Convex Optimization 2: Algorithms (CS5660)

Instructor: Saketh

January 5, 2024

Contents

Contents| i
1__Introduction| 3
2 (Sub)-Gradient Descent| 5
2.1 Unconstrained Non-smooth Convex Programs| 5
2.2 Unconstrained Smooth Convex Programs| 6
2.3 Unconstrained Smooth Strongly Convex Programs| 6
3 Nesterov’s Optimal Methods (Unconstrained)| 7
[4 Projected Gradient Descent| 9
[4.1 Constrained, Non-smooth Convex Programs|. 10
[4.2 Constrained, Smooth Convex Programs| 10
[4.3 Constrained, Smooth and Strongly Convex Programs|. 10
5 Frank-Wolfe aka. Conditional Gradient Decentl 11
6 Mirror Descentl 13
[7__Proximal Gradient Descentl 15
I8 Stochastic Gradient Descent] 17

21

Chapter 1

Introduction

We began by introducing the framework /model for studying algorithms for solv-
ing convex programs. This is analogous to that in classical CS algorithms. Let
us denote by Cf’p , the set of all conve functions over R” tha are k** order
continuously differentiabl and whose p™* derivative is L-Lipschitzﬂ Below are
the key components of this model:

Class of Programs: This is a specific set of (interesting) mathematical programs.
In this course we will focus on sub-classes of Convex Programs®| (CPs) like:
Unconstrained CPs with objective in C}* etc.

Class of Algorithms: This is a set of numerical proceduresﬂ (algorithms) that
have access to exactly the same amount of information about the programs
they intend to solve. Initially, we will focus on so-called First Order Black
Box methods: methods that access an unconstrained program (to be solved)
only via an oracle that provides gradient[| of objective at z, given z.

Success: An algorithm is said to solve a program successfully if it is guaranteed to
return a £ in the feasibility set such that f(Z)— f(z*) < € for any given € > 0.
This condition at a specific € > 0 is known as the e-optimality condition.
Here, z* is any optimal solution of the program (to be solved).

!Refer Lecture 17 in https://www.overleaf.com/project/5c2d7deeeb7e57626953789f.

2We always consider extended functions where f(z) = co V z ¢ dom(f).

$Continuously differentiable in the (relative) interior of their domain.

“We say f is L-Lipschitz iff | f(z) — f(y)| < L||z — y|| Vz,y € dom(f)

SRefer Lecture 22 in https://www.overleaf.com/project/5c2d7deeeb7e57626953789f.

5Typically iterative in nature, though not necessarily.

"Like Nesterov Nesterov| [2014] (pg 7), we may also assume the oracle returns the function
values too.

https://www.overleaf.com/project/5c2d7deeeb7e57626953789f
https://www.overleaf.com/project/5c2d7deeeb7e57626953789f

Analytical Complexity: This is the number of calls to the oracle made by an
algorithm for achieving e-optimality for a program, expressed as a function
of €. Needless to say, an algorithm is better if its analytical complexity is
lower. The inverse function, i.e., € written as a function of number of calls
is called the convergence rate.

Optimal Algorithm: Given a class of programs and a class of algorithms, an
algorithm in the given class (of algorithms) that is guaranteed to succeed
on all programs in the given class (of programs) and has the worst-case
analytical complexity (over the class of programs) < to that with any other
algorithm in the class is said to be an optimal algorithmf}

Interested students, please refer section 1.1 in Nesterov| [2014] for more details.

8Note that still it may happen that on the specific program you need to solve, an optimal
algorithm may converge slower than a suboptimal one!

4

Chapter 2

(Sub)-Gradient Descent

We begin the study with a particular algorithm called gradient descent. Motivated
by the very definition of derivative, we defined (vanilla) gradient descent as:

(2.1)) =z _ v f(z®),V £ =0,1,2,...

We also noted it’s dual interpretation, which is not only insightful, but motivates
various other algorithms:
(2.2)

22 = arg min 2177 |z - $<k>H2 + £ (2®) + V£ (a®) (z - 2®), Yk =0,1,2,...

