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12. Coordinate descent methods

• theoretical justifications

• randomized coordinate descent method

• minimizing composite objectives

• accelerated coordinate descent method
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Notations

consider smooth unconstrained minimization problem:

minimize
x∈RN

f(x)

• coordinate blocks: x = (x1, . . . , xn) with xi ∈ RNi and
∑n

i=1Ni = N

• more generally, partition with a permutation matrix: U = [U1 · · ·Un]

xi = UT
i x, x =

n
∑

i=1

Uixi

• blocks of gradient:

∇if(x) = UT
i ∇f(x)

• coordinate update:
x+ = x− t Ui∇if(x)
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(Block) coordinate descent

choose x(0) ∈ Rn, and iterate for k = 0, 1, 2, . . .

1. choose coordinate i(k)

2. update x(k+1) = x(k) − tkUik∇ikf(x
(k))

• among the first schemes for solving smooth unconstrained problems

• cyclic or round-Robin: difficult to analyze convergence

• mostly local convergence results for particular classes of problems

• does it really work (better than full gradient method)?
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Steepest coordinate descent

choose x(0) ∈ Rn, and iterate for k = 0, 1, 2, . . .

1. choose i(k) = argmax
i∈{1,...,n}

‖∇if(x
(k))‖2

2. update x(k+1) = x(k) − tkUi(k)∇i(k)f(x
(k))

assumptions

• ∇f(x) is block-wise Lipschitz continuous

‖∇if(x+ Uiv)−∇if(x)‖2 ≤ Li‖v‖2, i = 1, . . . , n

• f has bounded sub-level set, in particular, define

R(x) = max
y

{

max
x⋆∈X⋆

‖y − x⋆‖2 : f(y) ≤ f(x)

}
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Analysis for constant step size

quadratic upper bound due to block coordinate-wise Lipschitz assumption:

f(x+ Uiv) ≤ f(x) + 〈∇if(x), v〉+
Li

2
‖v‖22, i = 1, . . . , n

assume constant step size 0 < t ≤ 1/M , with M , maxi∈{1,...,n}Li

f(x+) ≤ f(x)− t

2
‖∇if(x)‖22 ≤ f(x)− t

2n
‖∇f(x)‖22

by convexity and Cauchy-Schwarz inequality,

f(x)− f⋆ ≤ 〈∇f(x), x− x⋆〉
≤ ‖∇f(x)‖2‖x− x⋆‖2 ≤ ‖∇f(x)‖2R(x(0))

therefore

f(x)− f(x+) ≥ t

2nR2

(

f(x)− f⋆
)2
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let ∆k = f(x(k))− f⋆, then

∆k −∆k+1 ≥
t

2nR2
∆2

k

consider their multiplicative inverses

1

∆k+1
− 1

∆k
=

∆k −∆k+1

∆k+1∆k
≥ ∆k −∆k+1

∆2
k

≥ t

2nR2

therefore
1

∆k
≥ 1

∆0
+

k

2nLmaxR2
≥ 2t

nR2
+

kt

2nR2

finally

f(x(k))− f⋆ = ∆k ≤ 2nR2

(k + 4)t
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Bounds on full gradient Lipschitz constant

lemma: suppose A ∈ RN×N is positive semidefinite and has the partition
A = [Aij]n×n, where Aij ∈ RNi×Nj for i, j = 1, . . . , n, and

Aii � LiINi
, i = 1, . . . , n

then
A �

(

n
∑

i=1

Li

)

IN

proof: xTAx =
n
∑

i=1

n
∑

i=1

xT
i Aijxj ≤

(

n
∑

i=1

√

xT
i Aiixi

)2

≤
(

n
∑

i=1

L
1/2
i ‖xi‖2

)2

≤
(

n
∑

i=1

Li

)

n
∑

i=1

‖xi‖22

conclusion: the full gradient Lipschitz constant Lf ≤
∑n

i=1Li
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Computational complexity and justifications

(steepest) coordinate descent O

(

nMR2

k

)

full gradient method O

(

LfR
2

k

)

in general coordinate descent has worse complexity bound

• it can happen that M ≥ O(Lf)

• choosing i(k) may rely on computing full gradient

• too expensive to do line search based on function values

nevertheless, there are justifications for huge-scale problems

• even computation of a function value can require substantial effort

• limits by computer memory, distributed storage, and human patience
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Example

minimize
x∈Rn

{

f(x)
def
=

n
∑

i=1

fi(xi) +
1

2
‖Ax− b‖22

}

• fi are convex differentiable univariate functions

• A = [a1 · · · an] ∈ Rm×n, and assume ai has pi nonzero elements

computing either function value or full gradient costs O(
∑n

i=1 pi) operations

computing coordinate directional derivatives: O(pi) operations

∇if(x) = ∇fi(xi) + aTi r(x), i = 1, . . . , n

r(x) = Ax− b

• given r(x), computing ∇if(x) requires O(pi) operations

• coordinate update x+ = x+ αei results in efficient update of residue:
r(x+) = r(x) + αai, which also cost O(pi) operations
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Outline

• theoretical justifications

• randomized coordinate descent method
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• accelerated coordinate descent method



Randomized coordinate descent

choose x(0) ∈ Rn and α ∈ R, and iterate for k = 0, 1, 2, . . .

