INFER: INterFerence-aware Estimation of
Runtime for Concurrent CNN Execution on DPUs

Shikha Goel, Rajesh Kedia, M. Balakrishnan and Rijurekha Sen
Indian Institute of Technology Delhi, New Delhi, India
E-mail: {shikha.goel, kedia, mbala, riju} @cse.iitd.ac.in

Abstract—Deep Learning Processor Unit (DPU) from XILINX
is among the numerous accelerators that have been proposed
to speed up the execution of Convolutional Neural Networks
(CNNs) on embedded platforms. DPUs are available in different
configurable sizes and can execute any given CNN. Neural
network researchers are also rapidly bringing out newer CNN
algorithms with improved performance (typically higher predic-
tion accuracy) with a trade-off in size or energy consumption for
embedded applications. To enable quick evaluation of choices
among evolving CNN algorithms and accelerator configurations,
we propose INFER (INterFerence-aware Estimation of Runtime).
INFER is a framework to estimate the execution time of any
CNN on a given size of DPU without actual implementation.
Further, current FPGA platforms are capable of implementing
multiple DPUs whereas many applications consist of multiple
sub-tasks with each requiring separate and/or different CNNs.
In such scenarios of concurrent use of multiple DPUs on an
FPGA, INFER is also capable of estimating the additional time
taken for execution due to the sharing of memory bandwidth.
QOur evaluation on various mixes of 16 standard CNNs and
eight configurations of DPU shows that INFER has an average
prediction error of 6.6%, which can be useful for design space
exploration as well as scheduling in multi-DPU platforms.

Index Terms—Deep neural networks, Accelerators, Runtime
estimation, Memory bandwidth sharing.

I. INTRODUCTION

Embedded systems, spanning across autonomous vehi-
cles [1], traffic monitoring [2], assistive devices [3], and
many more, execute multiple Convolutional Neural Networks
(CNNs) concurrently to realize different kinds of classi-
fication and detection tasks. Sustained efforts to improve
CNNs has resulted in the availability of a large choice of
CNNs for any given task [4]. These CNNs vary in terms
of the accuracy that they are able to achieve as well as
their compute/memory requirements (Table II). Deep Learning
Processor Unit (DPU) [5] from Xilinx, originally developed by
DeePhi Tech. and Tsinghua University [6], [7], is a generic
FPGA based CNN accelerator that supports any CNN. DPU
is configurable for various sizes that vary in compute capacity
and the amount of FPGA resources used. Further, multiple
DPUs could be implemented on the same FPGA and be active
concurrently. With numerous choices of DPU sizes and newer
CNNss evolving, it becomes essential to predict execution time
for making efficient switching decisions at the run-time.

ZCU102 board used in this work was funded by MeitY, Govt. of India under
“SMDP-C2SD” project. Accepted for publication in ICFPT 2020. Copyright
IEEE, refer to original version on publisher’s website (IEEE Explore).

We propose INFER (INterFerence-aware Estimation of Run-
time), a framework to predict the execution time of a CNN
on a given configuration of DPU. Basic CNN characteristics
like compute and memory requirements, along with DPU
characteristics like number of available processing units and
local memory size are used for prediction in INFER. The
estimated value is further refined to account for delays in
memory access due to the contention arising from concurrent
execution of CNNs on multiple DPUs. INFER has an average
error of 6.6% across 16 different standard state-of-the-art
CNNs (Table II). It is useful both at design-time for design
space exploration [8] to choose the number/size of DPUs as
well as at run-time for scheduling tasks on DPUs. Execution
time estimation using very simple features of CNN and DPU,
and interference modeling in a real-life setting are the key
highlights of this work. Specifically, we claim the following
key contributions of this paper:

1) Motivating the need for prediction of the runtime of
CNNSs on generic CNN processors like DPU

2) INFER, a framework to predict the runtime for a given
CNN and DPU size, augmented with interference esti-
mation to account for memory bandwidth sharing

3) Deployment of the proposed framework on various
mixes of standard CNNs and different DPU sizes, vali-
dated using actual measurements on FPGA board [9]

