, if any, made

about the communication topology. The complexity expressions given in the table are derived under

the assumptions that application messages are only exchanged between neighboring processes in

the topology and message processing time is negligible compared to message transmission time.

Most termination detection algorithms are analyzed under these two assumptions (e.g., [11, 22,

4, 8]). Henceforth, in this paper, all complexity expressions are presented or derived under the

two assumptions unless otherwise stated. In [20], Mahapatra and Dutt consider the case when

application messages can be exchanged between arbitrary processes. For some algorithms in parallel

computing, even non-neighboring processes may be required to exchange application messages with

each other [7]. Later, in the paper, we describe how to maintain optimality of our termination

detection algorithm when application messages may travel multiple hops.

Chandy and Misra prove that any termination detection algorithm, in the worst case, must ex-

change at least M control messages, where M is the number of application messages exchanged [6].

Also, in the worst-case, the detection latency of any termination detection algorithm measured in

terms of message hops is D, where D is the diameter of the communication topology. Algorithms

derived from computation tree based approach typically have optimal message complexity but

non-optimal detection latency (e.g., [11, 17]). On the other hand, algorithms that use invigilator

based approach typically have optimal detection latency but non-optimal message complexity (e.g.,
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[15, 23, 20]). (The message-complexity is optimal only when the diameter of the communication

topology is constant.) To our knowledge, at present, there is no termination detection algorithm

that has optimal message complexity as well as optimal detection latency for all communication

topologies. The message complexity of a termination detection algorithm measures the overhead

imposed by the algorithm on the system during its execution. Its detection latency measures the

delay incurred between when the computation terminates and when the termination is actually de-

tected (and announced). Clearly, it is desirable to minimize both message complexity and detection

latency of a termination detection algorithm.

Note that, for a general non-diffusing computation, any termination detection algorithm must

exchange at least N − 1 control messages in the worst-case, where N is the number of processes in

the system. Chandrasekaran and Venkatesan [4] prove another lower bound that if the termination

detection algorithm is initiated anytime after the computation has started, then the algorithm, in

the worst case, must exchange at least E control messages, where E is the number of communication

channels in the topology. They also show that delayed initiation is not possible unless all channels

are first-in-first-out (FIFO).

Our contributions in the paper are as follows. We present three message-optimal and latency-

optimal termination detection algorithms for arbitrary communication topologies under varying

assumptions such as (1) whether the initiation is simultaneous or delayed and (2) whether appli-

cation messages are single-hop or multi-hop. Our first algorithm assumes that the initiation is

simultaneous and application messages are single hop. Our second algorithm, which is derived

from the first algorithm, assumes that the initiation may be delayed but application messages are

single-hop. Our third algorithm, which is again derived from the first algorithm, assumes that

the initiation is simultaneous but application messages may be multi-hop. A message-optimal and

latency-optimal termination detection algorithm for the case when initiation may be delayed and

application messages may be multi-hop can be obtained by combining the modifications used for

second and third algorithms. All our termination detection algorithms have very low message over-

head as well. Specifically, a message has to carry only one integer whose maximum value is bounded

by 2D, which is independent of the number of messages exchanged by the underlying computation.

Intuitively, we achieve optimality with respect to message-complexity and detection-latency at the

same time by combining computation tree based and invigilator based approaches.

The paper is organized as follows. In Section 2, we discuss the system model and notation

used in this paper, and describe the termination detection problem. Section 3 describes an optimal

5



termination detection algorithm for the case when the detection algorithm has to be initiated

along with the computation. Section 4 describes the modifications required to handle the case

when the detection algorithm can be initiated at any time after the computation has commenced.

Section 5 describes the modifications required to handle the case when application messages can

be exchanged between arbitrary processes. Finally, we present our conclusion and outline direction

for future research in Section 6.

2 System Model and Problem Statement

2.1 Model and Notation

We assume an asynchronous distributed system consisting of N processes P = {p1, p2, . . . , pN},
which communicate with each other by exchanging messages over a communication network. There

is no common clock or shared memory. Processes are non-faulty and channels are reliable. Message

delays are finite but may be unbounded.

We do not assume that the underlying communication topology is fully connected. Two pro-

cesses can communicate directly with each other only if they are neighbors in the topology. If two

processes are neighbors in the topology, then we say that there is a channel between them. We

assume that all channels are bidirectional. We use E to refer to the number of channels in the

communication topology.

Processes execute events and change their states. A local state of a process, therefore, is given

by the sequence of events it has executed so far starting from the initial state. Events are either

internal or external. An external event could be a send event or a receive event. An event—internal

or external—causes the local state of a process to be updated. In addition, an external event causes

a message to be sent (send event) or received (receive event).

Events on a process are totally ordered. However, events on different processes are only partially

ordered by the Lamport’s happened-before relation [19], which is defined as the smallest transitive

relation satisfying the following properties:

1. if events e and f occur on the same process, and e occurred before f in real time then e

happened-before f , and

2. if events e and f correspond to the send and receive, respectively, of a message then e

happened-before f .
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A snapshot of the system is a collection of local states, one from each process. A local state of

a process can be captured by the set of events that have been executed so far on that process. (An

empty set of events denotes the initial state.) Therefore, in terms of events, a snapshot, which is

also referred to as a cut, is a set of events satisfying the following property:

S is a snapshot , 〈∀e, f : e and f are on the same process : (e→ f) ∧ (f ∈ S) ⇒ e ∈ S〉

We say that a snapshot passes through an event if it is the last event on that process to be

contained in the snapshot. A snapshot that contains the receive event of a message but not its send

event is not a valid snapshot of the system. Such a snapshot is called an inconsistent snapshot.

Conversely, we say that a snapshot (or cut) is consistent if the following holds:

S is a consistent snapshot , 〈∀e, f :: (e→ f) ∧ (f ∈ S) ⇒ e ∈ S〉

Next, we formally define the termination detection problem.

2.2 The Termination Detection Problem

The termination detection problem involves detecting when an ongoing distributed computation

has terminated. The distributed computation is modeled as follows. A process can be either in

an active state or a passive state. A process can send a message only when it is active. An active

process can become passive at anytime. A passive process becomes active on receiving a message.

The computation is said to have terminated when all processes have become passive and all channels

have become empty.

To avoid confusion, we refer to the messages exchanged by the underlying computation as

application messages, and the messages exchanged by the termination detection algorithm as control

messages. Unless indicated otherwise, we describe our termination detection algorithms assuming

that application messages are only exchanged between neighboring processes, that is, application

messages are single-hop. This is consistent with the assumption made by most termination detection

algorithms (e.g., [11, 22, 4, 17]). Later, in this paper, we discuss the case when application messages

may be exchanged between arbitrary processes, that is, when application messages are multi-hop.

In this paper, when a process sends a control message, we distinguish between two cases—

whether the process has created the message itself or is simply forwarding the message it has

received from a neighboring process to another neighboring process. In the former case, we say

that the process has generated the control message.
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It is desirable that the termination detection algorithm exchange as few control messages as

possible, that is, the algorithm has low message complexity. The higher the message complexity

of a termination detection algorithm, the higher is the overhead imposed by it on the system

during execution. Clearly, the overhead imposed by a termination detection algorithm should be

minimized. Further, once the underlying computation terminates, the algorithm should detect it

as soon as possible, that is, the algorithm has low detection latency [20]. For computing detection

latency, it is typically assumed that each message hop takes one time unit and message processing

time is negligible compared to message transmission time [30, 3]. Detection latency is measured

in terms of number of message hops. Finally, the amount of control information carried by any

message—application or control—is minimal, that is, the algorithm has low bit-message complexity.

A computation is said to be diffusing if only one process is active initially; otherwise it is non-

diffusing. If the termination detection algorithm has to be initiated along with the computation,

then we refer to it as simultaneous initiation. On the other hand, if the termination detection

algorithm can be initiated anytime after the computation has started, then we refer to it as delayed

initiation.

