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12. Coordinate descent methods

e theoretical justifications
e randomized coordinate descent method
e minimizing composite objectives

e accelerated coordinate descent method
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Notations

consider smooth unconstrained minimization problem:

minimize f(x)
reRN

e coordinate blocks: = = (z1,...,2,) with x; e RN and > N, =N

e more generally, partition with a permutation matrix: U = [U;y - - - U,,]
n
xi:UiTa:, SEZZUZ{EZ'
i=1

e blocks of gradient:
Vif(z) = UV f(x)
e coordinate update:

vt =2 —tU;V,f(2)
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(Block) coordinate descent

choose (9 € R, and iterate for k =0,1,2,...

1. choose coordinate (k)

2. update z(F+1) = zF) — tkUisz'kf(w(k))

e among the first schemes for solving smooth unconstrained problems
e cyclic or round-Robin: difficult to analyze convergence
e mostly local convergence results for particular classes of problems

e does it really work (better than full gradient method)?
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Steepest coordinate descent

choose (9 € R”, and iterate for k =0,1,2,...

1. choose i(k) = argmax ||V¢f(x(k))|\2
ie{l,....,n}

2. update z(k*+1) = z(F) _ tkUz‘(k)vi(k)f(x(k))

assumptions
e Vf(x) is block-wise Lipschitz continuous
|Vif(z + Upw) = Vif(2)|2 < Lillvfl, i=1,...,n

e f{ has bounded sub-level set, in particular, define

le) = e { a1y = a* s £0) < 1(0) }

Y rreX*
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Analysis for constant step size

quadratic upper bound due to block coordinate-wise Lipschitz assumption:

fla+U) < (@) + (Vif@)o) + Zol3 i=1...m

assume constant step size 0 <t < 1/M, with M = max;e(1,...n} Li
t t
flat) < @) =S IVif@)I3 < f@) - oIV FE@)I3

by convexity and Cauchy-Schwarz inequality,

fla) = < (Vi)a—a7)
< IVF@)alle =22 < IVF(@)]2RE®)

therefore
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let A = f(x®)) — f* then

t

Ap — Apq > AZ
consider their multiplicative inverses
11 _ Ar — Agaq - Ar — Agaq < t
A1 Ag Ari1Ap Az — 2nR2
therefore
1 - 1 N k < 2t N kt
A = Ay 2nLyp.R? — nR? 2nR?
finally
2nR?
By _ 7 — A, <
f(@™) = f k_(k+4)t
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Bounds on full gradient Lipschitz constant

lemma: suppose A € RV*¥ is positive semidefinite and has the partition
A = [Aij]lnxn, Where A;; € RYi>*Nj for 4,5 =1,...,n, and

AzszzINza iZl,...,n

then

A= (i Li) In
i—1

. 2
proof: et Ar = ZZxTwaj < (Z\/xffluxi>
i=1

1=1 1=1
< (Suren) = (Sn) S
i=1 =1

conclusion: the full gradient Lipschitz constant Ly < > | L;
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Computational complexity and justifications

nM R?
k

(steepest) coordinate descent 0, (

L 2
full gradient method O (fTR>

in general coordinate descent has worse complexity bound
e it can happen that M > O(Ly)
e choosing i(k) may rely on computing full gradient

e too expensive to do line search based on function values

nevertheless, there are justifications for huge-scale problems

e even computation of a function value can require substantial effort

e limits by computer memory, distributed storage, and human patience
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Example

reR"

of 1
minimize {f(x) ! g fi(z;) + 5”1455 — b|§}
i=1

e f; are convex differentiable univariate functions

e A=la;---ay] € R™*™, and assume a; has p; nonzero elements
computing either function value or full gradient costs O(> ", p;) operations

computing coordinate directional derivatives: O(p;) operations
Vif(z) = Vfi(zi)+ajr(z), i=1,...,n
r(r) = Ax—0»

e given r(x), computing V;f(x) requires O(p;) operations

e coordinate update T = = + ae; results in efficient update of residue:
r(xz™) = r(x) + aa;, which also cost O(p;) operations
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Outline

theoretical justifications
randomized coordinate descent method
minimizing composite objectives

accelerated coordinate descent method



Randomized coordinate descent

choose (99 € R™ and o € R, and iterate for k =0,1,2,. ..
() _ L3

’ Zj:1 L.(]X
1

2. update g+ — (k) _ 7. i(k)vz‘(k)f(flf(k))