II. RELATED WORK

There are several works on designing CNN accelerators
for FPGAs [4], [10]-[12]. DNNWeaver [10] framework can
map a variety of CNNs on FPGA and supports a variety of
FPGAs (Intel and Xilinx). However, this is useful only at the
design-time as a new bitstream needs to be generated for every
CNN. FINN [11] framework focuses only on binary neural
networks. Haddoc2 [12] is another accelerator where all the
CNN weights are stored in FPGA memory itself. This strongly
restricts the CNNs that can execute on an FPGA. Unlike all
the above works, Xilinx DPU [5] is a generic accelerator that
can execute any CNN (which can be changed at run-time
using software compilation only) and provides many options
to configure the IP at design-time.

ProxylessNAS [13] is orthogonal to our work as it considers
device-level hardware options like CPU/GPU/Mobile while we
consider options (DPU size) within a device (FPGA). Ferianc

et al. [14] uses Gaussian process based modeling for layer-
by-layer estimation of runtime and uses the off-chip memory
bandwidth as a feature. They use fixed hardware architecture
and only 3 CNNs for their evaluation. Their reported results
have a much higher mean average error than ours. Further,
both ProxylessNAS [13] and Ferianc et al. [14] consider a
single processor system where the effect of interference due
to multiple CNNs running concurrently is not applicable. Qiu
et al. [7] introduce an analytical model using DPU’s internal
architecture to predict the runtime of a CNN on a DPU. In
contrast, INFER uses machine learning with only the informa-
tion that is available publicly and performs significantly better.
Moreover, their model considers a single DPU, while we also
account for memory bandwidth sharing due to multiple DPUs
executing concurrently.

III. PROPOSED APPROACH FOR RUNTIME ESTIMATION

A CNN consists of many cascaded layers of different types
like convolution layers, fully connected layers, etc. A DPU [5]
is a generic CNN processor (accelerator) for Xilinx platforms.
It performs layer by layer processing of CNN, which is
invoked by a host CPU. DPU is available in various sizes like
B4096, B3136, or B512, where the suffix number represents
the processing capacity in terms of number of concurrent
MAC operations. A DPU with higher processing capacity
requires more FPGA resources. A DPU accesses data from
main memory (DRAM) through an ARM AXTI bus.

A. Runtime Estimator for Single DPU

We predict the execution time of individual layers of a
CNN, which are then combined (added) to get the predicted
execution time for the whole CNN. For any prediction task, it
is important to identify the relevant features to build the model.
Since we are predicting the runtime of CNNs on different DPU
sizes, the features were identified in two categories: Hardware
(DPU) related features and CNN specific features. We use
subscript 4 to represent the layer number of the given CNN
and subscript j to represent the DPU size.

CNN specific features: MAC; represents the total number
of MAC (multiply and accumulate) operations in a layer and
contributes to the time taken for computation. Mem,; repre-
sents the amount of data transferred between local memory of
DPU (BRAM) and main memory (DRAM) and contributes to
the time taken for data transfer. DPU contains two separate
AXI buses for accessing main memory to facilitate concurrent
reading of weights and input data. Further, each AXI bus
contains separate read and write paths, which enables the
writing of output data to overlap with reading. Therefore, we
consider the maximum of the data size of weights, input data,
and output data as the memory requirement (Mem,) of a CNN
layer. We considered various other options like taking the size
of weights, input, and output data separately or taking the sum
of the three parameters instead of the maximum. We observed
that the average error in prediction of the runtime is higher
with the other two options (7.4% error in both cases) compared
to using the maximum of the three parameters as a feature

(6.6% error). Even intuitively, maximum seems appropriate
due to concurrent access that is possible due to multiple buses.

Further, some CNNs like mobilenet_v2 and
ssd_mobilenetv2 (see Table II for details) have both depthwise
and pointwise convolution operation [15]. The profile obtained
by executing these CNNs on DPU indicates that DPU merges
the pointwise convolution with depthwise convolution causing
changes in the compute and data access behavior of these
layers. Therefore, we add a binary flag Merge; to capture
the merge behavior of a CNN layer. Use of Merge; as a
feature reduces the error in runtime prediction from 9.9%
to 3.2% for mobilenet_v2 and from 16.3% to 15.5% for
ssd_mobilenetv2. In summary, (MAC;, Mem;, Merge;) are
CNN specific features used in our prediction model.