In simple words, gradient descent approximates function by its first order approx-
imation and then minimizes this proxy in a regularized fashion.

Note that, even if the function is not differentiable, a sub-gradient exists,
which is the same as gradient in the differentiable case. We hence use the same
notation for gradient as well as sub-gradient. In either case we refer to the al-
gorithm as gradient descent, while we may sometimes qualify it as sub-gradient
descent.

2.1 Unconstrained Non-smooth Convex Programs

Here, we assume that the objective is convex and is L-Lipschitz continuous. We
presented two different yet related derivations:

1. theorem 3.2 in Bubeck [2015] (with z;.1 = y:41 in (3.3)).

2. theorem 3.2.2 in |Nesterov| [2014] (with @ = R").

5

Interestingly, the derivations show that sub-gradient descent achieves optimall]
convergence rate of O (1/\/E)

2.2 Unconstrained Smooth Convex Programs

Here, we assume that the objective is convex and is smooth, i.e., the gradient is L-
Lipschitz. The interplay between these two structures (convexity and smoothness)
leads to important inequalites as detailed in theorem 2.1.5 in Nesterov| [2014]. The
most important is (2.1.7), which provides a positive lower bound for the first order
approximation.

We then presented theorem 2.1.14 in Nesterov| [2014], which shows that gra-
dient descent converges at rate O(1/k), which is faster than that in the non-smooth
case, nevertheless?| (perhaps) sub-optimal.

2.3 Unconstrained Smooth Strongly Convex Pro-
grams

Here, we additionally assume that the objective is u-strongly convex. This leads to
the tighter bounds in 2.1.24 in Nesterov|[2014]. We then presented theorem 2.1.15,
which shows that the convergence is linear with rate %, where @ = %, is known
as the condition number. However, again this is (perhaps) sub-optima]ﬂ Please

refer theorem 3.10 Bubeck [2015] for a simplified version of this theorem.

!Theorem 3.2.1 in Nesterov| [2014] shows that the lower bound is O (1/\/5)
>Theorem 2.1.7 Nesterov [2014] shows that O(1/k?) is a lower bound.

2
3Theorem 2.1.13 |Nesterov| [2014] shows lower bound of Vo1
VQ+1

6

Chapter 3

Nesterov’s Optimal Methods
(Unconstrained)

We followed the derivation in section 3 in https://arxiv.org/pdf/1407.1537.
pdff] This gave us an insight that acceleration (i.e., O(1/k?) convergence rate)
can be achieved by carefully mixing the strict decrease steps (like gradient de-
scent majorization-minimization in the smooth case) with decrease on average
case steps (like sub-gradient descent in non-smooth case). We concluded by in-
tuitively describing the ODE based understanding of momentum methods: see
https://arxiv.org/pdf/1603.01243.pdf. The momentum based methods are
formally defined and analyzed in the original work of Nesterov in section 2.2 in|Nes-
terov [2014). However, this derivation is beyond the scope of this course.

https://distill.pub/2017/momentum/|is a very nice and easy to read arti-
cle on momentum methods. The last para (onwards and downwards) summarizes
various explanations for this algo.

!Please read this section by replacing all occurences of the term “Mirror descent” by “sub-
gradient descent” and w(y) = %||y[|*. This makes “mirror descent” same as sub-gradient descent.

7

https://arxiv.org/pdf/1407.1537.pdf
https://arxiv.org/pdf/1407.1537.pdf
https://arxiv.org/pdf/1503.01243.pdf
https://distill.pub/2017/momentum/

Chapter 4

Projected Gradient Descent

Here we consider constrained minimization of the form min,c 7 f(z). While it is
not clear how to extend the primal definition of gradient descent (2.1)), the dual
definition (2.2) naturally generalizes to the following:
(4.1)
1 2

(k+1) = in — |lg — £ (k) (k) _ (k) —
z —arg];%}#% Hx z H —l—f(a:)—i—Vf(x)(a: z), Vk=0,1,2,...
In simple words, the objective function’s first order approximation is minimized
within the feasibility set, in a regularized fashion. Interestingly, (4.1)) is same as
the following (primal definition):

(4.2)) =11, (:c(k) - an(m<k>)) Vk=0,1,2,...,

where ITx(z) is the projection of z onto the set F, defined by [1(z) = argminycr ||z—
y||2. The method defined by (4.2)), equivalently, (4.1), is popularly known as Pro-
jected (Sub)Gradient Descent. The most interesting inequality that is satisfied by
projection is formalized in Lemma 3.1 in [Bubeck| [2015]. This inequality turns out
to be of critical importance in the convergence analysis below.