3 An Optimal Algorithm for Simultaneous Initiation

In this section, we first describe the main idea behind our algorithm, and then give its formal

description. Later, we prove the correctness of our algorithm and also show that it is message-

optimal and latency-optimal. Our approach is based on combining computation tree based and

invigilator based approaches. This allows us to achieve the best of both approaches, namely optimal

message-complexity of computation tree based approach and optimal detection latency of invigilator

based approach.

3.1 The Main Idea

We first describe the main idea behind the algorithm assuming that the underlying computation is

a diffusing computation. We relax this assumption later.

3.1.1 Detecting Termination of a Diffusing Computation

First, we briefly explain the main idea behind the computation tree based and the invigilator based

approaches. Then we discuss how to combine them to obtain the optimal algorithm.
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Computation tree based approach: Consider a termination detection algorithm using com-

putation tree based approach [11, 4]. Initially, only one process, referred to as the initiator, is

active and all other processes are passive. A process, on receiving an application message, sends

an acknowledgment message to the sender as soon as it knows that all activities triggered by the

application message have ceased. The initiator announces termination as soon as it has received

an acknowledgment message for every application message it has sent so far and is itself passive.

The algorithm has optimal message complexity because it exchanges exactly one control message,

namely the acknowledgment message, for every application message exchanged by the underlying

computation. The detection latency, however, is far from optimal. Specifically, a chain of pending

acknowledgment messages (hereafter, referred to as an acknowledgment chain) may grow to a length

as long as M , where M is the number of application messages exchanged by the underlying com-

putation. (The reason is that a process may appear multiple times on an acknowledgment chain as

is the case with the algorithm of [4].)

The detection latency of the algorithm can be reduced from O(M) to O(N) (assuming M =

Ω(N)) as follows [11]. Suppose a process has not yet sent an acknowledgment message for an appli-

cation message it received earlier. In case the process receives another application message, it can

immediately send an acknowledgment message for the latter application message. For termination

detection purposes, it is sufficient to assume that all computation activities triggered by the receipt

of the latter application message are triggered by the former application message. We refer to the

former application message as an engaging application message and to the latter as a non-engaging

application message.

Observe that the set of engaging application messages imposes a parent-child relationship among

processes “currently participating” in the computation. Specifically, if a process is active or has

not yet received an acknowledgment message for every application message it has sent so far, then

it is “currently a part” of the computation and is referred to as a nonquiescent process. Otherwise,

it is “not currently a part” of the computation and is referred to as a quiescent process. At any

time, the computation tree, which is dynamic, consists of the set of processes that are nonquiescent

at that time.

Invigilator based approach: Now, consider a termination detection algorithm using the invig-

ilator based approach [20]. (The algorithm described here is actually a simplified version of the

algorithm presented in [20] but, nevertheless, captures the main idea.) One process is chosen to act
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as the coordinator. The coordinator is responsible for maintaining the current status of all processes

in the system either directly or indirectly. Suppose a process receives an application message. In

case the coordinator does not already know that it is currently active, it sends a control message

indicating “I am now active” to the coordinator. Once the process knows that the coordinator has

received the control message, it sends an acknowledgment message to the sender of the application

message. On the other hand, if the process has already informed the coordinator that it is cur-

rently active, then it immediately acknowledges the application message. Once a process becomes

passive and has received an acknowledgment message for every application message it has sent so

far, it sends a control message indicating “I am now passive” to the coordinator. Intuitively, if the

underlying computation has not terminated, then, as per the coordinator, at least one process is

currently active. When the coordinator is directly connected to every process in the system, the

algorithm has optimal message complexity (at most three control messages for every application

message) and optimal detection latency (which is O(1)). When the topology is arbitrary, how-

ever, for communication between the coordinator and other processes, a static breadth-first-search

(BFS) spanning tree rooted at the coordinator has to be constructed. Every control message that

a process sends to the coordinator (along the BFS spanning tree) may cause up to D additional

control messages to be exchanged, thereby increasing the message complexity to O(MD).

Achieving the best of the two approaches: As explained above, in the computation-tree

based approach, a process reports its status, when it becomes quiescent, to its parent. On the other

hand, in the invigilator based approach, a process reports its status, when it becomes quiescent, to

the coordinator (directly or indirectly). The main idea is to restrict the number of times processes

report their status to the coordinator—to achieve optimal message complexity—and, at the same

time, restrict the length of an acknowledgment chain—to achieve optimal detection latency.

Whenever a process reports its status to the coordinator, as many as D control messages may

have to be exchanged. As a result, to achieve optimal message complexity, the number of times

when processes report their quiescent status to the coordinator should be bounded by O(M/D).

The rest of the times processes should report their quiescent status to their respective parents

in the computation tree. To ensure optimal detection latency, the length of an acknowledgment

chain should be bounded by O(D). The main problem is to determine, while the computation is

executing, when a process should choose the former over the latter. In our algorithm, a process,

by default, is supposed to report its status to its parent until it learns that the length of a chain
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of pending acknowledgment messages, starting from it, has become sufficiently long, that is, the

length of the chain has become Θ(D). At that time, it starts reporting its status to the coordinator.

Specifically, it first sends an st active message signifying that “my computation subtree is currently

active” to the coordinator. It waits until it has received an acknowledgment from the coordinator

in the form of an ack st active message. The receipt of the ack st active message implies that the

coordinator is aware of some activity in the system and therefore will not announce termination

as yet. It then sends an acknowledgment message to its parent, thereby breaking the link with its

parent and shortening the acknowledgment chain. Later, when it becomes quiescent, it sends an

st passive message indicating “my computation subtree has now become passive” to the coordinator.

To measure the length of an acknowledgment chain, we piggyback an integer counter (referred

to as hop counter) on every application message that represents the current length of an acknowl-

edgment chain. On receiving an application message, if a process learns that the length of the

acknowledgment chain has become at least D, then it resets the value of the hop counter to zero.

Further, it sends a special control message, referred to as a detach message, to the process at a

distance of D from it along the acknowledgment chain but in the reverse direction. The objective

of a detach message is to instruct the intended recipient that it should break the link with its par-

ent, become the “head” of the chain and report its status to the coordinator instead of reporting

to its parent. (The details of how this happens are discussed in the previous paragraph.) The

reason is that the overhead incurred on exchanging control messages with the coordinator, namely

st active, ack st active and st passive, can now be amortized over enough number of processes so

as not to affect the message complexity adversely. Note that a process may have multiple chains

of acknowledgment messages emanating from it. As a result, there may be multiple processes that

are at a distance of D from it, all of which generate detach messages destined for it. This may

increase the message complexity significantly. To that end, we propagate detach messages upward

along an acknowledgment chain in a “modified” convergecast fashion. If a process has already sent

a detach message to its parent since last becoming non-quiescent, then it ignores any subsequent

detach message it receives from any of its other children (in the computation tree). Clearly, at most

one detach message is sent in each non-quiescent interval. As a result, the total number of detach

messages exchanged by the termination detection algorithm is upper-bounded by the total number

of application messages exchanged by the underlying computation.

Example 1 Figure 1 illustrates the main idea behind our termination detection algorithm. Sup-

pose process pi, on receiving an engaging application message m, learns that the length of the
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pk

pcD−1

pc0
= pj

pcD = pi

m(1)

pc1

acknowledgment(6)

detach(2)

pl
detach(2’)

st active(4)

ack st active(5)

detach(3)

to coordinator

Figure 1: An illustration of the termination detection algorithm.

acknowledgment chain has become at least D. Let the last D + 1 processes along the chain be

denoted by pj = pc0 , pc1 , . . . , pcD = pi. As per our algorithm, pi generates a detach message and

sends the message to its parent pcD−1 . The detach message is propagated upward all the way to

pj , which is at a distance of D hops from pi. Process pj , on receiving the detach message, sends an

st active message to the coordinator. The coordinator, on receiving the st active message, sends an

ack st active message to pj . On receiving the ack st active message, pj sends an acknowledgment

message to its parent, say process pk, thereby breaking the chain. Numbers in the parentheses

show the sequence in which various control messages are exchanged. It is possible that pcD−1 has

another child, namely process pl, which also sends a detach message to pcD−1 destined for pj . On

receiving the second detach message, pcD−1 simply ignores the message and does not forward it to

its parent pcD−2 .