1. choose i(k) with probability p i=1,....n

special case: a = 0 gives uniform distribution pz(-o) =1/nfori=1,...,n

assumptions
e Vf(x) is block-wise Lipschitz continuous

IVif(z +Uivi) = Vif(2)ll2 < Liflvifl2,  i=1,...,n (1)

e f{ has bounded sub-level set, and f* is attained at some z*
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Solution guarantees

convergence In expectation

E[f(zM)] - f* < e

high probability iteration complexity: number of iterations to reach

prob(f(z®) — f*<e) >1—p
e confidence level 0 < p < 1

e error tolerance € > 0
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Convergence analysis

block coordinate-wise Lipschitz continuity of V f(x) implies fori =1,....,n

L; |
fl@+Uwi) < f(z) + (Vif(@),0) + llvills, Vo e RY, v € RY

coordinate update obtained by minimizing quadratic upper bound

T = x4+ U,
) . Li, o
0; = argmin f(z) +(Vif(x),v;) + 7”%‘”2

objective function is non-increasing:
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A pair of conjugate norms

for any a € R, define

n 1/2 n
o] = (ZLmna) ol = (ZLZ‘*HinI%)
1=1

1=1

1/2

let S, = >, LY (note that Sy = n)

lemma (Nesterov): let f satisfy (1), then for any a € R,
IVf(@) = ViWli—a < Salle—ylli—a,  Va,yeRY

therefore

f@) < f@)+(Vf@ra—n) + 2w —ylP .. VeyeRY
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Convergence in expectation
theorem (Nesterov): for any k£ > 0,
2

Ef(#") = f* < = SaRT_ (@)

where Rl_a(a:(o)) = myax{ max ||y —x™||1—a : fly) < f(z(o))}

*GX*
proof: define random variables &, = {i(0),...,i(k)},

f(@®) = By f(zFHY) = ZP ) — [z + Usiy))

n (a)

1V

(E)y |12
LG

’[,:

1 . 2
= 55 (IVf@Ii-a)
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f@®) — < min (Vf(@W), a2 —2%)

T xreX*

< V@) i_aRia(@®)

therefore, with C' = 2S5, R?__(z(?),

1

@) = By f@®) = Z(f@) = 1)

taking expectation of both sides with respect to ;1 = {i(0),...,i(k—1)},

Bf®) - Bfa ) > ZBg, [(fa®) - )]
> é(Ef(:c“ﬁ))—f*)2

finally, following steps on page 12—6 to obtain desired result
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Discussions

e o =0: Syp=n and

2
Ef(z®)— f* < L R2:©) <

_95*H2

corresponding rate of full gradient method: f(:z:(k)) — f* < IR3(z\Y),
where v is big enough to ensure V?f(z) < ydiag{L;In,} ,

conclusion: proportional to worst case rate of full gradient method

o o = 1: Sl = E?:lLi and

Ef(z") - f* < ki4 (ZL)RO( )

1=1
corresponding rate of full gradient method: f(z(*)) — f* < %R%(a:(o))

conclusion: same as worst case rate of full gradient method

but each iteration of randomized coordinate descent can be much cheaper
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An interesting case

consider a = 1/2, let N;=1fori=1,...,n, and let

x yeX*1<i<n

Doo(2'9) = max{max max |x; —y;| : fx) < f(a:(o))}

then R?

1/2(5’7(0)) < Sl/ngo(x(O)) and hence

e worst-case dimension-independent complexity of minimizing convex
functions over n-dimensional box is infinite (Nemirovski & Yudin 1983)

e Si/2 can be bounded for very big or even infinite dimension problems

conclusion: RCD can work in situations where full gradient methods have
no theoretical justification
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Convergence for strongly convex functions

theorem (Nesterov): if f is strongly convex with respect to the norm
| - ||1_« with convexity parameter o1_, > 0, then

o k
Ef(z™) - f* < (1— ;-a) (f™) = 1)

proof: combine consequence of strong convexity

Fa®) £ < (IVf@)5-a)’

l—«

with inequality on page 12-14 to obtain

F@®) = B @) = S (IVF@)E)* = T2 (F®) - 1)

it remains to take expectations over &1 = {i(0),...,i(k — 1)}
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High probability bounds

number of iterations to guarantee

prob(f(z™) — f*<e) > 1—p

where 0 < p < 1 is confidence level and ¢ > 0 is error tolerance

e for smooth convex functions

o (i (1+43))

e for smooth strongly convex functions
1
(s ()
Y €p
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Minimizing composite objectives

minimize {F(x) £ f(z)+ U(z)}

reRN
assumptions

e f differentiable and V f(x) block coordinate-wise Lipschitz continuous

IVif(z +Uivi) = Vif(x)ll2 < Lillvill2,  i=1,....n

e WU is block separable:
U(z) =) U(x;)
i=1

and each V; is convex and closed, and also simple
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Coordinate update

use quadratic upper bound on smooth part:

