1 Questions from lecture notes

1. The key statistical assumption that we made to make the supervised inductive batch
learning problem well-defined is:
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2 'Il‘he.Bayes optimal classifier with 0-1 loss is the _[)OPE__ of the underlying posterior
likelihood (written as a function of input).

[0.5 Mark]

3. The component of the generalization error that is independent of the training set size is
called: nedel enhoh
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4. The formula for loss in logistic regression is given by: [ (sign(e),sign(b)) E[M
(0.5 Mark]

5. Suppose the underlying likelihood in a linear regression problem satisfies the equations:

Y =Y aXi+ N, E[NX] =0, (1)
1=1
where X,Y are the input,output. The necessary and sufficient conditions for parameters
of a Bayes optimal linear regressor to be same as « are: F rX X1 ro
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6. From bias;variance tradeoff discussion in linear models it is clear that n — co,m — 00 is
sufficient for good generalization. Here, n,m are the number of parameters and training
set size respectively. But should n diverge like \/m or like m or like m? ? (/N‘) . Fill in
this blank with one of the three functions y/m,m, m?. N
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7. In applications of quantum information theory, the space (manifold) of positive definite
(pd) matrices is often encountered and the standard loss function is the squared-Bures-
Wasserstein metric: loss between A and Bisgivenby |Tr A+ Tr B -2 Tr(AY 2BA1/2)1/2].
While the standard loss on R is the squared-loss. Consider a regression problem with
input space as that of pd matrices and real outputs, employing standard loss. The Bayes
optimal, f*, for this regression problem is defined by:

fe)= i‘ﬁ:«%m Ells- ]

Fill this blank with an expression involving the expression for the loss.
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g, Consider a linear regression problem! where the underlying likelihood is such that
p(:z:,'y) — P(I‘)P(y) Assui[ne the‘mean and Varia_nce with p(z) are 3,9 respectively.
A the mean and;variatee fwiCtiia(i) S Y respectively. Then, the simplified
expression for the Bayes optimal linear regressor is:

fie(z) =2 2.
Fill this blank with a numeric constant.

[1.5 Marks]

9. Consider a linear regressiqn problem? with training data (input,output pairs): D =
{(1,2),(3,4)}. Then, the simplified expression for the ERM linear regressor is:

frc(m) = %l'

Fill this blank with a numeric constant.

[1.5 Marks]

2 Derivations done in lectures

10. Derive a simplified expression for the Bayes optimal restricted to the linear model over
inputs with squared loss using only projection theorem as done in lectures.
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3 Problems from other course page resources

11. Consider a problem where the underlying likelihood is defined by p(z|y) ~ N (y, Zy), ¥ =

W}l =l
1,0. Let p(y) = { 0.6 z: 0

pression for the Bayes optimal.

. Assume the loss is the 0-1 loss. Derive a simplified ex-

'feature map ¢(z) = z.
*feature map ¢(z) = z.
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If 8, = ¥, then show that the model error with linear model over the feature map,

#(z) = : , is exactly zero.
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Prov.e that this condition is not necessary for the model error being zero®. In other words,
provide a different condition on p;, pg, B, X, such that the model error is exactly zero.

Yoo exred ¢ ¢ q,gﬁgf Yeducinto orn
*ALMQ:A%‘:@&@K Lmtw%jﬁﬁ’“‘sﬁ.

M £15, ie. Npd b Yo acebst
, & méi, Qo ke
P

ded for the practice problems partially wrong? Go home and think about the necessary
!or 0 model error. If you think you got them, meet me to discuss.
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