Note that process pi is still attached to its parent pcD−1 . Now, suppose the chain grows further

by D more processes and is now given by pc0 (= pj), pc1 , . . ., pcD (= pi), pcD+1 , . . ., pc2D . As

per our algorithm, pc2D generates a detach message, which is propagated via processes pc2D−1 , . . .,

pcD+1 to pi. Process pi, on receiving the first detach message, breaks the link with its parent pcD−1 ,

thereby reducing the length of the chain emanating from pj . 2

12



Information description: The computation starts from the initially active process. As the

computation exchanges application messages, a tree (sometimes referred to as computation tree) is

induced on processes by engaging application messages. A tree grows whenever a process in the tree

generates an engaging application message and shrinks whenever an engaging application message

in the tree is acknowledged. Once the height of a subtree rooted at a process—for which the value

of the hop counter is zero—becomes at least D, within O(D) message hops, the process detaches

itself from its parent and the subtree rooted at the process becomes a separate computation tree.

A root process, which has detached itself from its parent, reports its status to the coordinator, and

every other process reports its status to its parent in the tree. Whenever a tree becomes empty, its

root process informs the coordinator about it. Once all trees have become empty, which happens

once all application messages have been acknowledged, the coordinator announces termination.

Our termination detection algorithm ensures that the coordinator announces termination if and

only if there is no non-empty computation tree in the system.

Message-complexity: Our algorithm exchanges five different types of control messages, namely

acknowledgment, detach, st active, st passive and ack st active. One acknowledgment message is

exchanged for every application message. Also, a process sends at most one detach message for

every engaging application message it receives. Therefore the total number of acknowledgment

and detach messages is upper-bounded by 2M . The number of st active messages generated by

all processes combined is given by O(M/D). This is because a process sends an st active message

only when it knows that there are at least O(D) processes in its computation subtree. Each

st active message is sent on the BFS spanning tree and, therefore, may result in at most D control

messages being exchanged. Finally, the number of st passive messages as well as the number of

ack st active messages is equal to the number of st active messages. Thus the message complexity

of our algorithm is O(M).

Detection-latency: Our algorithm ensures that whenever the length of a chain of pending

acknowledgment messages grows beyond 2D, within 3D + 1 message hops (consisting of detach,

st active and ack st active messages), the chain is reduced to a length smaller than D. Therefore

the detection latency of our algorithm is O(D).
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3.1.2 Generalizing to a Non-Diffusing Computation

Assume that two or more processes are active initially, that is, there are multiple initiators of the

computation. Intuitively, the coordinator should announce termination only after every initiator

has informed it that the computation triggered by it has terminated. The coordinator, however,

does not know how many initiators of the computation are there. Therefore, every process, on

becoming quiescent for the first time (including the case when it is quiescent to begin with), sends

an initialize message to the coordinator. The coordinator announces termination only after it has

received an initialize message from every process (and, of course, a matching st passive message for

every st active message). The initialize messages are propagated to the coordinator in a convergecast

fashion, thereby resulting in only O(N) more messages.

3.2 The Algorithm

A formal description of the termination detection algorithm TDA-SI for simultaneous initiation is

given in Figure 2-4. Actions A0-A8 described in Figure 2 and Figure 3 capture the behavior of a

process as part of the computation tree. Actions B1-B3 given in Figure 4 describe the behavior of

a process as part of the BFS spanning tree. The main function of a process as part of the spanning

tree is to propagate messages, namely initialize, st active, ack st active and st passive, back and forth

between the coordinator and its descendants in the spanning tree. For ease of exposition of the

algorithm, we assume that whenever a process wants to send a control message to the coordinator

(for instance, the initialize message), it sends that message to itself. The message is then handled

either by action B1 or by action B2, and propagated upwards to the coordinator. Likewise, when a

process receives an ack st active message from its parent in the spanning tree, it either propagates

that message to one of its children in the spanning tree or sends the message to itself. In the latter

case, the message is handled by action A6.

In the formal description our algorithm, whenever a process becomes nonquiescent, we classify

it either as a root process or a non-root process. (The classification for process pi is captured using

variable rooti.) The classification depends on how a process becomes nonquiescent. If a process

is initially active, then it is classified as root. If a process becomes nonquiescent on receiving an

application message with the counter value of D− 1 (which is reset to zero on incrementing), then

the process is classified as root as well. In all other cases, a process is classified as non-root. Note

that the same process may be classified as root and non-root at different times during its execution.
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However, the classification does not change during a single nonquiescent interval.

When a process becomes nonquiescent as a root, it does not immediately break its link with its

parent, if it exists. It breaks the link only after receiving a detach message from one of its children

in the computation tree. Receipt of a detach message implies that the computation subtree rooted

at the process contains at least D processes. As a result, the process can start reporting its status

to the coordinator instead of its parent. The status of the link—whether it is intact or has been

broken—is captured using the variable independenti.

We next prove that the termination detection algorithm TDA-SI described in Figure 2-4 is safe

and live.

3.3 Proof of Correctness

Many of our proofs involve induction on either the depth or the height of a vertex in a tree. Recall

that the depth of a vertex v in a tree, denoted by depth(v), is the length of the path from the root

of the tree to v. Also, its height, denoted by height(v), is the length of a longest path from v to a

leaf. The two definitions can be easily generalized for vertex in a forest.

A process, on sending an st active message to the coordinator, expects to receive an ack st active

message eventually. Note that it is easy to route an st active/st passive message from a non-

coordinator process to the coordinator. However, routing an ack st active message from the coord-

inator to the process that generated the corresponding st active message is non-trivial. One ap-

proach to achieve this is by piggybacking the identity of the generating process on the st active

message which can then be used to appropriately route the corresponding ack st active message.

This, however, increases the message overhead to O(logN). Moreover, with this approach, every

process needs to know the set of descendants of each of its children in the static spanning tree.

Instead, we employ the following mechanism. Every process on the BFS spanning tree propagates

the kth ack st active message to the sender of the kth st active message. This can be accomplished

by maintaining a FIFO queue at each process that records the (immediate) sender of every st active

message that a process receives. Later, on receiving an ack st active message, the process uses the

queue to forward the ack st active message to the appropriate process, which is either itself or one

of its children. The next lemma can be proved by a simple induction on the depth of a process

in the BFS spanning tree. The lemma states that if a process receives a matching ack st active

message for its st active message, then the coordinator “knows” that its subtree is “active”
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Termination detection algorithm for process pi:

Variables:

D: diameter of the topology;

statei := my initial state; // whether I am active or passive

missingi := 0; // number of unacknowledged application messages

hopsi := 0; // hop count: my distance from a root process

parenti := ⊥; // process which made me nonquiescent

independenti := true; // if root, can I detach myself from my parent?

pendingi := 0; // the number of unacknowledged st active messages

// Actions of process pi as part of the computation tree

Useful expressions:

quiescenti , (statei = passive) ∧ (missingi = 0);

rooti , not(quiescenti) ∧ (hopsi = 0)

(A0) Initial action:

call sendIfQuiescent( ); // send an initialize message if passive

(A1) On sending an application message m to process pj :

send 〈m,hopsi〉 to process pj ;

missingi := missingi + 1; // one more application message to be acknowledged

(A2) On receiving an application message 〈m, count〉 from process pj :

if not(quiescenti) then // a non-engaging application message

send 〈acknowledgment〉 message to process pj ;

else // an engaging application message

parenti := pj ;

hopsi := (count+ 1) mod D;

if rooti then

send 〈detach〉 message to parenti; // instruct root of my parent’s subtree to detach

independenti := false; // but I am still attached to my parent

endif;

endif;

statei := active;

deliver m to the application;

(A3) On receiving 〈acknowledgment〉 message from process pj :

missingi := missingi − 1; // one more application message has been acknowledged

call acknowledgeParent( ); // send acknowledgment to my parent if quiescent

call sendIfQuiescent( ); // send initialize/st passive message if quiescent

(A4) On changing state from active to passive:

call acknowledgeParent( ); // send acknowledgment to my parent if quiescent

call sendIfQuiescent( ); // send initialize/st passive message if quiescent

Figure 2: Termination detection algorithm TDA-SI for simultaneous initiation.
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Termination detection algorithm for process pi (continued):