1. choose i(k) with probability p
(α)
i =

Lα
i

∑n
j=1L

α
j

, i = 1, . . . , n

2. update x(k+1) = x(k) − 1

Li
Ui(k)∇i(k)f(x

(k))

special case: α = 0 gives uniform distribution p
(0)
i = 1/n for i = 1, . . . , n

assumptions

• ∇f(x) is block-wise Lipschitz continuous

‖∇if(x+ Uivi)−∇if(x)‖2 ≤ Li‖vi‖2, i = 1, . . . , n (1)

• f has bounded sub-level set, and f⋆ is attained at some x⋆
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Solution guarantees

convergence in expectation

E[f(x(k))]− f⋆ ≤ ǫ

high probability iteration complexity: number of iterations to reach

prob
(

f(x(k))− f⋆ ≤ ǫ
)

≥ 1− ρ

• confidence level 0 < ρ < 1

• error tolerance ǫ > 0
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Convergence analysis

block coordinate-wise Lipschitz continuity of ∇f(x) implies for i = 1, . . . , n

f(x+ Uivi) ≤ f(x) + 〈∇if(x), vi〉+
Li

2
‖vi‖22, ∀x ∈ RN , vi ∈ RNi

coordinate update obtained by minimizing quadratic upper bound

x+ = x+ Uiv̂i

v̂i = argmin
vi

{

f(x) + 〈∇if(x), vi〉+
Li

2
‖vi‖22

}

objective function is non-increasing:

f(x)− f(x+) ≥ 1

2Li
‖∇if(x)‖22
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A pair of conjugate norms

for any α ∈ R, define

‖x‖α =

( n
∑

i=1

Lα
i ‖xi‖22

)1/2

, ‖y‖∗α =

( n
∑

i=1

L−α
i ‖yi‖22

)1/2

let Sα =
∑n

i=1L
α
i (note that S0 = n)

lemma (Nesterov): let f satisfy (1), then for any α ∈ R,

‖∇f(x)−∇f(y)‖∗1−α ≤ Sα‖x− y‖1−α, ∀x, y ∈ RN

therefore

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ Sα

2
‖x− y‖21−α, ∀x, y ∈ RN
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Convergence in expectation

theorem (Nesterov): for any k ≥ 0,

Ef(x(k))− f⋆ ≤ 2

k + 4
SαR

2
1−α(x

(0))

where R1−α(x
(0)) = max

y

{

max
x⋆∈X⋆

‖y − x⋆‖1−α : f(y) ≤ f(x(0))

}

proof: define random variables ξk = {i(0), . . . , i(k)},

f(x(k))−Ei(k)f(x
(k+1)) =

n
∑

i=1

p
(α)
i

(

f(x(k))− f(x(k) + Uiv̂i)
)

≥
n
∑

i=1

p
(α)
i

2Li
‖∇if(x

(k))‖22

=
1

2Sα

(

‖∇f(x)‖∗1−α

)2
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f(x(k))− f⋆ ≤ min
x⋆∈X⋆

〈∇f(x(k)), x(k) − x⋆〉

≤ ‖∇f(x(k))‖∗1−αR1−α(x
(0))

therefore, with C = 2SαR
2
1−α(x

(0)),

f(x(k))−Ei(k)f(x
(k+1)) ≥ 1

C

(

f(x(k))− f⋆
)2

taking expectation of both sides with respect to ξk−1 = {i(0), . . . , i(k− 1)},

Ef(x(k))−Ef(x(k+1)) ≥ 1

C
Eξk−1

[

(

f(x(k))− f⋆
)2
]

≥ 1

C

(

Ef(x(k))− f⋆
)2

finally, following steps on page 12–6 to obtain desired result
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Discussions

