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9. Dual decomposition and dual algorithms

• dual gradient ascent

• example: network rate control

• dual decomposition and the proximal gradient method

• examples with simple dual prox-operators

• alternating minimization method
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Dual methods

convex problem with linear constraints and its dual

minimize f(x)
subject to Gx � h

Ax = b

maximize g(λ, ν)
subject to λ � 0

dual function can be expressed in terms of conjugate of f :

g(λ, ν) = inf
x

(

f(x) + (GTλ+ATν)Tx− hTλ− bTν
)

= −hTλ− bTν − f∗(−GTλ− ATν)

potential advantages of solving the dual when using 1-st order methods

• dual is unconstrained or has simple constraints

• dual decomposes into smaller problems
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(Sub-)gradients of conjugate function

assume f : Rn → R is closed, convex with conjugate

f∗(y) = sup
x

(yTx− f(x))

• x ∈ ∂f∗(y) if and only if x maximizes yTx− f(x) (p. 6-10 )

• if f is strictly convex, then f∗ is differentiable on int dom f∗ and

∇f∗(y) = argmax
x

(yTx− f(x))

• if f is strongly convex with parameter µ > 0, then f∗ is differentiable,
dom f∗ = Rn, and

‖∇f∗(y)−∇f∗(x)‖2 ≤
1

µ
‖x− y‖2

(see p. 8-7)
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Dual gradient method

primal problem: (for simplicity, only equality constraints)

minimize f(x)
subject to Ax = b

dual problem: maximize g(ν) where

g(ν) = inf
x

(f(x) + (Ax− b)Tν)

dual ascent: solve dual by (sub-)gradient method (t is stepsize)

x+ = argmin
x

(f(x) + νTAx), ν+ = ν + t(Ax+ − b)

• sometimes referred to as Uzawa’s method

• of interest if calculation of x+ is inexpensive
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Dual decomposition

convex problem with separable objective

minimize f1(x1) + f2(x2)
subject to G1x1 +G2x2 � h

constraint is complicating or coupling constraint

dual problem (master problem)

maximize g1(λ) + g2(λ)− hTλ
subject to λ � 0

where gj(λ) = inf (fj(x) + λTGjx) = −f∗

j (−GT
j λ)

can be solved by (sub-)gradient projection (if λ � 0 is the only constraint)
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subproblem: to calculate gj(λ) and a (sub-)gradient, solve problem

minimize (over xj) fj(xj) + λTGjxj

• optimal value is gj(λ)

• if x̂j solves the subproblem, then −Gjx̂j is a subgradient of −gj at λ

dual subgradient projection method

• solve two unconstrained (and independent) subproblems

x+

j = argmin
xj

(fj(xj) + λTGjxj), j = 1, 2

• make projected subgradient update of λ

λ+ =
(

λ+ t(G1x
+

1 +G2x
+

2 − h)
)

+

(u+ = max{u, 0}, componentwise)
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interpretation: price coordination

• p = 2 units in the system; unit j selects variable xj

• constraints are limits on shared resources; λi is price of resource i

• dual update λ+

i = (λi − tsi)+ depends on slacks s = h−G1x1 −G2x2

– increases price λi if resource is over-used (si < 0)
– decreases price λi if resource is under-used (si > 0)
– never lets price get negative

distributed architecture

• central node 0 sets price λ

• peripheral node j sets xj
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Example: network rate control

• n flows (with fixed routes) in a network with m links

• variable xj ≥ 0 denotes rate of flow j

• utility function for flow j is Uj : R → R, concave, increasing

capacity constraints

• traffic yi on link i is sum of flows passing
through it

• y = Rx, where R is the routing matrix

Rij =

{

1 flow j passes through link i
0 otherwise

• link capacity constraint: y � c

x1

x2

x3

x4
c1 c2

c3

c4
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maximize U(x) =
∑n

j=1
Uj(xj)

subject to Rx � c

a convex problem; dual decomposition gives decentralized method

Lagrangian (for minimizing −U)

L(x, λ) = −U(x) + λT (Rx− c) = −λT c+
∑n

j=1
(−Uj(xj) + xjr

T
j λ)