(A5) On receiving 〈detach〉 message from process pj :

if (rooti ∧ not(independenti)) then // should I handle detach message myself?

independenti := true; // I can now detach myself from my parent

send 〈st active〉 to myself; /* send st active message to the coordinator

(the message is handled by action B2) */

pendingi := pendingi + 1;

else if not(rooti) then // detach message is meant for the root of my subtree

if (have not yet forwarded a detach message

to parenti since last becoming nonquiescent) then

send 〈detach〉 message to parenti;

endif;

endif;

(A6) On receiving 〈ack st active〉 message from myself;

pendingi := pendingi − 1; // one more st active message has been acknowledged

call acknowledgeParent( ); // may need to send acknowledgment to my parent

(A7) On invocation of acknowledgeParent( ):

if (quiescenti or

(rooti ∧ independenti ∧ (pendingi = 0))) then

if (parenti 6= ⊥) then // do I have a parent?

send 〈acknowledgment〉 message to parenti;

parenti := ⊥;

endif;

endif;

(A8) On invocation of sendIfQuiescent( ):

if (rooti ∧ independenti ∧ quiescenti) then // should I send initialize/st passive message?

if (have not yet sent an initialize message) then

send 〈initialize〉 message to myself; /* send initialize message to the coordinator

(the message is handled by action B1) */

else send 〈st passive〉 to myself; endif; /* send st passive message to the coordinator

(the message is handled by action B2) */

endif:

Figure 3: Termination detection algorithm TDA-SI for simultaneous initiation (continued).

Lemma 1 A process receives a matching ack st active message for its st active message only after

the st active message has been received by the coordinator.

Proof: The lemma can be proved by a simple induction on the depth of a process in the BFS

spanning tree using the observation that every process sends the kth ack st active message to the

sender of the kth st active message. 2

We say that a process is quiescent if it is passive and has received an acknowledgment message
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Termination detection algorithm for process pi (continued):

// Actions of process pi as part of the BFS spanning tree

Variables:

fatheri: parent in the BFS spanning tree;

sonsi: number of children in the BFS spanning tree;

activityi := 0; // activity counter: number of active subtrees

whoSenti := empty queue; /* records the sender of each st active message

(kth ack st active message is sent to the process

from which kth st active message was received) */

Useful expressions:

coordinatori , (fatheri = pi);

terminatedi , (have received sonsi + 1 initialize messages) ∧(activityi = 0);

(B1) On receiving 〈initialize〉 message from process pj :

if coordinatori then

if terminatedi then announce termination; endif;

else if (have received sonsi + 1 initialize messages) then

send 〈initialize〉 message to fatheri;

endif;

(B2) On receiving 〈st status〉 message (st status ∈ {st active, st passive}) from process pj :

if coordinatori then

if (st status = st passive) then activityi := activityi − 1;

else

activityi := activityi + 1;

send 〈ack st active〉 message to process pj ;// acknowledge the st active message

endif;

if terminatedi then announce termination; endif;

else

if (st status = st active) then

enqueue pj to whoSenti; // record the sender

endif;

send 〈st status〉 message to fatheri; // forward st status message to my father

endif;

(B3) On receiving 〈ack st active〉 message from fatheri:

p := dequeue whoSenti;

send 〈ack st active〉 message to process p; /* send kth ack st active message to the process from

which kth st active message was received */

Figure 4: Termination detection algorithm TDA-SI for simultaneous initiation (continued).

for every application message it has sent so far. We partition the events on a process into two

categories: quiescent and nonquiescent. An event is said to be quiescent if the process becomes

quiescent immediately after executing the event; otherwise it is nonquiescent. A maximal sequence

of contiguous quiescent events on a process is called a quiescent interval. The notion of nonquiescent
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interval can be similarly defined. An interval is created as soon as its starting event is executed,

and is completed once its last event is executed. An execution of a process can be viewed as an

alternating sequence of quiescent and nonquiescent intervals.

We also partition the set of application messages into two categories: engaging and non-

engaging. An application message is said to be engaging if its destination process, on receiving

the message, changes its status from quiescent to nonquiescent; otherwise it is non-engaging.

Observe that the set of engaging application messages induces a forest (of trees) on the set of

nonquiescent intervals. Specifically, given two nonquiescent intervals x and y, there is an edge from

x to y in the forest, denoted by x 7→ y, if an engaging application message sent during x is received

during y. Let NQI denote the set of all nonquiescent intervals. It can be verified that 〈NQI, 7→〉
is indeed a forest of trees. For an interval x, let proc(x) refer to the process on which events in

x are executed. The next lemma proves that if the computation terminates eventually, then the

execution of every process ends with a quiescent interval.

Lemma 2 Assume that the underlying computation eventually terminates. Then, every non-

quiescent process eventually becomes quiescent.

Proof: Assume that the underlying computation has terminated. Therefore once a process be-

comes quiescent it stays quiescent. This implies that the set of nonquiescent intervals NQI is

finite. The proof is by induction on the height of a nonquiescent interval in the forest 〈NQI, 7→〉.
A process acknowledges a non-engaging application message immediately. Thus it is sufficient to

show that every engaging application message is eventually acknowledged. Consider a nonquiescent

interval x ∈ NQI with proc(x) = pi.

Base Case [height(x) = 0]: In this case, all application messages sent in x are non-engaging.

Therefore process pi eventually becomes quiescent.

Induction Step [height(x) > 0]: Consider a nonquiescent interval y with x 7→ y Clearly,

height(y) < height(x). Therefore, using induction hypothesis, proc(y) eventually becomes quies-

cent. This, in turn, implies that pi eventually receives an acknowledgment message for the engaging

application message it sends during x to proc(y). Since y is chosen arbitrarily, we can infer that

pi eventually receives an acknowledgment message for every engaging application message it sends

during x. Therefore pi eventually becomes quiescent. 2
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From the algorithm, a process sends an initialize message when it becomes quiescent for the

first time (including the case when it is quiescent to begin with). The following proposition can be

easily verified:

Proposition 3 Assume that the underlying computation eventually terminates. Then, every pro-

cess eventually sends an initialize message. Moreover, a process sends an initialize message only

when it is quiescent for the first time.

It is important for the correctness of our algorithm that the coordinator receives st active and

st passive messages in correct order. If channels are FIFO, then this can be achieved easily. If

one or more channels are non-FIFO, then the algorithm has to be slightly modified. Details of the

modifications required are described in Section 3.5. For now, assume that all channels are FIFO.

We have,

Proposition 4 The st active and st passive messages sent by a process are received by the coord-

inator in the order in which they are sent.

The following lemma establishes that if the computation terminates then every process sends

an equal number of st active and st passive messages in alternate order.

Lemma 5 Each process sends a possibly empty sequence of st active and st passive messages in an

alternate fashion, starting with an st active message. Furthermore, if the underlying computation

eventually terminates, then every st active message is eventually followed by an st passive message.

Proof: The execution of a process can be viewed as an alternating sequence of quiescent and

nonquiescent intervals. If a process is initially passive, then the execution starts with a quiescent

interval; otherwise it starts with a nonquiescent interval. Also, if the underlying computation

eventually terminates, then, from Lemma 2, the execution of every process ends with a quiescent

interval.

From Proposition 3, every process sends an initialize message in the first quiescent interval. But

the first interval for an initially active process is a nonquiescent interval. It can be verified that

an initially active process does not send any st active message in the first nonquiescent interval.

This is because a process sends an st active message only when it changes it detaches itself from

its parent in the computation tree (action A5).
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Finally, it can be verified that after the first quiescent interval, if a process sends an st active

message in a nonquiescent interval, then it sends an st passive message in the following quiescent

interval. 2

We refer to the difference between the number of st active and st passive messages received by

the coordinator as the activity counter. Using Proposition 4 and Lemma 5, it follows that:

Corollary 6 The activity counter at the coordinator always has a non-negative value. Moreover,

immediately after processing an st active message, the value of the activity counter is positive.