Given that the feasibility set F is simple enough that the projection onto it
can be computed efficiently (i.e., comparable to that of gradient oracle), one can
still compare algorithms using convergence rate. Ofcourse, now we additionally
assume that all the algorithms have access to an appropriate projection oracle (for
efficiently projecting onto the feasibility set). We then gave examples of feasibility
sets where projection can be done in polynomial time:

1. n-dimensional 1-norm ball and simplex can be projected in O (nlog(n)) time
using sorting [f]

1See Fig. 3 in https://link.springer.com/content/pdf/10.1023/A:1013637720281.pdf.

9

https://link.springer.com/content/pdf/10.1023/A:1013637720281.pdf

2. n-dimensional 2-norm ball projection can be done by simply normalizing the
vector in O(n) time.

3. n-dimensional oo-norm ball projection can be done by soft-thresholding in
O(n) time i.e, ITp_ (z) = max(min(z, 1), —1), where A, is the infinity norm
unit ball.

4. n size matrix nuclear norm ball and spectrahedron can be projected using
EVD/SVD in O(n®) time?

The following analysis interestingly shows that the projected gradient descent
is as fast as gradient descent in the unconstrained case!

4.1 Constrained, Non-smooth Convex Programs

We simply followed theorem 3.2 and proof in Bubeck| [2015|.

4.2 Constrained, Smooth Convex Programs

The key ingredient of the analysis in this case is the gradient mapping and the
inequality satisfied by it, which is formalized in Lemma 3.6 in Bubeck [2015]. We
followed the analysis in Theorem 3.7 in Bubeck| [2015].

4.3 Constrained, Smooth and Strongly Convex
Programs

We simply followed theorem 3.10 in Bubeck|[2015].

Also see https://stanford.edu/~jduchi/projects/DuchiShSiCh08.pdf| for an improved algo-
rithm.
2See for e.g., https://ee227c.github.io/code/lectures. html.

10

https://stanford.edu/~jduchi/projects/DuchiShSiCh08.pdf
https://ee227c.github.io/code/lecture5.html

Chapter 5

Frank-Wolfe aka. Conditional
Gradient Decent

We turned our attention to cases where there are no known algorithms for projec-
tion onto the given feasibility or the existing ones are too inefficient]!] In such cases,
one cannot use projected gradient descent. Conditional gradient or Frank-Wolfe
(FW) algorithm, detailed below, is one alternative that may help.

The key idea in Conditional gradient descent is to decouple the regularization
and linearization in in projected gradient descent. More specifically, in Con-
ditional gradient descent, minimization of unregularized linearization is performed
leading to an intermediate iterate:

(k+1) — i (k) (k) _ k) -
(5.1) Y _arglgleljl__lf<$)+Vf(:1:)(a: z),Vk—0,1,2,...
and this is regularized separately to obtain the actual iterate:

(5.2)) = (1 —) z®) 4y,

One key advantage with this decoupling is that can be solved by com-
puting the support function?| of the feasibility set rather than projection onto it.
Tables 1,2 in |Jaggi [2013] provide a non-exhautive list of feasibility sets, whose
support functions (and their (sub)gradients) can be evaluated in polynomial time.

!For example, consider the case where the gradient oracle computation takes linear time, wheres
the feasibility set is a spectrahedron, whose projection time is more than linear.

2More specifically, if g is the support function of the feasibility set, then y(*t1) =
Vg (—Vf (w(k))). Vg as well as g can be computed by solving the optimization problem in-
volved in the definition of the support function. Refer theorem 20.0.4 in https://www.iith.ac.
in/~saketha/teaching/cs5580notes.pdf.