• λi is the price (per unit flow) for using link i

• rTj λ is the sum of prices along route j (rj is jth column of R)

dual function

g(λ) = −λT c+
n
∑

j=1

inf
xj

(−Uj(xj) + xjr
T
j λ) = −λT c−

n
∑

j=1

(−Uj)
∗(−rTj λ)
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(Sub-)gradients of dual function

g(λ) = −λT c−
n
∑

j=1

sup
xj

(Uj(xj)− xjr
T
j λ)

• subgradient of −g(λ)

c−Rx̄ ∈ ∂(−g)(λ) where x̄j = argmax (Uj(xj)− xjr
T
j λ)

if Uj is strictly concave, this is a gradient

• rTj λ is the sum of link prices along route j

• c− Rx̄ is vector of link capacity margins for flow x̄
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Dual decomposition rate control algorithm

given initial link price vector λ ≻ 0 (e.g., λ = 1)

repeat

1. sum link prices along each route: calculate Λj = rTj λ

2. optimize flows (separately) using flow prices:

x+

j := argmax (Uj(xj)− Λjxj)

3. calculate link capacity margins s := c−Rx

4. update link prices: (t is the step size)

λ := (λ− ts)+

decentralized: links only need to know the flows that pass through them;
flows only need to know prices on links they pass through
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TCP/AQM congestion control

a large class of internet congestion control mechanisms can be interpreted
as distributed algorithms that solve NUM and its dual

xs

λl

TCP: Reno, Vegas,. . .

AQM: RED, DropTail,. . .

xs: source rate, updated by TCP (Transmission Control Protocol)

λl: link congestion measure, or ‘price’, updated by AQM (Active Queue
Management)
e.g., TCP Reno uses packet loss as congestion measure, TCP Vegas uses
queueing delay

refs: [Kelly,et al,’98];[Low,Lapsley’99];. . .
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Outline

• dual gradient ascent

• example: network rate control

• dual decomposition and dual proximal gradient method

• examples with simple dual prox-operators

• alternating minimization method
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First-order dual methods

minimize f(x)
subject to Gx � h

Ax = b

maximize −f∗(−GTλ− ATν)
subject to λ � 0

can apply different algorithms to the dual:

subgradient method: slow convergence

gradient method: requires differentiable f

• in many applications f∗ is not differentiable, has a nontrivial domain

• f∗ can be smoothed by adding a small strongly convex term to f

proximal gradient method: dual costs split in two terms

• first term is differentiable; second term has an inexpensive prox-operator
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Composite structure in the dual

primal problem with separable objective

minimize f(x) + h(y)
subject to Ax+By = b

(later we consider general problem with inequality constraints)

dual problem

maximize −f∗(−ATν)− h∗(−BTν)− bTν

has the composite structure required for the proximal gradient method if

• f is strongly convex, hence ∇f∗ is Lipschitz continuous

• prox-operator of h∗(−BTν) is cheap (closed form or efficient algorithm)

9–15



Example: regularized norm approximation

minimize f(x) + ‖Ax− b‖

f is strongly convex with parameter µ; ‖ · ‖ is any norm

(reformulated) problem and dual

minimize f(x) + ‖y‖
subject to y = Ax− b

maximize bTz − f∗(ATz)
subject to ‖z‖∗ ≤ 1

• gradient of dual cost is Lipschitz continuous with parameter ‖A‖22/µ

• for most norms, projection on norm ball is inexpensive
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dual gradient projection step (with C = {v | ‖v‖∗ ≤ 1})

z+ = PC

(

z + t(b− A∇f∗(ATz))
)

where ∇f∗(ATz) = argminx (f(x)− zTAx)

gradient projection algorithm: choose initial z and repeat

x̂ := argmin
x

(f(x)− zTAx)

z := PC(z + t(b−Ax̂))