• α = 0: S0 = n and

Ef(x(k))− f⋆ ≤ 2n

k + 4
R2

1(x
(0)) ≤ 2n

k + 4

n
∑

i=1

Li‖x(0)
i − x⋆‖22

corresponding rate of full gradient method: f(x(k))− f⋆ ≤ γ
kR

2
1(x

(0)),
where γ is big enough to ensure ∇2f(x) � γ diag{LiINi

}ni=1

conclusion: proportional to worst case rate of full gradient method

• α = 1: S1 =
∑n

i=1Li and

Ef(x(k))− f⋆ ≤ 2

k + 4

(

n
∑

i=1

Li

)

R2
0(x

(0))

corresponding rate of full gradient method: f(x(k))− f⋆ ≤ Lf

k R2
0(x

(0))

conclusion: same as worst case rate of full gradient method

but each iteration of randomized coordinate descent can be much cheaper
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An interesting case

consider α = 1/2, let Ni = 1 for i = 1, . . . , n, and let

D∞(x(0)) = max
x

{

max
y∈X⋆

max
1≤i≤n

|xi − yi| : f(x) ≤ f(x(0))

}

then R2
1/2(x

(0)) ≤ S1/2D
2
∞(x(0)) and hence

Ef(x(k))− f⋆ ≤ 2

k + 4

(

n
∑

i=1

L
1/2
i

)2

D2
∞(x(0))

• worst-case dimension-independent complexity of minimizing convex
functions over n-dimensional box is infinite (Nemirovski & Yudin 1983)

• S1/2 can be bounded for very big or even infinite dimension problems

conclusion: RCD can work in situations where full gradient methods have
no theoretical justification
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Convergence for strongly convex functions

theorem (Nesterov): if f is strongly convex with respect to the norm
‖ · ‖1−α with convexity parameter σ1−α > 0, then

Ef(x(k))− f⋆ ≤
(

1− σ1−α

Sα

)k
(

f(x(0))− f⋆
)

proof: combine consequence of strong convexity

f(x(k))− f⋆ ≤ 1

σ1−α

(

‖∇f(x)‖∗1−α

)2

with inequality on page 12–14 to obtain

f(x(k))−Ei(k)f(x
(k+1)) ≥ 1

2Sα

(

‖∇f(x)‖∗1−α

)2 ≥ σ1−α

Sα

(

f(x(k))− f⋆
)

it remains to take expectations over ξk−1 = {i(0), . . . , i(k − 1)}
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High probability bounds

number of iterations to guarantee

prob
(

f(x(k))− f⋆ ≤ ǫ
)

≥ 1− ρ

where 0 < ρ < 1 is confidence level and ǫ > 0 is error tolerance

• for smooth convex functions

O

(

n

ǫ

(

1 + log
1

ρ

))

• for smooth strongly convex functions

O

(

n

µ
log

(

1

ǫρ

))
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Minimizing composite objectives

minimize
x∈RN

{

F (x) , f(x) + Ψ(x)
}

assumptions

• f differentiable and ∇f(x) block coordinate-wise Lipschitz continuous

‖∇if(x+ Uivi)−∇if(x)‖2 ≤ Li‖vi‖2, i = 1, . . . , n

• Ψ is block separable:

Ψ(x) =

n
∑

i=1

Ψi(xi)

and each Ψi is convex and closed, and also simple
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Coordinate update

use quadratic upper bound on smooth part:

F (x+ Uiv) = f(x+ Uivi) + Ψ(x+ Uivi)

≤ f(x) + 〈∇if(x), vi〉+
Li

2
‖vi‖2 +Ψi(xi + vi) +

∑

j 6=i

Ψj(xj)

define

Vi(x, vi) = f(x) + 〈∇if(x), vi〉+
Li

2
‖vi‖2 +Ψi(xi + vi)

coordinate descent takes the form

x(k+1) = x(k) + Ui∆xi

where
∆xi = argmin

vi

V (x, vi)
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Randomized coordinate descent for composite functions

choose x(0) ∈ Rn and α ∈ R, and iterate for k = 0, 1, 2, . . .

1. choose i(k) with uniform probability 1/n

2. compute ∆xi = argminvi V (x(k), vi) and update

x(k+1) = x(k) + Ui∆xi

• similar convergence results as for the smooth case

• can only choose coordinate with uniform distribution?

(see references for details)
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Assumptions

restrict to unconstrained smooth minimization problem

minimize
x∈ℜN

f(x)

assumptions

• ∇f(x) is block-wise Lipschitz continuous

‖∇if(x+ Uiv)−∇if(x)‖2 ≤ Li‖v‖2, i = 1, . . . , n

• f has convexity parameter µ ≥ 0

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
‖y − x‖2L
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Algorithm: ARCD(x0)

Set v0 = x0, choose γ0 > 0 arbitrarily, and repeat for k = 0, 1, 2, . . .