CNNs can have layers with the same number of MAC
operations and data requirements but with significantly dif-
ferent layer architecture (i.e., different number of input and
output channels, filter sizes, and feature map dimensions). We
experimentally observed that the difference in runtime for two
such layers with different layer architectures is small (~0.15
ms) except for a very few outliers. Since we are interested
in predicting the total execution time of a CNN rather than
layer by layer execution time, the overall error still remains
within the acceptable range. Thus, we choose a small number
of simple features to predict runtime rather than a detailed set
of features of a CNN as well as DPU/FPGA architecture.

DPU hardware related features: Different DPUs differ
in number of BRAMs (N_BRAM;) and the supported par-
allel MAC operations (N_MACj). To generalize the pre-
diction model over different DPU configurations, we use
(N_MAC;, N_BRAM;) as hardware specific features.

The runtime of layer ¢ of CNN on DPU configuration j can
now be written as:

Time(i,j) = fn (<N_MACj> , (N_BRA]\@-) ,Mergei)

The runtime of any layer has two components — computation
time and data access time. The computation time is dependent
on Ng\éf%@' The data access time from external memory
is dependent on the amount of data to be transferred, on-
chip memory size, and memory bandwidth. The memory
bandwidth is fixed for a given memory type and configuration
associated with a FPGA board and there is no interference
when executing a single CNN on a DPU. Since we first
calculate the execution time of a single CNN only, MﬂéeT%
can be considered as a suitable feature representing the data
access time.

Our prediction model uses these features to support various
CNN types (classification or detection) and DPU configura-
tions. The CNN specific features can be obtained from CNN
description file and the DPU related features are available
from the hardware specifications of DPU without any need
for obtaining proprietary information. We perform training and
runtime prediction using four standard regression techniques
(Table I). Our results indicate random forest regressor to
provide the lowest mean and median error (and low maximum

TABLE I
ESTIMATION ERROR FOR DIFFERENT TECHNIQUES ON SINGLE DPU
Prediction Technique Mean Max. Median
Random forest 6.6 % | 23.7 % 4.8 %
Decision tree 74 % | 30.0 % 5.9 %
Linear regression (first order) 77 % | 324 % 52 %
Polynomial model (second order) | 8.0 % | 23.1 % 6.7 %

error). The random forest is a non-linear predictor, formed
of multiple uncorrelated decision trees, and provides better
prediction than any individual tree [16]. Makrani et al. [17]
also found random forest to provide the best prediction.
Therefore, we use random forest for runtime prediction of
CNNs on a single DPU.

B. Runtime Estimator for Multiple DPUs

Multiple DPUs can be implemented together on an FPGA to
enable concurrent CNN execution though each CNN can use
only one DPU. Each DPU has independent compute resources
and local BRAMs, and the main memory is also of much larger
size than needed by CNNs. Therefore, concurrent CNN execu-
tion would not see performance degradation due to compute or
memory size requirements. However, DPUs would experience
interference due to sharing of main memory bandwidth. Fig. 1
shows the increase in runtime of various CNNs, measured on
ZCU102 board, when executing concurrently with other CNNs
on separate DPUs (CNN description in Table II). Despite a
sophisticated memory controller being available for efficiently
scheduling concurrent requests to DRAM [18], we observe up
to 52% increase in CNN runtime due to interference; which
motivates the need to account for it during runtime estimation.