Flx+Uw) = flz+Uw)+VY(x+ U
< flx) + (Vif(x),v:) + %H%Hz + (a4 vi) + Y Wy(xy)
ji

define

Vil v) = (&) + (Vaf (2),03) + il + Wil + )

coordinate descent takes the form
gFHD) — (k) 4 U;Ax;

where
Ax; = argmin V (z, v;)

Vg

12-21
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Randomized coordinate descent for composite functions

choose (9 € R” and o € R, and iterate for k =0,1,2,...
1. choose i(k) with uniform probability 1/n
2. compute Az; = argmin,, V(™) v;) and update

g FTD = 2 4+ U Ax,

e similar convergence results as for the smooth case

e can only choose coordinate with uniform distribution?

(see references for details)
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Assumptions

restrict to unconstrained smooth minimization problem

minimize f(x)
reRN

assumptions

e Vf(x) is block-wise Lipschitz continuous

IVif (@ +U) = Vif(@)2 < Lillollas i =1,...

e f has convexity parameter p > 0

) 2 f@) + (VH@)y =)+ Slly 2l

Coordinate descent methods
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Algorithm: ARCD(z")
Set v = 2, choose v > 0 arbitrarily, and repeat for k =0,1,2,...

1. Compute aj € (0,n] from the equation
of = (1= 5w+ S

and set yx11 = (1 — %) Vi + %,u

2. Compute y"C 7 1 (i"f%vk+%+1xk)

Vet V41

3. Choose ix, € {1,...,n} uniformly at random, and update

=y UL VT

4. Set vt = ’Yk1+1 ((1 - %) ,kak + %,uyk — %Uzkv%kf(yk))
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Algorithm: ARCD(z")
Set v = zY, choose a_1 € (0,n], and repeat for k =0,1,2,...

1. Compute aj € (0,n] from the equation

ap = (1= 8) ai_y + Skp,
__ nog—p 1B
and set 6. = > O =1 oy
2. Compute y* = 00" + (1 — 0)"
3. Choose ix, € {1,...,n} uniformly at random, and update

4. Set v* Tt = Brok + (1 — Br)y* — ——U;, Vi, f(yF)
kg,
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Convergence analysis

theorem: Let z* be an solution of min, f(z) and f* be the optimal value.
If {x*} is generated by ARCD method, then for any k& > 0

E[f(@)] = f* < e (FG) =+ Dl =213

where \g = 1 and A\, = Hf__ol (1 — %) In particular, if v > u, then

ke 2
Ar < min ( —ﬂ> ; ( nm)

e when n = 1, recovers results for accelerated full gradient methods

e efficient implementation possible using change of variables
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Randomized estimate sequence

definition: {(¢x(x), \x)}72, is a randomized estimate sequence of f(z) if

e )y — 0 (assume Ay independent of & = {ig,...,ix})

e g [0n(@)] < (1-A)f(@)+ Mdola), Vo€ RY

lemma: if {z(0)} satisfies B¢, [f(2*)] < min, E¢, [¢r(x)], then

Ee, [f(z")] = f* < M(go(z™) = f*) — 0

proof: Egk_l[f(xk)]

INA

min E¢, _, |[¢r(2)]

min { (1 — Ag) f(2) + Axdo(2) }
(1 = Ap) f(@") + Ardo(z7)
7+ Ai(po(z™) — f7)

IA

INA
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Construction of randomized estimate sequence
lemma: if {ay}r>0 satisfies ai € (0,n) and > .~ o = 00, then

Api1 = (1 _ O‘—> Ap,  with Ag = 1

pra(@) = (1= 2) oute) + 2 (FGN) + (Vi f @), — o) + Sl — o)

is a pair of randomized estimate sequence

proof: for k = 0, Be [do(x)] = do(x) = (1 — Ao)f(x) + Aodo(x): then
Ee,[¢re1(2)] = gy, [Eqy[fr1 ()]
= B, [(1-2) @)+ 2 (705 + (T FH o=+ oy )]
< By, [(1—3E) on(a) + 22 f(2)]
(1= 2) 10 = 2F @) + Mo(a)] + 2 1)

VAN
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Derivation of APCD

o let po(z) = ¢ + Lf|x — v°||7, then for all & > 0,
Tk
o(r) = df + o lle = v"IIz

can derive expressions for ¢%, v, and v* explicitly
e follow the same steps as in deriving accelerated full gradient method

e actually use a strong condition
Efk—1f(xk) = Eﬁk—1[m£n Pr()]

which implies
Eﬁk_lf(xk> < mminEﬁkq[gbk(x)]
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