Also, from Lemma 5, it follows that:

Corollary 7 Assume that the underlying computation eventually terminates. Then, for every

st active message the coordinator receives, it eventually receives a matching st passive message.

We are now ready to prove the correctness of our algorithm. First, we prove that our algorithm

is live.

Theorem 8 (TDA-SI is live) Assume that the underlying computation eventually terminates.

Then, the coordinator eventually announces termination.

Proof: To establish the liveness property, it suffices to show that the following two conditions

hold eventually. First, the coordinator receives all initialize messages it is waiting for. Second, the

activity counter at the coordinator becomes zero permanently.

Note that initialize messages are propagated to the coordinator in a convergecast fashion. From

Proposition 3, eventually every process sends an initialize message. It can be easily verified that

every process on the BFS spanning tree will eventually send an initialize message to its parent in

the spanning tree. As a result, the first condition holds eventually.

For the second condition, assume that the underlying computation has terminated. Then, from

Lemma 2, every process eventually becomes quiescent and stays quiescent thereafter. This implies

that every process sends only a finite number of st active and st passive messages. Therefore the

coordinator also receives only a finite number of st active and st passive messages. Furthermore,

from Corollary 7, the coordinator receives an equal number of st active and st passive messages. 2

Finally, we prove that our algorithm is safe, that is, it never announces false termination.
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Theorem 9 (TDA-SI is safe) The coordinator announces termination only after the underlying

computation has terminated.

Proof: Consider only those processes that become active at least once. Let announce denote

the event on executing which the coordinator announces termination, and let lqei denote the last

quiescent event on process pi that happened-before announce. Such an event exists for every

process. This is because the coordinator announces termination only after it has received all

initialize messages it is waiting for. This, in turn, happens only after every process has sent an

initialize message, which a process does only when it is quiescent.

Consider the snapshot S of the computation consisting of all lqe events. Assume, on the

contrary, that the computation has not terminated for S and that some process becomes active

after S. Let NQE denote the set of nonquiescent events executed in the future of S. Consider a

minimal event mqe in NQE—minimal with respect to the happened-before relation. Formally,

〈∀x : x ∈ NQE : x 6→ mqe〉

Clearly, mqe occurred on receiving an engaging application message, say m. Moreover, m is a

message sent from the past of S to the future of S. Otherwise, it can be shown that mqe is not a

minimal event inNQE—a contradiction. Letm be sent by process pj to process pi. Also, let snd(m)

and rcv(m) correspond to the send and receive events of m, respectively. Then, snd(m) → lqej .

This implies that pj becomes quiescent after sending m. Therefore it receives the acknowledgment

message for m, denoted by ack(m), before executing lqej . This is depicted in Figure 5(a). There

are two cases to consider:

Case 1: Process pi sends the acknowledgment message for m on executing a quiescent event, say

qe (see Figure 5(b)). Clearly, the acknowledgment message creates a causal path from qe to lqej .

We have,

(qe is a quiescent event on pi) ∧ (lqei → qe) ∧ (qe→ lqej) ∧ (lqej → announce)

⇒ { → is transitive }
(qe is a quiescent event on pi) ∧ (lqei → qe) ∧ (qe→ announce)

In other words, qe is a quiescent event on pi that happened-before announce and is executed

after lqei. This contradicts our choice of lqei.
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Figure 5: Proving the safety of TDA-SI.

Case 2: Process pi sends an acknowledgment message for m before becoming quiescent. This

happens only when pi receives an ack st active message for the st active message it sends in the

current nonquiescent interval (which starts with mqe). Let the receive event of the st active message

on the coordinator be denoted by rcvc (see Figure 5(c)). Also, let the send event of ack(m) on

process pi be denoted by sndi. Using Lemma 1, rcvc → sndi. Therefore we have,

(rcvc → sndi) ∧ (sndi → lqej) ∧ (lqej → announce)

⇒ { → is transitive }
rcvc → announce

From Corollary 6, immediately after executing rcvc, the value of the activity counter at the

coordinator is greater than zero. For the coordinator to announce termination, its activity counter

should be zero. This implies that the coordinator receives a matching st passive message from pi
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later but before announcing termination. Clearly, pi sends this st passive message only on executing

some quiescent event after mqe. This again contradicts our choice of lqei. 2

We next prove that TDA-SI is both message-optimal and latency-optimal.

3.4 Proof of Optimality

For a nonquiescent interval x with proc(x) = pi, let hops(x) denote the value of the variable hopsi

during the interval x. From the algorithm (action A2),

x 7→ y ⇒ hops(y) = (hops(x) + 1) modD (1)

To prove the optimality of TDA-SI, the following proposition comes in useful.

Proposition 10 For a nonquiescent interval x ∈ NQI with hops(x) = 0, if height(x) > D, then

proc(x) eventually receives a detach message during x (that is, before the interval x ends) and vice

versa.

The above proposition holds as long as the acknowledgment message for an engaging application

message does not “overtake” any detach message sent earlier. Clearly, no “overtaking” occurs if

all channels are FIFO. In case one or more channels are non-FIFO, the algorithm TDA-SI has to

be modified slightly to ensure that Proposition 10 holds. Details of the modifications required are

described in Section 3.5. We now show that our algorithm is message-optimal.

Theorem 11 (TDA-SI is message-optimal) Assume that the underlying computation even-

tually terminates. Then, the number of control messages exchanged by the algorithm is given by

Θ(M +N), where N is the number of processes in the system and M is the number of application

messages exchanged by the underlying computation.

Proof: Our algorithm exchanges six different types of control messages, namely acknowledgment,

detach, initialize, st active, st passive and ack st active. We now bound each of the six types of

control messages.

The number of acknowledgment messages is same as the number of application messages M . A

process sends at most one detach message per engaging application message. Therefore the total

number of detach messages is upper-bounded by M . Every process sends at most one initialize

message. Further, initialize messages are propagated to the coordinator in a convergecast fashion.

Hence the total number of initialize messages exchanged by processes is given by O(N).
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Every st active and st passive message has to be propagated to the coordinator along the BFS

spanning tree and, therefore, may cause up to D additional control messages to be exchanged.

Likewise, an ack st active message may also cause up to D additional control messages to be ex-

changed. From Lemma 5, every process generates an equal number of st active and st passive

messages. Moreover, the number of ack st active messages a process receives is equal to the num-

ber of st active messages it sends. Thus it is sufficient to show that the total number of st active

messages generated by all processes combined is bounded by M/D.

Observe that a process sends an st active message only when it is nonquiescent and, moreover,

it sends at most one st active message per nonquiescent interval (action A5). We, therefore, bound

the number of nonquiescent intervals in which an st active message is sent. Let I ⊆ NQI denote

the set of those nonquiescent intervals during which an st active message is sent. Also, observe that

a process sends an st active message during a nonquiescent interval only if the interval is created on

receiving an engaging application message (action A5). In other words, if a process is nonquiescent

to begin with, it does not send any st active message during the (initial nonquiescent) interval. Let

NI ⊆ NQI denote the set of nonquiescent intervals created on receiving an engaging application

message. We have,

I ⊆ NI ⊆ NQI and |NI| 6M (2)

Consider a nonquiescent interval x ∈ NQI. From the algorithm (action A5),

x ∈ I ⇒ hops(x) = 0 (3)

We define childset(x) as the set of those nonquiescent intervals which are at a distance of at most

D − 1 message hops from x in the forest 〈NQI, 7→〉, and refer to it as the childset of x. Clearly,

childset(x) ⊆ NI. Note that a process sends an st active message during a nonquiescent interval

only after it has received at least one detach message. Thus, from Proposition 10, (3) and the

definition of I, height(x) is at least D which implies that:

x ∈ I ⇒ |childset(x)| > D (4)

Since 〈NQI, 7→〉 is a forest, from (3), (1) and the definition of childset,

({x, y} ⊆ I) ∧ (x 6= y) ⇒ childset(x) ∩ childset(y) = ∅ (5)

We have,
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( ⋃
x∈I

childset(x)
)
⊆ NI

⇒ { using (5) }( ∑
x∈I
|childset(x)|

)
6 |NI|

⇒ { using (4) and (2) }
D × |I| 6

( ∑
x∈I
|childset(x)|

)
6M

⇒ { algebra }
|I| 6M/D

This establishes that TDA-SI is message-optimal. 2

We now show that our algorithm is latency-optimal. The next lemma states one the underlying

computation has terminated, no process stays nonquiescent for a “long” time.