Since memory bandwidth sharing is the main cause for
increase in runtime, the bandwidth requirement of a CNN as
well as the bandwidth requirement of other CNNs executing
concurrently would determine the amount of interference. The
interference behavior is not a linear function of the bandwidth
of different CNNs because it depends on how much the high
bandwidth access requirements of different CNNs overlap in
time. Thus we explored a few regression models to estimate
the increase in runtime due to such interference. A third-order
polynomial shows ~1% higher accuracy than a second-order
model for training cases but overfits and causes lower accuracy
on unseen cases. Also, second-order predictor is a simpler
model for use. Therefore, we use a second order polynomial
regression model for interference prediction. With Data being
the total data requirement (in MB) of the CNN and Time
being its total execution time (in ms), the average bandwidth
(BW) of each concurrently executing CNN is defined as:

e M)
ime

Further, we also observed that CNNs with smaller data
requirement per layer (e.g., sq, mob, incv3) suffer from larger
interference. For such CNNs, we understand that the overhead
of fetching instruction code for every layer becomes a signif-
icant fraction causing them to experience higher interference.
To account for this behavior, we define a new attribute
MBpl = ﬁ#j“ (MegaBytes per layer), where Njgye, is the

BW = 1000 x

o—ores50, sq, ped
o oincv2, incv2, trssd |
o—o ref2, res18, res18

e—e mob, incv1, incv1
e—e sq, ref1, incv1
e—o mob, ref1, res50
e—e mob, yol, sq o—o sq, mob, ref3
e—e sq, yol, res50 o—e incv1,incv1,incv1
o—e res50, res50, res50 e—e ped, ped, ped

IS
o

Runtime increase (%
w
o

20
10
0 ; — =
©) 0 Q B Q
%D‘QQ‘ %rb'\r}’ 6rz/‘?)Q %'\66 %\'\67’ %'\07’ %‘66 %6’0'

Fig. 1. Runtime increase due to memory contention for various CNNs

total number of layers in the CNN. We consider ﬁ of
each concurrent CNN as a feature into our model. Although
different layers in a CNN can have varying data requirements,
MBpl is sufficient since we measure only the average effect
of interference.

To compute the bandwidth of each CNN, the single DPU
runtime measured on ZCU102 board is used as Time in
Eq. 1. Using the measured increase in runtime along with
corresponding BW and MBpl features, we train a second
order polynomial regression model to estimate the percentage
increase in runtime. We compare the behavior of the second or-
der polynomial model to other regression models like decision
tree, random forest, and third order polynomial. We observe
that the second order polynomial model has the least error. The
estimated percentage increase in runtime due to interference
is multiplied with the runtime predicted for the single DPU to
obtain the final runtime.

Time used in Eq. 1 to calculate the bandwidth of a CNN
is the runtime of the CNN for a given DPU size. Since Time
already captures the effect of DPU size within it, we believe
that DPU size might be redundant as a feature for prediction.
We experimentally observed that including DPU size as an
additional feature reduces the maximum error by about 1%, but
increases the mean error by about 0.5%. We chose to minimize
the mean error and hence excluded DPU size from the feature
set.

1V. EXPERIMENTS AND RESULTS
A. Experimental Setup and Measurement Methodology

We evaluate our proposed framework using 16 standard
CNN s with different characteristics as shown in Table II. Eight
CNNs (TRAIN type) are used for training purposes and the
remaining eight CNNs (TEST type) along with TRAIN set
are used to validate the trained predictor. Each CNN consists
of a large number of layers, thereby forming a rich training
dataset (1042 data points) for single DPU prediction. These
CNNss also form a large number of combinations used to create
the dataset for multiple DPU prediction (837 training points).
We consider eight standard sizes of DPU [5] named B4096,
B3136, B2304, B1600, B1152, B1024, B800, B512. We use
B4096 (largest), B2304 (mid-sized) and B512 (smallest) DPUs
for training purposes whereas validation is performed on all
DPU sizes.

- T 5 70
2501 & x Relative error]| , » 60;
D . » Absolute error]| £ » 50
= 200 g - £
) 38
k] el ©
298
° =)
©
. 13
<
. *~« *lp
0 10 20 30

Actual runtime (ms)

Fig. 2. Error distribution for different layers of
various CNNs (for single DPU prediction)

Fig. 3.

