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10. Multiplier methods

proximal point algorithm
Moreau envelope
augmented Lagrangian method

alternating direction method of multipliers (ADMM)
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Recall: proximal gradient method

unconstrained problem with composite cost (slightly different notation

from lecture 7)
minimize f(x) = g(z) + h(x)

e ¢ convex, differentiable, with dom ¢ = R"

e h convex, possibly nondifferentiable, with inexpensive prox-operator

proximal gradient algorithm
k) = prox; (x(k_l) — thg(a:(k_l)))

ti > 0 is step size, constant or determined by line search
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Proximal point algorithm

a (conceptual) algorithm for minimizing a closed convex function f

MO

— proxtkf(:c(k_l))

1
— angmin ( £(u) + 5 fju - 2 V)

e special case of the proximal gradient method with g(z) =0
e step size t;. > 0 affects #iterations, cost of prox evaluations
e a practical algorithm if inexact prox evaluations are used

e of interest if prox evaluations are much easier than original problem

basis of the method of multipliers or augmented Lagrangian method
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Convergence

assumptions

e fis closed and convex (hence, prox,(x) uniquely defined for all )
e optimal value f* is finite and attained at z*

e exact evaluations of prox-operator

2
|21 — =",

k
25 ¢,
1=1

result Flaz®y — f* <

e implies convergence if ) . t; — 00
e rateis 1/k if ¢; is constant

e 1, is arbitrary; however cost of prox evaluations will depend on t; (when
no closed form, and we choose to do inexactly)

proof: follows from analysis of prox grad method (lecture 7), setting g = 0.
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e can also apply accelerated proximal method (with g = 0)

e different variants from lecture 7 can be used
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Moreau envelope

Moreau envelope (Moreau-Yosida regularization, Moreau-Yosida
smoothing) of closed convex f is defined as

: 1 .
fuote) =it (F)+ 5 lu—al3)  (with u>0
minimizer in the definition is u = prox , ()

immediate properties

® f(u) is convex (infimum over u of a convex function of z, u)

e domain of f(,) is R" (recall that prox,, ;(x) is defined for all )
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Examples

indicator function (of closed convex set C')

F@) = To(@),  fou(@) = — dist(x)’
dist(x) is the Euclidean distance to C

1-norm
n

f@) =zl  fon@) =D dulzr)

k=1

¢, 1s the Huber penalty
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Conjugate of Moreau envelope

(fi)™ @) = £ @) + 5 lyl3

proof:

e note: (f(,))" is strongly convex with parameter p
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Gradient of Moreau envelope

(ﬂuﬂw)::Sgp(xTy__f*@”__gwumg)

e f(u) is differentiable; gradient is Lipschitz continuous with constant 1/

e maximizer in definition satisfies

r—py €0 (y) <= yeIf(zx— uy)

e the maximizing y is the gradient of f,y: from p. 6-15 and p. 6-27,

Vi(a) = - (o= prox,(x))
= proxs.,,(z/p)
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Interpretation of proximal point algorithm

apply gradient method to minimize Moreau envelope:

1

minimize f,)(z) = i%f (f(u) + ZHU — £E||§)

this is an exact smooth reformulation of original problem:

e solution x is minimizer of f

e f(.) is differentiable with Lipschitz continuous gradient (L = 1/p)
gradient update: with fixed t, = 1/L = p

e ® = 20D v (20D

= proxuf(a:(k_l))

this is the proximal point algorithm with constant step size t;, = u

10-10



Outline

proximal point algorithm
Moreau envelope
augmented Lagrangian method

alternating direction method of multipliers (ADMM)



Augmented Lagrangian method

convex problem and dual (linear constraints for simplicity)

minimize  f(x) maximize —F(\,v)
subject to Gz = h
Ax =b
where
T T x(_ Ty _ AT -
F()\,V):{hA—i_bV—'_f(G)\ A'v) )\_O.
+00 otherwise

augmented Lagrangian method:

proximal point algorithm applied to the dual
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Prox-operator of negative dual function

from p. 9-35
A+t(Gx+5—h)

prOXtF()‘v V) — U+ t(AZIAZ’ o b)

where (z, §) is the solution of

minimize  L(x,s,\, V)
subjectto s >0

cost function is augmented Lagrangian
L(z,s,\, V)=

t
f(x) + MGz +s—h)+vi(Ax —b) + 5 (HG:B + 5 — hlj5 + || Az — ng)
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Algorithm
choose A\, v, t > 0