Lemma 12 Once the underlying computation terminates, every process becomes quiescent within

O(D) message hops, where D is the diameter of the communication topology.

Proof: Assume that the underlying computation has terminated. Consider two processes pi and

pj that are still nonquiescent just after the computation terminates. We say that pi is waiting on

pj if pi has sent an engaging application message to pj but pj has not yet sent an acknowledgment

for that message. Now, consider any chain formed using “waiting on” relationships that starts from

process pi and whose length is at least 2D. Clearly, the chain consists of a process pk such that pk

is at a distance of at most D from pi in the chain and hopsk = 0. From the algorithm, pk receives

a detach message within D message hops of termination. After receiving the detach message, pk

sends an st active message to the coordinator for which it receives a matching ack st active message

within 2D message hops. After receiving the ack st active message, pk sends an acknowledgment

message to its parent, if it has not already done so, causing the chain to break and become shorter.

In other words, within 3D+ 1 message hops of termination, all chains of “waiting on” relationships

are reduced to length smaller than D. Clearly, once that happens, all processes become quiescent

within D message hops. 2

Finally, we have,

Theorem 13 (TDA-SI is latency-optimal) Once the underlying computation terminates, the

coordinator announces termination within O(D) message hops.
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Proof: From Lemma 12, every process becomes quiescent within O(D) message hops after the

computation has terminated and stay quiescent thereafter. Therefore all initialize, st active and

st passive messages are generated within O(D) message hops of termination and no more messages

are generated after that. Since the coordinator is at most D message hops away from any process,

the coordinator receives all initialize, st active and st passive messages within O(D) message hops

of termination soon after which it announces termination (action B2). 2

In the next section, we discuss modifications to our termination detection algorithm required

in case one or more channels are non-FIFO.

3.5 Dealing with Non-FIFO Channels

To prove the correctness and optimality of the algorithm TDA-SI, we make the assumption that

all channels are FIFO at two places. First, to ensure that the coordinator receives st active and

st passive messages in the order in which they are sent (Proposition 4). Second, to ensure that

the acknowledgment message for an engaging application messages does not “overtake” any detach

message sent earlier (Proposition 10). In case one or more channels are non-FIFO, the following

modifications to the algorithm can be used to ensure that both propositions still hold.

Ensuring that the coordinator receives st active and st passive messages in order: For

convenience, we use st status message to refer to an st active message as well as an st passive

message, when it is not necessary to distinguish between the two. In the modified algorithm,

the coordinator acknowledges all st status messages, that is, both st active and st passive messages.

Further, a process does not send the next st status message until it has received an acknowledgment

for its previous st status message. This can be accomplished by maintaining a FIFO queue at each

process. When a a new st status message is generated by a process, the message is buffered until

the process has sent all previous st status messages and, moreover, has received acknowledgments

for all of them. It can be verified that the above two modifications do not affect the correctness and

message-optimality of our algorithm. However, they may increase the detection latency. Specif-

ically, it is possible that when the underlying computation terminates the queue still contains a

large number of st status messages. To prevent the queue from becoming too long, we can proceed

as follows. A process, on generating an st active message, checks to see if the queue contains an

st status message. If the queue is non-empty, then the process simply discards the (new) st active
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message and also deletes the last st status message, which will be an st passive message, from the

queue. Intuitively, the “new” st active message “cancels” the “old” st passive message. A similar

optimization can be performed when an st passive message is generated. This ensures that the

queue never contains more than one pending st status message.

Ensuring that the acknowledgment message for an engaging application message does

not overtake any detach message sent earlier: In the modified algorithm, every detach

message is acknowledged. Specifically, a process, after sending a detach message to its parent, waits

until it has received an acknowledgment (for the detach message) from its parent before sending

the acknowledgment message for the engaging application message. The notion of quiescence is

now redefined as: a process is quiescent if it is passive, has received an acknowledgment message for

every application message it has sent so far, and has received an acknowledgment for every detach

message it has sent so far. It can be verified that the aforesaid modifications do not affect the

correctness and optimality of our algorithm.

4 An Optimal Algorithm for Delayed Initiation

If the underlying computation is message-intensive, then it is desirable not to initiate the termina-

tion detection algorithm along with the computation. It is preferable, instead, to initiate it later,

when the underlying computation is “close” to termination. This is because, in the latter case,

the (worst-case) message-complexity of the termination detection algorithm would depend on the

number of application messages exchanged by the computation after the termination detection al-

gorithm has commenced. As a result, with delayed initiation, the termination detection algorithm

generally exchanges fewer number of control messages than with simultaneous initiation.

To correctly detect termination with delayed initiation, we use the scheme proposed in [4].

The main idea is to distinguish between application messages sent by a process before it started

termination detection and messages sent by it after it started termination detection. Clearly, the

former messages should not be “tracked” by the termination detection algorithm and the latter

messages should be “tracked” by the termination detection algorithm. Note that delayed initiation

is not possible unless all channels are FIFO. This is because if one or more channels are non-FIFO

then an application message may be delayed arbitrarily on a channel, no process would be aware of

its existence, and this message may arrive at the destination after termination has been announced.

Therefore we assume that all channels are FIFO. We also assume that each process knows all its
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Termination detection algorithm for process pi:

// Modification of TDA-SI: the algorithm for simultaneous initiation.

// Changes: one new action C1 and new definition for quiescence. The actions A1-A8 and B1-B3 remain the

// same and are executed only after the commencement of the termination detection algorithm.

// Application messages received along an uncolored channel are not acknowledged and are simply delivered to

// the application, whereas those received along a colored channel are handled using action A2.

Variables:

startDetectioni := false; // am I executing the termination detection algorithm?

Useful expression:

// we have to redefine what it means for a process to be quiescent

quiescenti , (statei = passive) ∧ (missingi = 0) ∧ (all incoming channels have been colored);

(C1) On receiving 〈marker〉 message from process pj :

if not(startDetectioni) then

send 〈marker〉 message along all outgoing channels;

startDetectioni := true;

endif;

if (pi 6= pj) then

color the incoming channel from process pj ;

endif;

if quiescenti then

call sendIfQuiescent( );

endif;

Figure 6: Termination detection algorithm TDA-DI for delayed initiation.

neighboring processes (that is, outgoing channels).

In order to distinguish between the two kinds of application messages, we use a marker message.

Specifically, as soon as a process starts the termination detection algorithm, it sends a marker

message along all its outgoing channels. Therefore, when a process receives a marker message

along an incoming channel, it knows that any application message received along that channel from

now on has to be acknowledged as per the termination detection algorithm. On the other hand,

if a process receives an application message on an incoming channel along which it has not yet

received a marker message, then that message should not be acknowledged and should be simply

delivered to the application. Intuitively, a marker message sent along a channel “flushes” any

in-transit application messages on that channel. For ease of exposition, we assume that initially

all incoming channels are uncolored. Further, a process, on receiving a marker message along an

incoming channel, colors the channel along which it has received the marker message.

To initiate the termination detection algorithm, the coordinator sends a marker message to itself.
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When a process receives a marker message, as explained before, it colors the incoming channel along

which the marker message is received. Additionally, if it is the first marker message to be received,

the process starts executing the termination detection algorithm and also sends a marker message

along all its outgoing channels. Note that the coordinator should not announce termination at least

until every process has received a marker message along all its incoming channels and therefore has

colored all its incoming channels. Otherwise, some uncolored channel may contain an application

message that neither the sender nor the receiver is aware of and the message may arrive after

the termination is announced. This will violate the safety of the detection algorithm. To that

end, we redefine the notion of quiescence as follows: a process is quiescent if it is passive, has

received an acknowledgment message for every application message it has sent since it started

executing the termination detection algorithm, and all its incoming channels have been colored. A

formal description of the termination detection algorithm TDA-DI for delayed initiation is given in

Figure 6.

