EE 546, Univ of Washington, Spring 2016

9. Dual decomposition and dual algorithms

dual gradient ascent

example: network rate control

dual decomposition and the proximal gradient method
examples with simple dual prox-operators

alternating minimization method
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Dual methods

convex problem with linear constraints and its dual

minimize  f(x) maximize g(\,v)
subject to Gz X h subjectto A >0
Ax =b

dual function can be expressed in terms of conjugate of f:

g\ v) = inf (f(z)+ (G'AX+A"v)"'z— "X =b")

X

= —h'A—b'v— (-GN - Alv)

potential advantages of solving the dual when using 1-st order methods

e dual is unconstrained or has simple constraints

e dual decomposes into smaller problems
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(Sub-)gradients of conjugate function

assume f : R™ — R is closed, convex with conjugate

f*(y) = sup (y' = — f(x))

e z € Of*(y) if and only if x maximizes y'x — f(x) (p. 6-10 )
e if f is strictly convex, then f* is differentiable on int dom f* and

Vf*(y) = argmax (y' z — f(x))

X

e if f is strongly convex with parameter 1 > 0, then f* is differentiable,
dom f* = R", and

IVF(y) — V()2 < %ux ~ylla

(see p. 8-7)
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Dual gradient method

primal problem: (for simplicity, only equality constraints)

minimize  f(x)
subject to Ax =1b

dual problem: maximize g(v) where

g(v) = inf (f(z) + (Az - b)"v)

x

dual ascent: solve dual by (sub-)gradient method (¢ is stepsize)

T = argmin (f(x) + v Az), v =v+t(Axt —b)

x

e sometimes referred to as Uzawa's method

e of interest if calculation of 2™ is inexpensive
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Dual decomposition

convex problem with separable objective

minimize  f1(x1) + f2(z2)
subject to Gl.CUl + GQCIZ‘Q = h

constraint is complicating or coupling constraint

dual problem (master problem)

maximize g1 (\) + g2(\) — AT A
subjectto A >0

where g;(\) = inf (fj(z) + N'Gjz) = —f(=G A)

can be solved by (sub-)gradient projection (if A = 0 is the only constraint)
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subproblem: to calculate g;(\) and a (sub-)gradient, solve problem
minimize (over ;) fi(x;) + M Gz,

e optimal value is g;(\)

o if 2, solves the subproblem, then —G;; is a subgradient of —g; at A

dual subgradient projection method

e solve two unconstrained (and independent) subproblems

r; = argmin (f(z;) + A Gjzy), j=1,2

j >
J
e make projected subgradient update of A

A= (A +t(Graf + Gazg —h)) |

(uy = max{u,0}, componentwise)
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interpretation: price coordination

e p = 2 units in the system; unit j selects variable z;
e constraints are limits on shared resources; \; is price of resource ¢

e dual update )\:r = (\; — ts;)1 depends on slacks s = h — G1x1 — Gaxa

— increases price J\; if resource is over-used (s; < 0)
— decreases price J\; if resource is under-used (s; > 0)
— never lets price get negative

distributed architecture
e central node 0 sets price A

e peripheral node j sets z;



Example: network rate control

e n flows (with fixed routes) in a network with m links
e variable z; > 0 denotes rate of flow j

e utility function for flow j is U; : R — R, concave, increasing

capacity constraints

e traffic y; on link 7 is sum of flows passing
through it

e y = Rz, where R is the routing matrix

R — 1 flow j passes through link 1
771 0 otherwise

e link capacity constraint: y < ¢



maximize  U(zx) = >_"_, Uj(z;)
subject to Rx <X c

a convex problem; dual decomposition gives decentralized method
Lagrangian (for minimizing —U)

L(z,\) = =U(x) + N'(Rx —¢) = =Ac+ Y7 (—Uj(x;) +xjmi )

e )\; is the price (per unit flow) for using link ¢

e 7 \is the sum of prices along route j (r; is jth column of R)

dual function

mn mn

g(A\) = =ATe+ > inf (=Uj(z;) + zjr] A) = =ATe = > (=Uj)*(=r] \)

j=1 j=1
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(Sub-)gradients of dual function

g(\) = =ATe = > sup (Uj(x;) — xjr] \)
j=1
e subgradient of —g(\)
c— Rx € 0(—g)(\) where Zz,; =argmax (U;(x;) — xjr;‘r)\)
if Uj is strictly concave, this is a gradient

e 7\ is the sum of link prices along route j

e c — Rx is vector of link capacity margins for flow &
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Dual decomposition rate control algorithm

given initial link price vector A > 0 (e.g., A =1)

repeat

1. sum link prices along each route: calculate A; = rf)\

2. optimize flows (separately) using flow prices:

x;r = argmax (U;(z;) — Ajz;)

3. calculate link capacity margins s :=c — Rx

4. update link prices: (t is the step size)

)\ = ()\ — tS)_|_

decentralized: links only need to know the flows that pass through them:;
flows only need to know prices on links they pass through
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TCP/AQM congestion control

a large class of internet congestion control mechanisms can be interpreted
as distributed algorithms that solve NUM and its dual

D, DropTail,. ..