1. minimize the augmented Lagrangian

(,8) := argmin L(x, s, A\, 1)
x,s70

2. dual update

A= A+t(GT+ 5 —h), v:=v+t(Az —b)

e this is the proximal point algorithm applied to dual problem
e equivalently, gradient method applied to Moreau-Yosida regularized dual

e as a variant, can apply fast proximal point algorithm to the dual
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Applications

augmented Lagrangian method is useful when subproblems

t 1 1
minimize. )+ (1G2 —hot-s + A + 4z — b+ i
subjectto s>~ 0
are substantially easier than original problem

(note: apply ‘completion of squares’ to aug. Lagrangian on page 10-12)

example
minimize  ||z||1
subject to Az =1b

e solve sequence of /i-regularized least-squares problems

10-14



Outline

proximal point algorithm
Moreau-Yosida regularization
augmented Lagrangian method

alternating direction method of multipliers (ADMM)



Goals

robust methods for

e arbitrary-scale optimization

— machine learning/statistics with huge data-sets
— dynamic optimization on large-scale network

e decentralized optimization

— devices/processors/agents coordinate to solve large problem, by
passing relatively small messages

e ideas go back to the 60’s; recent surge of interest

([Gabay,Mercier '76 ], [Glowinski,Marrocco '75], . . .)
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Dual decomposition

convex problem with separable objective

minimize  f(x) + h(y)
subject to Az + By =10

augmented Lagrangian

t
L(z,y,v) = f(x) +h(y) + v' (Az + By — b) + 5llAz + By — bll2

e difficulty: quadratic penalty destroys separability of Lagrangian

e solution: replace joint minimization over (z,y) by alternating
minimization
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Alternating direction method of multipliers

apply one cycle of alternating minimization steps (also known as
Gauss-Siedel, block-coordinate descent, etc.) to augmented Lagrangian

1. minimize augmented Lagrangian over x:

z*) = argmin £(z,y* Y, pF~1)

x

2. minimize augmented Lagrangian over y:

y®) = argmin £(z®), ¢, k=)
Y

3. dual update:

pF) = =) 4y (Aib(k) + By®) — b)

can be shown to converge under weak assumptions
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Example

minimize f(x) + |[|[Ax — b

f convex (not necessarily strongly)

reformulated problem

minimize  f(x) + ||y||
subjectto y = Az —b

augmented Lagrangian

t
Llx,y.2) = f@)+ Iyl +2"(y — Az +b) + 5 |y — Az +b];

t 1 1
= f(x)+ |y +§Hy—Aw+b+¥ZH%—2—tHZH§
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alternating minimization

1. minimization over x

t
argmin L(x,y,v) = argmin (f(x) — 2T Az + 5HA$ —y — b||%)
x x
2. minimization over y involves projection on dual norm ball
argmin £(x,y,2) = prox)., (Az —b—(1/t)z)
Y

% (P (= — t(Az — b)) — (2 — t(Az — b))

where C' = {u | ||ullx < 1}
3. dual update

z:=z24+tly— Ar —b) = Po(z —t(Ax — b))
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comparison with dual proximal gradient algorithm (lecture 9)

e ADMM does not require strong convexity of f, can use larger values of ¢
e dual updates are identical

e ADMM step 1 may be more expensive, e.q., for f(z) = (1/2)||z — al|5:
v:= I +tA"A) Y a+ AT (z+t(y - b))

as opposed to x := a + A’z in the dual proximal gradient method

related algorithms (see references)

e split Bregman method with linear constraints

e fast alternating minimization algorithms
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example: nuclear norm approximation (problem instance of p. 9-18)

1
minimize §||x — a3+ ||A(z) — B+

n

| - ||+ is nuclear norm; A : R™ x RP*? with A(z) = Y z;4;

10° == ——

10}

| — ADMM
- FISTA
\

relative error

-5 . . . .
1079 50 100 150 200 250
k

FISTA step size is 1/L = 1/||Al|3; ADMM step size is t = 100/|| A||3

(recall FISTA is a variant of Nesterov's 1st method covered in lecture 8)
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