11

https://www.iith.ac.in/~saketha/teaching/cs5580notes.pdf
https://www.iith.ac.in/~saketha/teaching/cs5580notes.pdf

More importantly, the table shows that FW can be successfully applied when
feasibility set is an [, ball for p € (1, 00), p # 2; whereas there are no known poly-
nomial time algorithms for projection onto the same (hence projected gradient
descent cannot be applied). We hence-forth, in this section, assume that a linear
minimization oracle (LMO) that efficiently solves is available.

As long as the gradient oracle and LMO require comparable computational
effort, again it is enough to analyze the convergence rate of FW. We simply followed
theorem 3.8 in Bubeck| [2015] for the convergence rate. This rate matches that of
projected gradient in the smooth case.

In the special case when the feasibility set is a polytope, FW exposes its most
interesting feature: the iterates are always sparse combinations of the extreme
points of this polytope. Infact, the k%" iterate will be a combination of atmost k+1
extreme points (assuming the initial point is an extreme point). In other words,
FW convergence rate can also be described in terms of sparsity: An FW iterate
that is expressible using k extreme points is atleast O(1/k)-accurate. Lemmas
3,4 in |Jaggi [2013] show that this sparsity-accuracy tradeoff is optima]E] for FW!
We then followed the case-study in pages 274-275 in Bubeck| [2015] that showcases
the advantage of this sparsity trade-off.

3Even Nesterov’s accelerated/momentum methods may be sub-optimal in terms of this trade-
off.

12

Chapter 6

Mirror Descent

Continuing our pursuit from the previous section, we seek an algorithm in the
non-smooth casd!| when projection onto the feasibility set is costly. Mirror descent,
detailed below, is one alternative that might work.

The key idea in Mirror descent is to choose the regularizer based on the
feasibility set such that the iterate computation cost becomes comparable (or
negligible when compared) to that of computing the gradient. For example, if the
feasibility set is a simplex, then instead of using Euclidean distance to regularize,
we can employ the KL-divergencef| leading to:

(6.1)

Lk+1) — arngﬁAI}L ;KL (me(k)> +f (J;(k)) +Vf (a;(k)) (3; - ;1;(’“)> ,Vk=0,1,2,...

af((k)
. . . . (k+1) ;B(.k)e_n (Bmz)
Interestingly, the above admits a closed-form solution: z; = g AR
of(=)

Z;L:1 w;k)e_"Tj
which can be computed in linear time (efficiently). This is also known as expo-
nentiated gradient update formula. Mirror descent generalizes this idea (of expo-

nentiated gradient descent) to generic Bregman-divergence based regularizers.

Let ¢ be any o-strongly-convex function defined over the feasibility set.
Then, Bregman divergence is defined as: Dy(z,y) = ¢(z)— d(y) —Vo(y) ' (z — y).
Since Dy(z,y) > 1o?|lz — y|f?, it can be easily shown that Dy(z,y) > 0 Vz,y €
dom(¢) and Dy(z,y) = 0 <= =z = y. More interestingly, the correspondingly
defined Bregman projection: Hi(x) = argmin,cr Dy(y, =), satisfies some kind of

!Recall that FW works nicely in the smooth case.
2Recall that KL-divergence is more natural way of measuring differences between distributions
than Euclidean.

13

triangle inequality as formalized in Lemma 4.1 in Bubeck [2015]. Mirror descent
generalizes exponentiated gradient descent to generic Bregman-divergence based
regularizers:

(6.2)

2D = arg Im%i;l 717D¢ (m,:z:(k)> . (m(k)) L VS (m(k)> (a; — m(k>) , Vk=0,1,2,...

There are some known standard set-ups where (6.2]) can be solved efficiently.
These are summarized in section 4.3 in Bubeck [2015].