TCP: Reno, Vegas,. . .

xs: source rate, updated by TCP (Transmission Control Protocol)

A;: link congestion measure, or ‘price’, updated by AQM (Active Queue
Management)

e.g., TCP Reno uses packet loss as congestion measure, TCP Vegas uses
queueing delay

refs: [Kelly,et al,"98];[Low,Lapsley'99];. . .
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Outline

dual gradient ascent

example: network rate control

dual decomposition and dual proximal gradient method
examples with simple dual prox-operators

alternating minimization method
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First-order dual methods

minimize  f(x) maximize —f*(—-GT\— Alv)
subject to Gz =X h subjectto A >0
Axz =D

can apply different algorithms to the dual:
subgradient method: slow convergence

gradient method: requires differentiable f

e in many applications f* is not differentiable, has a nontrivial domain

e [* can be smoothed by adding a small strongly convex term to f
proximal gradient method: dual costs split in two terms

e first term is differentiable; second term has an inexpensive prox-operator
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Composite structure in the dual

primal problem with separable objective

minimize  f(x) + h(y)
subjectto Ax + By =10>

(later we consider general problem with inequality constraints)

dual problem
maximize —f*(—Alv)—h*(-BTv) —bvlv
has the composite structure required for the proximal gradient method if

e f is strongly convex, hence V f* is Lipschitz continuous

e prox-operator of h*(—B1v) is cheap (closed form or efficient algorithm)
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Example: regularized norm approximation

minimize f(x) + |[|[Ax — b

f is strongly convex with parameter y; || - || is any norm

(reformulated) problem and dual

minimize  f(x) + ||y|| maximize b1z — f*(Al2)
subject to y= Az —b subject to  ||z||« < 1

e gradient of dual cost is Lipschitz continuous with parameter || A||5/u

e for most norms, projection on norm ball is inexpensive
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dual gradient projection step (with C' = {v | ||v||« < 1})
2T =Po(z+tb— AVfH(A'2)))

where Vf*(AT2) = argmin,, (f(x) — 21 Ax)

gradient projection algorithm: choose initial z and repeat

& = argmin (f(z) — 2! Az)

z = Po(z+tb— Az))

e step size t: constant or from backtracking line search

e can also use accelerated gradient projection algorithm
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Example: regularized nuclear norm approximation

minimize ||z — alj3 + [[A(z) — B.

T . R" PXq N
* : — —1 Lidlq
| - |l« is nuclear norm and A : R" — RP*? with A(x) =>_._;z;A

gradient projection: choose initial Z and repeat

T = a;+tr(AlZ), i=1,...,n
= Po(Z+t(B - A(2)))

e & is minimizer of (1/2)|z — all5 — >, x; tr(A] Z)
e (' is unit ball for matrix norm ||V || = opax(V)

e to find Po(V), replace o; by min{o;, 1} in SVD of V

9-18



Example: dual decomposition

minimize  f(z) 4+ >_0_, || Biz||2

F27n¢><7l

with f strongly convex, B; €

reformulated problem

minimize  f(x)+ Y 0 [luill2
subjectto y, =Bz, i=1,...,p

objective is separable, but not strictly convex

dual problem

maximize —f*(3°F_, Bi'z)
subject to  ||zi]le <1, i=1,...,p
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dual gradient projection step (with C; = {v € R} | |[v]|2 < 1})

p

1=1

algorithm: choose initial z; and repeat

BZ-Tzi)>, i=1,...,p

p
z = ZB:;FZZ

i=1
& = argmin(f(z)—z'2) (=Vf(2))
Z; o= PCZ.(ZZ'—tBiZ%), izl,...,p

e updates of z; are independent

e if f is separable, primal update decomposes into independent

subproblems
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Minimization over intersection of convex sets

minimize  f(x)
subjectto z e CinN...NCy,

e f strongly convex; C; closed, convex with inexpensive projector
. I . . L 2 . . . . .
example: f(x) = ||z — al|5 gives projection of a on intersection

reformulation: introduce auxiliary variables x;