• step size t: constant or from backtracking line search

• can also use accelerated gradient projection algorithm
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Example: regularized nuclear norm approximation

minimize 1

2
‖x− a‖22 + ‖A(x)− B‖∗

‖ · ‖∗ is nuclear norm and A : Rn → Rp×q with A(x) =
∑n

i=1
xiAi

gradient projection: choose initial Z and repeat

x̂i := ai + tr(AT
i Z), i = 1, . . . , n

Z := PC(Z + t(B −A(x̂)))

• x̂ is minimizer of (1/2)‖x− a‖22 −
∑

i xi tr(A
T
i Z)

• C is unit ball for matrix norm ‖V ‖ = σmax(V )

• to find PC(V ), replace σi by min{σi, 1} in SVD of V
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Example: dual decomposition

minimize f(x) +
∑p

i=1
‖Bix‖2

with f strongly convex, Bi ∈ Rmi×n

reformulated problem

minimize f(x) +
∑p

i=1
‖yi‖2

subject to yi = Bix, i = 1, . . . , p

objective is separable, but not strictly convex

dual problem

maximize −f∗(
∑p

i=1
BT

i zi)
subject to ‖zi‖2 ≤ 1, i = 1, . . . , p
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dual gradient projection step (with Ci = {v ∈ Rm
i | ‖v‖2 ≤ 1})

z+i = PCi

(

zi − tBi∇f∗(

p
∑

i=1

BT
i zi)

)

, i = 1, . . . , p

algorithm: choose initial zi and repeat

z :=

p
∑

i=1

BT
i zi

x̂ := argmin
x

(f(x)− zTx) (= ∇f∗(z))

zi := PCi
(zi − tBix̂), i = 1, . . . , p

• updates of zi are independent

• if f is separable, primal update decomposes into independent
subproblems
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Minimization over intersection of convex sets

minimize f(x)
subject to x ∈ C1 ∩ . . . ∩ Cm

• f strongly convex; Ci closed, convex with inexpensive projector

• example: f(x) = ‖x− a‖22 gives projection of a on intersection

reformulation: introduce auxiliary variables xi

minimize f(x) + IC1
(x1) + . . .+ ICm(xm)

subject to x1 = x, . . . , xm = x

dual problem

maximize −f∗(z1 + . . .+ zm)− h1(z1)− . . .− hm(zm)

hi(z) = sup x∈Ci
(−zTx) is support function of Ci at −z
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dual proximal gradient step

z+i = proxthi
(zi − t∇f∗(z1 + . . .+ zm)), i = 1, . . . ,m

prox-operator of hi can be expressed in terms of projection on Ci

proxthi
(u) = u+ tPCi

(−u/t)

dual proximal gradient algorithm: choose initial z1, . . . , zm and repeat

x̂ := argmin
x

(f(x)− (z1 + . . .+ zm)Tx)

zi := zi + t

(

PCi
(x̂−

1

t
zi)− x̂

)

, i = 1, . . . ,m

can take t = µ/m (µ is strong convexity parameter of f)
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Outline

• dual gradient ascent

• network rate control (utility maximization)

• dual decomposition and dual proximal gradient method

• examples with simple dual prox-operators

• alternating minimization method

9–23



Prox-operator of partial dual

minimize f(x) + h(y)
subject to Ax+By = b

minimize −f∗(−ATν)− F (ν)

• F is negative of a ‘partial dual function’

F (ν) = bTν + h∗(−BTν)

= − inf
x

(h(y) + νT (By − b))

• prox-operator of F is defined as

proxtF (ν) = argmin
v

(

F (v) +
1

2t
‖v − ν‖22

)
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Primal expression for prox-operator

• by definition, v = proxtF (ν) is the minimizer v of

bTv + h∗(−BTv) +
1

2t
‖v − ν‖22

• this is the dual of the problem (with variables y, z)

maximize −h(y)− νTz − t
2
‖z‖22, subject to By − b = z

• primal and dual optimal solutions are related by v = ν + t(By − b)

conclusion: primal method for computing v = proxtF (ν)

ŷ = argmin

(

h(y) + νT (By − b) +
t

2
‖By − b‖22

)

, v = ν + t(Bŷ − b)