1. Compute αk ∈ (0, n] from the equation

α2
k =

(

1− αk
n

)

γk +
αk
n µ

and set γk+1 =
(

1− αk
n

)

γk +
αk
n µ

2. Compute yk = 1
αk
n γk+γk+1

(αk
n γkv

k + γk+1x
k
)

3. Choose ik ∈ {1, . . . , n} uniformly at random, and update

xk+1 = yk − 1
Lik

Uik∇ikf(y
k)

4. Set vk+1 = 1
γk+1

(

(

1− αk
n

)

γkv
k + αk

n µyk − αk
Lik

Uik∇ikf(y
k)
)
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Algorithm: ARCD(x0)

Set v0 = x0, choose α−1 ∈ (0, n], and repeat for k = 0, 1, 2, . . .

1. Compute αk ∈ (0, n] from the equation

α2
k =

(

1− αk
n

)

α2
k−1 +

αk
n µ,

and set θk = nαk−µ
n2−µ

, βk = 1− µ
nαk

2. Compute yk = θkv
k + (1− θk)x

k

3. Choose ik ∈ {1, . . . , n} uniformly at random, and update

xk+1 = yk − 1
Lik

Uik∇ikf(y
k)

4. Set vk+1 = βkv
k + (1− βk)y

k − 1
αkLik

Uik∇ikf(y
k)
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Convergence analysis

theorem: Let x⋆ be an solution of minx f(x) and f⋆ be the optimal value.
If {xk} is generated by ARCD method, then for any k ≥ 0

E[f(xk)]− f⋆ ≤ λk

(

f(x0)− f⋆ +
γ0
2
‖x0 − x⋆‖2L

)

,

where λ0 = 1 and λk =
∏k−1

i=0

(

1− αi
n

)

. In particular, if γ0 ≥ µ, then

λk ≤ min







(

1−
√
µ

n

)k

,

(

n

n+ k
√
γ0
2

)2






.

• when n = 1, recovers results for accelerated full gradient methods

• efficient implementation possible using change of variables
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Randomized estimate sequence

definition: {(φk(x), λk)}∞k=0 is a randomized estimate sequence of f(x) if

• λk → 0 (assume λk independent of ξk = {i0, . . . , ik})

• Eξk−1
[φk(x)] ≤ (1− λk)f(x) + λkφ0(x), ∀x ∈ ℜN

lemma: if {x(k)} satisfies Eξk−1
[f(xk)] ≤ minxEξk−1

[φk(x)], then

Eξk−1
[f(xk)]− f⋆ ≤ λk (φ0(x

⋆)− f⋆) → 0

proof: Eξk−1
[f(xk)] ≤ min

x
Eξk−1

[φk(x)]

≤ min
x

{(1− λk)f(x) + λkφ0(x)}

≤ (1− λk)f(x
⋆) + λkφ0(x

⋆)

= f⋆ + λk(φ0(x
⋆)− f⋆)
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Construction of randomized estimate sequence

lemma: if {αk}k≥0 satisfies αk ∈ (0, n) and
∑∞

k=0αk = ∞, then

λk+1 =

(

1 − αk

n

)

λk, with λ0 = 1

φk+1(x) =

(

1 − αk

n

)

φk(x) +
αk

n

(

f(y
k
) + n〈∇ik

f(y
k
), xik

− y
k
ik
〉 + µ

2
‖x − y

k‖2
L

)

is a pair of randomized estimate sequence

proof: for k = 0, Eξ−1[φ0(x)] = φ0(x) = (1− λ0)f(x) + λ0φ0(x); then

Eξk
[φk+1(x)] = Eξk−1

[

Eik
[φk+1(x)]

]

= Eξk−1

[(

1−αk

n

)

φk(x)+
αk

n

(

f(y
k
)+〈∇f(y

k
), x−y

k〉+µ

2
‖x−y

k‖2
L

)]

≤ Eξk−1

[(

1 − αk
n

)

φk(x) +
αk
n f(x)

]

≤
(

1 − αk

n

)

[(1 − λk)f(x) + λkφ0(x)] +
αk

n
f(x) . . .
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Derivation of APCD

• let φ0(x) = φ⋆
0 +

γ0
2 ‖x− v0‖2L, then for all k ≥ 0,

φk(x) = φ⋆
k +

γk
2
‖x− vk‖2L

can derive expressions for φ⋆
k, γk and vk explicitly

• follow the same steps as in deriving accelerated full gradient method

• actually use a strong condition

Eξk−1
f(xk) ≤ Eξk−1

[min
x

φk(x)]

which implies
Eξk−1

f(xk) ≤ min
x

Eξk−1
[φk(x)]
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