Once the coordinator starts the termination detection algorithm, all incoming channels are

colored within O(D) message hops. The following theorem can be proved in a similar manner as

Lemma 2:

Lemma 14 Once the underlying computation terminates, all processes eventually become quies-

cent.

Moreover, using the definition of quiescence and the fact that all channels are FIFO, it follows

that:

Lemma 15 If all processes are quiescent, then no channel contains an application message that

was sent by a process before starting the termination detection algorithm.

From the above lemma, we can infer that:

Lemma 16 If all processes are quiescent, then the underlying computation has terminated.

Proof: Assume that all processes are quiescent. Therefore every application message that was

sent by a process after starting the termination detection algorithm has been acknowledged. This

implies that no channel contains an application message that was sent by a process after starting

the termination detection algorithm. Moreover, from Lemma 15, no channel contains an application

message that was sent by a process before starting the termination detection algorithm. In other
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words, all channels are empty (of application messages). Moreover, since all processes are quiescent,

they are passive as well. 2

Intuitively, TDA-DI announces termination once it detects that all processes have become qui-

escent, and vice versa. Therefore its liveness follows from Lemma 14 and its safety follows from

Lemma 16.

The only additional messages exchanged by TDA-DI are marker messages. Therefore the

message-complexity of TDA-DI is O(M̄ + E), where M̄ is number of application messages ex-

changed by the distributed computation after the termination detection algorithm has started and

E is the number of channels in the communication topology. Note that M̄ may be as large as

M in the worst case. Therefore the worst-case message complexity of the termination detection

algorithm with delayed initiation is actually more than that of the algorithm with simultaneous

initiation. However, we expect the average message complexity to be much lower in the case of

delayed initiation because much fewer application messages will need to be tracked on average.

Also, assuming that the termination detection algorithm is started before the underlying compu-

tation terminates, the detection latency of TDA-DI is O(D). This is because, once the coordinator

starts the termination detection algorithm, within O(D) message hops, all processes start the

termination detection algorithm and all incoming channels become colored. After this, similar to

Lemma 12 and Theorem 13, it can be proved that all processes become quiescent and termination is

detected within O(D) message hops. Elsewhere, we show that any termination detection algorithm

designed for simultaneous initiation can be transformed into a termination detection algorithm for

delayed initiation with minimal impact on its performance [27].

5 An Optimal Algorithm for Multi-Hop Application Messages

In this section, we describe modifications required to our algorithm to ensure optimality with

respect to message-complexity and detection-latency when application messages can be exchanged

between arbitrary processes. We describe the modifications assuming simultaneous initiation. The

ideas in this section can be easily combined with the ideas in the previous section to maintain

optimality with delayed initiation as well.

We assume that an application message sent by process pi to process pj travels along a shortest

path from pi to pj . We also assume that any acknowledgment or detach message that pj sends to
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pi travels along the path taken by the application message in reverse direction.

5.1 Modifications to Our Algorithm

When application messages can be exchanged between arbitrary processes (and not just neighboring

processes), each link in an acknowledgment chain may consist of Θ(D) message hops in the worst-

case. As a result, the length of the acknowledgment chain in terms of number of message hops may

be as large as Θ(D2). This means that the worst-case detection latency of our algorithm to Θ(D2),

which is clearly suboptimal.

To achieve latency-optimality, instead of incrementing the hop counter by one every time an

application message is exchanged, we increment the counter by the number of hops in the path

taken by the application message. Observe that, with this modification, the value of the hop counter

can actually become more than D. The counter is reset to zero as soon as its value becomes greater

than or equal to D. This ensures that the value of the counter never exceeds 2D, which, in turn,

implies that the length of the acknowledgment chain in terms of number of message hops never

exceeds 2D.

As before, when a process resets the hop counter, its behavior is similar to that of a root process

in TDA-SI. Specifically, it generates a detach message that is propagated upwards to the closest

root process in the computation tree, which is at a distance of at least D message hops from it.

Further, it maintains its link with its parent and reports its status to it until it receives a detach

message from one of its children in the computation tree.

Clearly, our modifications ensure that the detection latency of the resulting algorithm is O(D)

in the worst-case. We now show that the modified algorithm has optimal message-complexity as

well. We refer to the modified algorithm as TDA-SI-MH.

5.2 Proof of Message-Optimality

Note that, in TDA-SI-MH, a st active or st passive message generated by a process may not be

amortized over at least D application messages. This is because the acknowledgment chain is cut

as soon as its length becomes at least D in term of number of message hops and not in terms of

number of application messages. In fact, in the worst case, the length of the acknowledgment chain

may consist of only one application message (that travels a distance of D message hops). As a

result, it may appear that TDA-SI-MH is no longer message-optimal. We show that our algorithm

is still message-optimal if we count a control message (such as an acknowledgment message or a
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detach message) that travels a distance of d message hops as d different control messages. This is

also consistent with the way we count st active, st passive and ack st active messages in the analysis

of TDA-SI-MH.

Let H denote the average number of hops traveled by an application message. It is given by

the ratio
total number of hops traveled by all application messages

total number of application messages
. Note that 1 6 H 6 D. When

application messages are only exchanged between neighboring processes, clearly, H = 1. We show

that the message complexity of the modified algorithm is Θ(MH +N), which we prove is optimal.

First, we show that the worst-case message complexity of any termination detection algorithm

is given by Ω(MH + N), thereby proving the optimality of TDA-SI-MH. It suffices to show that

the worst-case message complexity of any termination detection algorithm is Ω(MH) when the

computation is diffusing. Note that one may be tempted to think that the lower bound trivially

follows from Chandy and Misra’s lower bound proof [6] by replacing each application message that

travels a distance of d hops with d application messages, each of which travels a distance of one

hop. However the transformation is not correct for the following reason. Suppose an application

message from process pi to process pj travels via processes pk1 , pk2 , . . . , pkd−1
. Then, before the

transformation, each process pkl , where 1 6 l < d, basically acts as a relay; it does not become

active on receiving the application message. However, after the transformation, each process pkl ,

where 1 6 l < d, has to become active on receiving the corresponding application message to satisfy

the rules of the computation. Another approach is to assume that an “intermediate” application

message does not really spawn any activity in the system in the sense that a passive process on

receiving such a message stays active for a very short while during which it simply forwards the

message to the next process. However, Chandy and Misra’s lower bound proof [6] assumes that

each application message is capable of spawning independent activity in the system and therefore

the proof does not carry over to the system obtained after the transformation.

Note that, if there exists a computation state after which the termination detection algorithm

exchanges an infinite number of control messages, then the lower bound trivially holds for that al-

gorithm. Therefore assume that, after each computation state, the termination detection algorithm

exchanges only a finite number of control messages after which it does not exchange any control

message until the computation executes an event. Our lower bound proof uses the following lemma.

Lemma 17 Consider two processes pi and pj that are at distance of H hops from each other.

Assume that the system is in a state in which only pi and pj are active, all other processes are

passive and all channels are empty. Then there exist an execution σ of the system (starting from
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the given state) and a process pk ∈ {pi, pj} such that (1) after σ only pk is active, all other processes

are passive and all channels are empty, (2) no application message is exchanged during σ, and (3) at

least dH/2e control messages are exchanged during σ.

Proof: We consider two executions of the computation from the given state: one in which both

processes become passive and one in which only one of them becomes passive.