Actual versus predicted runtime for various
CNNs for B4096 (for single DPU prediction)

TABLE I1
CHARACTERISTICS OF VARIOUS CNNS USED IN OUR EXPERIMENTS
#MAC Data #
CNN Name Operations | Required Lavers Type

(x10°) (MB) y
squeezenet (sq) 775.50 4.88 26
mobilenet_v2 (mob) 601.55 9.86 36
inception_v1 (incvl) 3165.34 14.62 59 T
ssd_pedestrian (ped) 5891.81 17.50 35 R
resnet50 (res50) 7715.95 51.98 55 A
refinedet_1 (refl) 25196.19 41.79 48 I
vggl6 (vgg) 30940.53 156.78 16 N
yolo_v3 (yol) 60569.32 156.95 83
resnet18 (resl8) 3653.84 17.08 23
inception_v2 (incv2) 4037.70 22.13 79
refinedet_3 (ref3) 5084.69 20.04 48 T
ssd_adas (adassd) 6284.15 19.80 35 E
ssd_mobilenetv2 (mossd) 6537.10 43.74 50 S
ssd_traffic (trssd) 11670.46 21.12 35 T
refinedet_2 (ref2) 10096.35 2543 48
inception_v3 (incv3) 11426.43 49.53 103

We create multiple hardware designs, each with three in-
stances of a particular DPU size,! and implement them on
Xilinx Zynq UltraScale+ (ZCU102) board [9]. Due to the
generic nature of DPUs, we can execute any CNN from
Table II on any size of DPU. To measure the standalone
execution time for a CNN, we execute it as a single thread
on the ZCU102 board. We repeat this experiment for each
combination of CNN and DPU. We enable the profile mode
of DPU which helps to record the execution time for individual
layers as well as the complete CNN. To account for variability
during the measurements, we consider the average value of 50
readings as the measured execution time.

For analyzing the increase in runtime due to memory
interference for concurrent DPUs, we create all possible
combinations of three CNNs from each of the TRAIN and
TEST category. The CNNs in each combination are executed
as three concurrent threads with each thread repeating until
every thread has been executed for atleast 50 times. Since
different CNNs have different execution times, the faster
running CNNs get executed more often. For each CNN, we
compute the average of measured runtimes and compare it
with its standalone runtime to obtain the increase in runtime

!Xilinx tools currently allow a maximum of 3 DPUs only of the same
configuration and not different configurations. We believe such restriction may
be removed soon.

wW
)l

H Actual | 30 ° Medién o ‘Meén ° Mai.
B Predicted | ¥, :
57 o e
520 o @ ool
c . : e ® o
S5 : o
£ : o ‘
@ ‘ e e
w °
s8tes e o3
© 00 o O, L O AL N
QQ) f\'b '50 60 \6 Q‘L %Q 6’\ '
SR RN N R R @

Fig. 4. Prediction error for different DPU
sizes (for single DPU prediction)

of the particular CNN for each combination. Please note that
while the standalone execution time study requires recording
the runtime for each layer, the interference study considers the
execution time of the CNN as a whole.

The number of layers, number of MAC operations, and the
data requirement (shown in Table II) are static information for
a particular CNN (and its layers) and are extracted from the
specific CNN description file.

B. Results and Discussion

We present quantitative results of single and multiple DPU
runtime prediction (with different number of CNNs).

1) Single DPU runtime prediction: Fig. 2 presents the
distribution of error in runtime prediction for different layers
across all CNNs and DPU sizes. High percentage errors are
concentrated towards layers with small runtime (0.01-1.0 ms)
as small error values translate to large percentage errors when
the base value is small. The figure also shows the distribution
of absolute error in predicting the runtime for various CNN
layers. The absolute error is mostly below 2 ms.

Fig. 3 shows the runtime for different CNNs by combining
runtime of their layers for B4096 DPU. We observe that the
execution time for different CNNs vary significantly, ranging
from ~1.5 ms to ~65 ms for B4096 DPU, and goes up to
~405 ms for B512 DPU. Qiu et al. [7] uses internal design
details and proposed a model to estimate the runtime of vggl/6
network on a particular DPU. Their estimation has an error of
~30% compared to 9% in our model. The average leave-one-
out cross-validation error (corresponding to Fig. 3) is 9.97%
while the average out-of-sample error is 7.82%.

Fig. 4 shows the prediction error for all CNNs for different
DPU sizes. The overall average error across all DPU sizes is
6.6% and the maximum error is 23.7%. We also observe the
average as well as median error to be significantly lower than
the maximum error due to a small number of outliers which
significantly increase the maximum error.