minimize  f(x) + Ic,(x1) + ...+ Ic,,(xm)
subjectto x1 =2, ...,z ==

dual problem
maximize —f*(z1+ ...+ 2zm) —h1(z1) — ... — hn(2m)

hi(z) = sup ,ce.(—2"x) is support function of C; at —z
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dual proximal gradient step
2 =prox,, (zi —tVf (z1+...4+2m), i=1,...,m
prox-operator of h; can be expressed in terms of projection on Cj;

prox,, (u) = u + tPc,(—u/t)

dual proximal gradient algorithm: choose initial z1, ..., z,, and repeat
& = argmin (f(x) — (21 + ...+ 2m)" 2)
.1 . .
Z; = zz-—l—t<PCi(x—gzi)—a:) , 1=1,....m

can take t = p/m (u is strong convexity parameter of f)
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Outline

dual gradient ascent

network rate control (utility maximization)

dual decomposition and dual proximal gradient method
examples with simple dual prox-operators

alternating minimization method
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Prox-operator of partial dual

minimize  f(z) + h(y) minimize —f*(—=Av) — F(v)
subjectto Ax + By =10>

e F'is negative of a ‘partial dual function’

F(v) = blv+n(-B")
— inf (h(y) +v" (By — b))

x

e prox-operator of F' is defined as

1
prox,p(v) = argmin (F<v> + - vus)
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Primal expression for prox-operator
e by definition, v = prox, () is the minimizer v of
T * T 1 2
b*v+ h*(—B'v) + %H’U — |3

e this is the dual of the problem (with variables ¥, z)

maximize —h(y) — v’z —£||z||3, subjectto By—b=z

e primal and dual optimal solutions are related by v = v + t(By — b)

conclusion: primal method for computing v = prox, z(v)
X . t A
§ = axguin (h(y) + 7 (By ~ ) + 5By~ W), v =v+ t(Bi - )

y minimizes augmented Lagrangian (Lagrangian + quadratic penalty)
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Alternating minimization method

minimize  f(z) + h(y) minimize —f*(—A%v) — F(v)
subjectto Ax + By =10>

f strongly convex; h convex, not necessarily strictly

dual proximal gradient step
vt = prox, (v + tAV f*(—ATv))
o i =Vf*(—Alv) is minimizer of f(z) + v! Ax

o prox,(v+tAz) = v+ t(Ax + By — b) where § minimizes

) ¢
h(y) + (v +tAZ)" (By — b) + 5By — bl|5
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algorithm: choose initial v and repeat

& := argmin (f(x)+ v’ Az)
t
¢ = argmin (h(y) + v By + §HA:% + By — b||%)
Y
v = v+t(Az+ By —0b)

e alternating minimization of

— Lagrangian (step 1)
— augmented Lagrangian (step 2)

e step 3 is proximal gradient update for the dual problem

e as a variation, can use accelerated proximal gradient method
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General problem with separable objective

minimize  f(x) + h(y)
subject to Az + By =25
Cx+ Dy Xd

f strongly convex

dual problem
maximize —f*(—=C*\— ATv) - F(\ V)

where

F(ov) = dIX+b'v +h*(=D*X - BTv), A =0
S 4o, otherwise

we derive expressions for the prox-operator of F'
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Proximal operator of partial dual function
definition: (u,v) = prox, (A, v) is the solution of
minimize  F(u,v) + 5 ([lu — A3 + ||v — v||3)

equivalent expression

where ¢, s solve

minimize  h(y) + AT(Dy + 5) + v By + 5,(||[Dy + s — d||3 + || By — b]3)
subject to s> 0

9-29



proof: follows from the duality between the problems

minimize, 5 .. h(y) + ATw + vz + 2%(”’“’”% +[12113)

subject to Dy+s—d=w
By —b=z
s>~ 0

and

maximize,,  —d"u—b7v— b*(=DTu~ BTv) = &llu = N + o ~ v}

subject to u >0
e at the optimum,

At(Dy+s—d)=u, v+t(By—>b) =wv

e by definition the optimal (u,v) is the proximal operator prox; (A, v/)
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Alternating minimization method

choose initial A\, v and repeat
1. compute the minimizer z of the Lagrangian
flx) + (Atv +CT )
2. compute the minimizers ¢, s of the augmented Lagrangian
h(y) + X (Dy+s) +v' By + %(HC’:% + Dy +s—d||5+| Az + By —b|5)
subject to s = 0

3. dual update

Ni=A+t(Ci+Dj—53—d), v:=v+t(AZ+ Bj—b)

as a variation, can use a fast proximal gradient update
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