In the first execution of the computation, denoted by κ1, both processes pi and pj become

passive without generating any application message. Clearly, once that happens, the computation

terminates. Consider an execution τ1 of the termination detection algorithm from the state result-

ing after executing κ1 such that (1) after τ1, no more control messages are exchanged, and (2) some

process announces termination in τ1. Such an execution exists because, by assumption, the termi-

nation detection algorithm exchanges only a finite number of messages in any computation state

and, moreover, it is live. Let pt be a process that announces termination in τ1. Process pt can

announce termination only after “learning” that both pi and pj have become passive. Otherwise, it

can be shown that the termination detection algorithm is not safe. Note that, in an asynchronous

distributed system, the knowledge that some process has become passive can only be acquired

through a (possibly empty) causal chain of messages [6]. Let K denote the set of processes that

“learn” during the execution τ1 of the algorithm that both pi and pj have become passive. The

set K is non-empty because it at least contains pt. For a process px ∈ K, let first(px) denote the

earliest event on px when px acquired that knowledge during τ1. Consider a process pmin ∈ K such

that first(pmin) is a minimal event, with respect to →, among all events in {first(px) | px ∈ K}.
Note that pmin is at a distance of at least dH/2e hops from either pi or pj . Without loss of gen-

erality, assume that pmin is at a distance of at least dH/2e hops from pi. For pmin to “learn” that

pi has become passive, there should be causal chain of messages starting from when pi becomes

passive and ending at first(pmin) such that all messages in the chain are sent during τ1. Let C

denote the set of processes through which this chain passes. (C includes pi but does not include

pmin.) Clearly, C contains at least dH/2e processes. Moreover, from the way pmin is chosen, each

process in C sends its first control message during τ1 without knowing that the other process pj

has become passive.

Now, consider the second execution of the computation, denoted by κ2, in which only process

pi becomes passive; process pj remains active. Processes in C clearly cannot distinguish between

executions κ1 and κ2 of the computation when they send their first control message during τ1.

Therefore there exists an execution τ2 of the termination detection algorithm from the state resulting
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after κ2 such that (1) at least dH/2e processes send a control message during τ2, and (2) no control

message is sent after τ2 until the computation executes an event. The required execution σ of the

system is given by κ2 followed by τ2. 2

We are now ready to prove the lower bound on message complexity of a termination detection

algorithm. Our proof is based on the proof of lower bound on message complexity of a termination

detection algorithm given in Tel [30] for the case when H = 1.

Theorem 18 (lower bound on message-complexity) Consider a diffusing computation and

assume that the computation eventually terminates. Then, the worst-case message-complexity of

any termination detection algorithm is given by Θ(MH), where M is the number of application

messages exchanged by the underlying computation and H is the average number of hops traveled

by the application messages.

Proof: The proof is constructive by nature. We construct a system execution in steps. In each

step, the underlying computation exchanges one application message that travels a distance of H

hops because of which the termination detection algorithm is forced to exchange Ω(H) control

messages.

Consider two processes pi and pj that are at a distance of H hops from each other. Assume

that the system is in a state X in which only one process, say pi, is active, all other processes

are passive and all channels are empty. (This state may be the initial state of the system.) Now,

suppose pi sends an application message to pj which makes pj active. Since the termination

detection algorithm eventually stops exchanging control messages, the system eventually reaches a

state Y—via an execution σ1—in which both pi and pj are active, all other processes are passive

and all channels are empty. We can now apply Lemma 17 to system state Y . Thus there exists an

execution σ2 of the system that takes the system to a state Z such that (1) in Z only one process

pk ∈ {pi, pj} is active, all other processes are passive and all channels are empty, (2) no application

message is exchanged during σ2 and (3) at least Ω(H) control messages are exchanged during σ2.

Combining the two executions, we can conclude that there exists an execution σ of the system,

which is given by σ1 followed by σ2, such that (1) exactly one application message is exchanged

during σ, (2) the application message travels a distance of H hops, (3) at least Ω(H) control

messages are exchanged during σ, and (4) the system state after σ is isomorphic to the system

state before σ.
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The last property implies that the above-described construction can be repeated ad infinitum,

thereby proving the lower bound. 2

Next, we show that TDA-SI-MH has optimal message-complexity.

Theorem 19 (TDA-SI-MH is message-optimal) Assume that the underlying computation even-

tually terminates. Then, the number of control messages exchanged by the modified algorithm is

given by Θ(MH + N), where N is the number of processes in the system, M is the number of

application messages exchanged by the underlying computation and H is the average number of

hops traveled by the application messages.

Proof: The structure of the proof is quite similar to the structure of the proof for Theorem 11.

We present it anyway for the sake of completeness.

Our algorithm exchanges six different types of control messages, namely acknowledgment, de-

tach, initialize, st active, st passive and ack st active. We now bound each of the six types of control

messages.

Clearly, the number of acknowledgment messages is equal to the total number of hops traveled

by all application messages collectively, which is given by MH. A process sends at most one detach

message per engaging application message. Therefore the number of detach messages is upper-

bounded by MH. Every process sends at most one initialize message. Further, initialize messages

are propagated to the coordinator in a convergecast fashion. Hence the total number of initialize

messages exchanged is given by O(N).

Every st active and st passive message has to be propagated to the coordinator along the BFS

spanning tree and, therefore, may have to travel a distance of up to D message hops. Likewise,

an ack st active message may have to travel a distance of up to D message hops. From Lemma 5,

every process sends equal number of st active and st passive messages. Moreover, the number of

ack st active messages a process receives is equal to the number of st active messages it sends.

Thus it is sufficient to show that the total number of st active messages generated by all processes

combined is bounded by MH/D. This in turn would imply that total number of st active, st passive

and ack st active messages exchanged are given by O(MH).

Observe that a process sends an st active message only when it is nonquiescent and, moreover,

it sends at most one st active message per nonquiescent interval. We, therefore, bound the number

of nonquiescent intervals in which an st active message is sent. Let I ⊆ NQI denote the set of those
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nonquiescent intervals during which an st active message is sent. For two nonquiescent intervals x

and y with x 7→ y, the distance between x and y is given by the number of hops traveled by the

engaging application message that created y (and was sent during x). Our proof uses the notion of

childset of a nonquiescent interval, which was defined in the proof of Theorem 11. It can be verified

that:

({x, y} ⊆ I) ∧ (x 6= y) ⇒ childset(x) ∩ childset(y) = ∅ (6)

Also, let totalhops(x) denote the total number of hops traveled by application messages that created

nonquiescent intervals in childset(x). From the definition of I,

x ∈ I ⇒ totalhops(x) > D (7)

We have,

{ using (6) }
∑
x∈I

totalhops(x) 6MH

⇒ { using (7) }
D × |I| 6 ∑

x∈I
totalhops(x) 6MH

⇒ { algebra }
|I| 6MH/D

This establishes the theorem. 2

Note that, to achieve optimality, our algorithm does not require the knowledge of H, the average

number of hops traveled by application messages. Also, as opposed to our algorithm, Mahapatra

and Dutt’s algorithm [20], which is also latency-optimal, has worst-case message complexity of

O(MD+N) irrespective of the average number of hops traveled by application messages. Therefore

our algorithm is always as efficient (asymptotically) as Mahapatra and Dutt’s algorithm [20] and

is more efficient (asymptotically) than their algorithm when H is o(D).

6 Conclusion and Future Work

In this paper, we have presented three optimal algorithms for termination detection when processes

and channels are reliable, and all channels are bidirectional. All three of the algorithms have optimal

message complexity and optimal detection latency under varying assumptions. Algorithms TDA-SI
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and TDA-SI-MH have to be initiated along with the computation. The former algorithm is optimal

when application messages are only exchanged between neighboring processes, whereas the latter

is optimal when application messages can be exchanged between arbitrary processes. Algorithm

TDA-DI can be initiated at any time after the computation has started. However, all channels

are required to be FIFO for the algorithm to work correctly, which is also necessary to solve the

problem.

All of our algorithms currently have two limitations. First, all processes need to know the

diameter of the communication topology within a constant factor. (It is not necessary to know the

exact value of the diameter as long as the estimate is within a constant factor of the actual value.)

Second, they are asymmetric in the sense that one of the processes acts as a coordinator and is

responsible for maintaining the state of the system. An interesting research direction would be to

design a termination detection algorithm with optimal message complexity and detection latency

that is fully symmetric and in which the amount of knowledge a process needs to have about the

system is minimized [21].
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