
Course Notes for EE227C (Spring 2018):
Convex Optimization and Approximation

Instructor: Moritz Hardt
Email: hardt+ee227c@berkeley.edu

Graduate Instructor: Max Simchowitz
Email: msimchow+ee227c@berkeley.edu

October 15, 2018

14 Algorithms using duality

The Lagrangian duality theory from the previous lecture can be used to design im-
proved optimization algorithms which perform the optimization on the dual function.
Oftentimes, passing to the dual can simplify computation or enable parallelization.

14.1 Review

Recall the primal problem

min
x∈Ω

f (x)

s.t. Ax = b

The corresponding dual problem is obtained by considering the Lagrangian

L(x, λ) = f (x) + λT(Ax− b)

where λi are called Lagrange multipliers. The dual function is defined as

g(λ) = inf
x∈Ω

L(x, λ)

and the dual problem is
sup

λ∈Rm
g(λ)

1

Definition 14.1 (Concave functions). A function f is concave ⇐⇒ − f is convex.

Fact 14.2. The dual function is always concave (even if f and Ω are not convex).

Proof. For any x ∈ Ω, L(x, λ) is a linear function of λ so g(λ) is an infimum over a
family of linear functions, hence concave. �

14.2 Dual gradient ascent

Concavity of the dual function g(λ) ensures existence of subgradients, so the subgra-
dient method can be applied to optimize g(λ). The dual gradient ascent algorithm is as
follows:

Start from initial λ0. For all t > 0:

xt = arg inf
x∈Ω

L(x, λt)

λt+1 = λt + η(Axt − b)

This yields the O(1/
√

t) convergence rate obtained by the subgradient method.

14.3 Augmented Lagrangian method / method of multipliers

Whereas dual gradient ascent updates λt+1 by taking a step in a (sub)gradient direction,
a method known as the dual proximal method can be motivated by starting with using
the proximal operator [PB14] as an update rule for iteratively optimizing λ:

λt+1 = proxηtg(λt) = arg sup
λ

inf
x∈Ω

f (x) + λT(Ax− b)︸ ︷︷ ︸
g(λ)

− 1
2ηt
‖λ− λt‖2︸ ︷︷ ︸

proximal term︸ ︷︷ ︸
h(λ)

Notice that this expression includes a proximal term which makes h(λ) strongly
convex.

However, this update rule is not always directly useful since it requires optimizing
h(λ) over λ, which may not be available in closed form. Instead, notice that if we can
interchange inf and sup (e.g. strong duality, Sion’s theorem applied when Ω is compact)
then we can rewrite

sup
λ

inf
x∈Ω

f (x) + λT(Ax− b)− 1
2ηt
‖λ− λt‖2 = inf

x∈Ω
sup

λ

f (x) + λT(Ax− b)− 1
2ηt
‖λt − λ‖2

= inf
x∈Ω

f (x) + λT
t (Ax− b) +

ηt

2
‖Ax− b‖2

where the inner sup is optimized in closed-form by λ = λt + ηt(Ax− b). To isolate the
remaining optimization over x, we make the following definition.

2

Definition 14.3 (Augmented Lagrangian). The augmented Lagrangian is

Lη(x, λ) = f (x) + λT
t (Ax− b) +

ηt

2
‖Ax− b‖2

The augmented Lagrangian method (aka Method of Multipliers) is defined by the
following iterations:

xt = arg inf
x∈Ω

Lηt(x, λt)

λt+1 = λt + ηt(Axt − b)

While the iterations look similar to dual gradient ascent, there are some noteworthy
differences

• The method of multipliers can speed up convergence (e.g. for non-smooth func-
tions), but computing xt may be more difficult due to the additional ηt

2 ‖Ax− b‖2

term in the augmented Lagrangian

• L(x, λt) is convex in x, but Lη(x, λt) is strongly convex in λ (if A is full-rank)

• Convergence at a O(1/t) rate. More precisely, for constant step size η, we can
show show the method of multipliers satisfies

g(λt)− g∗ > −‖λ
∗‖2

2ηt

14.4 Dual decomposition

A major advantage of dual decomposition that it can lead to update rules which are
trivially parallelizable.

Suppose we can partition the primal problem into blocks of size (ni)
N
i=1, i.e.

xT = ((x(1))T, · · · , (x(N))T) xi ∈ Rni ,
N

∑
i=1

ni = n

A = [A1| · · · |AN] Ax =
N

∑
i=1

Aix(i)

f (x) =
N

∑
i=1

fi(x(i))

Then the Lagrangian is also separable in x

L(x, λ) =
N

∑
i=1

(
fi(x(i)) + λT Aix(i) −

1
N

λTb
)
=

N

∑
i=1

Li(x(i), λ)

Each term in the sum consists of one non-interacting partition (x(i), Ai, fi), so mini-
mization of each term in the sum can occur in parallel. This leads to the dual decomposition
algorithm:

3

• In parallel on worker nodes: x(i)t = arg infx(i) Li(x(i), λt)

• On a master node: λt+1 = λt + η(Ax− b)

Example 14.4 (Consensus optimization). Consensus optimization is an application that
comes up in distributed computing which can be solved using dual decomposition.
Given a graph G = (V, E),

min
x ∑

v∈V
fv(xv) : xv = xu ∀(u, v) ∈ E

This problem is separable over v ∈ V, so dual decomposition applies.