After giving a primal equivalent of this using conjugate (plays role of in-
verse mirror map), we then followed the derivation in section 4.1, equations (4.4-
4.5) in Bubeck [2015] to show that the primal equivalent of mirror descent is given
by equations (4.2-4.3) in Bubeck [2015|. This equivalence showcases the other im-
portant motivation for mirror descent, which is solving programs in non-Euclidean
normed spaces. We also repeated the converge analysis in theorem 4.2 in Bubeck
[2015]F]

SThere seems to be a typo in the statement of this theorem. It has to be read that L is Lipschitz
under || - ||« (dual norm) and NOT under || - || (original norm of the space)

14

Chapter 7

Proximal Gradient Descent

Here we consider programs that are Tikhonov regularized versions of those in
the previous three sections. More specifically, we consider the following kind of
programs:

(7.1) min f(z) + g(z),

where f, g are convex; however f is smooth and g is non-smooth. Classical anal-
ysis shows that gradient descent can only guarantee O(1/+/k) convergence rate.
However, proximal gradient is a slight modification that guarantees O(1/k), which
can be further (Nesterov) accelerated.

The key idea is to linearize only the smooth component (f) and keep g as it
is in the per-step problem. More specifically:
(7.2)
(k+1)

= arg min 2177\]:1:—:1:(’“)||2+f (:z:(k)>+Vf (a:(k)> (a: - :1:(’“))+g(a:), Vk=0,1,2,...

T

which is equivalent to z(**1) = Prox,, (z(k) —nVf (:z:(k)>>. Here, PIO is a gen-
eralization for notion of projection/conjugate, and is defined as:

. 1
(7.3) Prox,(z) = arg min g(y) + ||z — y|]*.
yeR™ 2

The above algorithm is called as Proximal gradient?] We then looked at some
special cases where prox can be efficiently computed. These appear in https://

people.eecs.berkeley.edu/~elghaoui/Teaching/EE227A/lecturel8.pdf. Finally,

we followed the converge as summarized in the same pdf. ISTA/FISTA are popular
for solving the lasso problem in ML.

!Prox is also a special of well-studied notion of c-conjugate.
2OR ISTA as in section 5.1 in Bubeck|[2015], which can be further accelerated leading to FISTA

15

https://people.eecs.berkeley.edu/~elghaoui/Teaching/EE227A/lecture18.pdf
https://people.eecs.berkeley.edu/~elghaoui/Teaching/EE227A/lecture18.pdf

16

Chapter 8

Stochastic Gradient Descent

We mainly followed sections 6,6.1 in Bubeck| [2015]. Interestingly, this shows
that though gradient is not computed exactly, as long as it is unbiased, descent
remains optimal for non-smooth problems (in expected sense). However, Tsybakov
[2003] showed that unbiased estimates may adversely affect convergence for smooth
problems. In general, SGD rate remains O(1/+v/k) even for smooth programs. This
can be corrected by employing a variance reduced estimate as detailed in the next
lecture.

17

18

Chapter 9

Stochastic Variance Reduced
Gradient

We followed section 6.3 inBubeck| [2015].

19

20

Chapter 10

Co-ordinate descent Methods

21

22

Bibliography

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Founda-
tions and Trends in Machine Learning, 8(3-4):231-357, 2015.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimiza-
tion. In Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28, ICML’13, page [-427-1-435.
JMLR.org, 2013.

Yurii Nesterov. Introductory Lectures on Conver Optimization: A Basic
Course. Springer Publishing Company, Incorporated, 1 edition, 2014. ISBN
1461346916.

Alexandre B. Tsybakov. Optimal rates of aggregation. In 16th Annual Confer-
ence on Computational Learning Theory, pages 303-313, 2003.

23

	Contents
	Introduction
	(Sub)-Gradient Descent
	Unconstrained Non-smooth Convex Programs
	Unconstrained Smooth Convex Programs
	Unconstrained Smooth Strongly Convex Programs

	Nesterov's Optimal Methods (Unconstrained)
	Projected Gradient Descent
	Constrained, Non-smooth Convex Programs
	Constrained, Smooth Convex Programs
	Constrained, Smooth and Strongly Convex Programs

	Frank-Wolfe aka. Conditional Gradient Decent
	Mirror Descent
	Proximal Gradient Descent
	Stochastic Gradient Descent
	Stochastic Variance Reduced Gradient
	Co-ordinate descent Methods