ŷ minimizes augmented Lagrangian (Lagrangian + quadratic penalty)
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Alternating minimization method

minimize f(x) + h(y)
subject to Ax+By = b

minimize −f∗(−ATν)− F (ν)

f strongly convex; h convex, not necessarily strictly

dual proximal gradient step

ν+ = proxtF (ν + tA∇f∗(−ATν))

• x̂ = ∇f∗(−ATν) is minimizer of f(x) + νTAx

• proxtF (ν + tAx̂) = ν + t(Ax̂+Bŷ − b) where ŷ minimizes

h(y) + (ν + tAx̂)T (By − b) +
t

2
‖By − b‖22
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algorithm: choose initial ν and repeat

x̂ := argmin
x

(f(x) + νTAx)

ŷ := argmin
y

(

h(y) + νTBy +
t

2
‖Ax̂+ By − b‖22

)

ν := ν + t(Ax̂+ Bŷ − b)

• alternating minimization of

– Lagrangian (step 1)
– augmented Lagrangian (step 2)

• step 3 is proximal gradient update for the dual problem

• as a variation, can use accelerated proximal gradient method
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General problem with separable objective

minimize f(x) + h(y)
subject to Ax+By = b

Cx+Dy � d

f strongly convex

dual problem

maximize −f∗(−CTλ−ATν)− F (λ, ν)

where

F (λ, ν) =

{

dTλ+ bTν + h∗(−DTλ−BTν), λ � 0
+∞, otherwise

we derive expressions for the prox-operator of F
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Proximal operator of partial dual function

definition: (u, v) = proxtF (λ, ν) is the solution of

minimize F (u, v) + 1

2t
(‖u− λ‖22 + ‖v − ν‖22)

equivalent expression

[

u
v

]

=

[

λ
ν

]

+ t

[

Dŷ + ŝ− d
Bŷ − b

]

where ŷ, ŝ solve

minimize h(y) + λT (Dy + s) + νTBy + 1

2t
(‖Dy + s− d‖22 + ‖By − b‖22)

subject to s � 0
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proof: follows from the duality between the problems

minimizex,s,w,z h(y) + λTw + νTz + 1

2t
(‖w‖22 + ‖z‖22)

subject to Dy + s− d = w
By − b = z
s � 0

and

maximizeu,v −dTu− bTv − h∗(−DTu−BTv)− 1

2t
(‖u− λ‖22 + ‖v − ν‖22)

subject to u � 0

• at the optimum,

λ+ t(Dy + s− d) = u, ν + t(By − b) = v

• by definition the optimal (u, v) is the proximal operator proxtF (λ, ν)
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Alternating minimization method

choose initial λ, ν and repeat

1. compute the minimizer x̂ of the Lagrangian

f(x) + (ATν + CTλ)Tx

2. compute the minimizers ŷ, ŝ of the augmented Lagrangian

h(y)+λT (Dy+ s)+ νTBy+
t

2
(‖Cx̂+Dy+ s− d‖22+ ‖Ax̂+By− b‖22)

subject to s � 0

3. dual update

λ := λ+ t(Cx̂+Dŷ − ŝ− d), ν := ν + t(Ax̂+Bŷ − b)

as a variation, can use a fast proximal gradient update

9–31



References and sources

• L. Vandenberghe, Lecture notes for EE236C - Optimization Methods for Large-Scale

Systems (Spring 2011), UCLA.

• S. Boyd, course notes for EE364b, Convex Optimization II (the rate control example)

• D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical

Methods (1989)

• F. Kelly, A. Maulloo, D. Tan, Rate control in communication networks: shadow prices,

proportional fairness and stability, J. Operation Research Society, 49 (1998).

• A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total

variation image denoising and deblurring problems, IEEE Transactions on Image

Processing (2009)

• P. Tseng, Applications of a splitting algorithm to decomposition in convex

programming and variational inequalities, SIAM J. Control and Optimization (1991)

• P. Tseng, Further applications of a splitting algorithm to decomposition in variational

inequalities and convex programming, Mathematical Programming (1990) Dual

proximal gradient method 10-2

9–32