Example 14.5 (Network utility maximization). Suppose we have a network with k links,
each with capacity ci. We are interested in allocating N different flows with fixed routes
over these links such that utility is maximized and resource constraints are not exceeded.
Let xi ∈ RN represent the amount of flow i allocated and Ui : R→ R a convex utility
function which returns the amount of utility obtained from having xi amount of flow i.
The optimization problem is

max
x

N

∑
i=1

Ui(xi) : Rx 6 c

where R is a k× N matrix whose (k, i)th entry gives the amount of the capacity of link k
is consumed by flow i.

To rewrite the primal problem in standard form (i.e. as a minimization), take nega-
tives:

min
x
−∑

i
Ui(x(i)) : Rx 6 c

The dual problem is then

max
λ>0

min
x ∑

i
−Ui(x(i)) + λT(Rx− c)

where the Rx 6 c primal inequality constraint results in the λ > 0 constraint. The
second term can be rewritten as λT

(
∑i Rixi − 1

N c
)

, showing that the dual splits over i
and hence dual decomposition applies. This leads to a parallel algorithm which each
worker node computes

arg max
xi

Ui(xi)− λTRixi

and the master node computes

λt+1 = [λt + η(Rx− c)]+

We take the positive part because of the λ > 0 constraint.
Aside: In resource allocation problems, the values of the dual variables λ at the

optimal point have an economic interpretation as “prices” to the resources. In this
example, λk should be interpreted as the price per unit of flow over link k.

4

14.5 ADMM — Alternating direction method of multipliers

While dual decomposition can be used to parallelize dual subgradient ascent, it doesn’t
work with the augmented Lagrangian. This is because the coupling between the decision
variables introduced by the ‖Ax− b‖2 term prevents the augmented Lagrangian from
being separable over x.

The goal of the alternating direction method of multipliers (ADMM) is to obtain
the best of both worlds: we would like both the parallelism offered by the method of
multipliers as well as the faster convergence rate of the augmented Lagrangian. We
will see that similar to dual decomposition, ADMM partitions the decision variables
into two blocks. Also, similar to the method of multipliers, ADMM uses the augmented
Lagrangian Lη(x, z, λt).

Consider a problem of the form

min
x,z

f (x) + g(z) : Ax + Bz 6 c

In other words, we can split the objective and constraints into two blocks x and z.
The method of multipliers would jointly optimize the augmented Lagrangian on

both blocks in one single optimization step:

(xt+1, zt+1) = inf
x,z

Lη(x, z, λt)

λt+1 = λt + η(Axt+1 + Bzt+1 − c)

In contrast, ADMM alternates (the “A” in “ADMM”) between optimizing the aug-
mented Lagrangian over x and z:

xt+1 = inf
x

Lη(x, zt, λt)

zt+1 = inf
z

Lη(xt+1, z, λt)

λt+1 = λt + η(Axt+1 + Bzt+1 − c)

Unlike the method of multipliers, this is not parallelizable since xt+1 must be com-
puted before zt+1. Also, convergence guarantees are weaker: rather than getting a
convergence rate we only get an asymptotic convergence guarantee.

Theorem 14.6. Assume

• f , g have a closed, non-empty, convex epigraph

• L0 has a saddle x∗, z∗, λ∗, i.e.:

∀x, z, λ : L0(x∗, z∗, λ) 6 L0(x∗, z∗, λ∗) 6 L(x, z, λ∗)

Then, as t→ ∞, ADMM satisfies

f (xt) + g(zt)→ p∗

λt → λ∗

5

Aside: Saddles are useful because inf and the sup can be swapped. To see this, note
the saddle condition

L(x∗, λ) 6 L(x∗, λ∗) 6 L(x, λ∗)

implies that

inf
x

sup
λ

L(x, λ) 6 sup
λ

L(x∗, λ)

6 L(x∗, λ∗)

= inf
x

L(x, λ∗)

6 sup
λ

inf
x

L(x, λ)

References

[PB14] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in
Optimization, 1(3):127–239, 2014.

6

	Algorithms using duality
	Review
	Dual gradient ascent
	Augmented Lagrangian method / method of multipliers
	Dual decomposition
	ADMM — Alternating direction method of multipliers