2) Estimating the effect of memory interference: Fig. 5
presents the error in estimating the effect of interference i.e.,
increase in the CNN’s execution time due to co-execution on
multiple DPUs. We observe that the maximum value of mean
estimation error is 4.2% (for B4096), and it decreases with
decreasing size of DPU. The reduction in error is because of

N
[&)]
w
o

. o5l B0
RO Max+ 9 25 Max. Q
5 sl FT. 17 I1 e T
15 o £ <] .
519 5) osth f% Eoof MaxT T]
S § Jeothl T B 5 99th
10 o5thl |+ | | |+ 5 €1 gstnd L+ 0T~
E EW0 o £
& Speans — L T li G gMeano © o o o © 5 0 | @' %M .
0 o o ° Meal ‘o e o
0 oo o o ean o
PN o DGk POt (B PN o S NGE DNV B 0
Q2N 2 N (S BP0 of pO2oA2 A\ N0 o AA) (AF) (FA) (RF)
ARG RC A A o) ARG RN A o' (DPU sizes, CNNs) used for training
Fig. 5. Interference estimation error for different Fig. 6. Final estimation error (single DPU along Fig. 7. Final estimation error for various
DPU sizes with interference model) for different DPU sizes training sets. A: All, F: Few (only TRAIN set)

the reduction in the overall range of interference for smaller
DPU sizes (Fig. 1), making it more predictable. We also
observe the 90, 95t ggth percentiles and maximum error
to be considerably apart, indicating that only a few outliers
degrade the prediction performance. Therefore, it is important
to consider these percentile errors during the evaluation of es-
timation models. Overall, across DPU sizes, the 99t percentile
error is 9.4% and the mean error is only 2%.

We further observe that the use of MBpl (MegaBytes per
layer of a CNN) as a feature for prediction reduces the
maximum error from 39.5% to 19.4%, 99t percentile error
from 16.0% to 9.4%, and the mean error from 2.8% to
2%. This clearly justifies the use of MBpl for interference
estimation for CNNs executing concurrently on DPUs.

3) Multiple DPU runtime estimation considering interfer-
ence: Now, we study the error in estimating the final runtime
of three CNNs executing concurrently on three different DPUs.
The execution time predicted for a given CNN by our single
DPU predictor is increased by the estimated interference due
to other CNNs to predict the final execution time in the
presence of memory interference. The predicted execution
time is compared with the actual time measured on the
ZCU102 board to obtain the prediction error. Fig. 6 shows
the error for different combinations of CNNs for different
DPU sizes. We observe an overall mean error of 6.6% and
maximum error of 25.3%. The overall 90" and 99" percentile
errors are within 15% and 20%, respectively. The average and
maximum out-of-sample-error for INFER are 7.4% and 25.3%
respectively. We observe high percentage errors primarily for
networks which has a very small runtime (sg) or the training
set did not include comparable networks (mossd). For CNNs
with small runtime, any small absolute error in prediction
results in high percentage error.

INFER executes on ARM CPU core available on Xilinx
Zynq chips and takes ~2.4 ms on ZCU102 board for the
CNN with largest number of layers (incv3). The measured
time is negligible in comparison to the much larger period
(few seconds to hours) at which switching of CNNs might be
required in an application. Moreover, the prediction happens
on the CPU core and does not affect the execution of CNNs
on DPUs. Therefore, our prediction model is suited to be used
at both design-time as well as run-time.

4) Sensitivity to training set size: The presented results
have considered the prediction model to be trained using only
the TRAIN set of CNNs (Table II) and DPU sizes (B4096,
B2304, and B512). We show the effect of including more
DPU sizes and/or CNNs in the training set. Fig. 7 shows the
estimation error across all CNNs and DPU sizes for four cases
when all CNNs/DPU sizes are considered for training versus
only a few (the TRAIN set) are used for training. We observe
that the prediction accuracy improves by including more DPU
sizes or CNNs into the training set. The mean error and the
90" percentile error reduces by about 5% and 3%, respectively,
when including all CNNs and DPU sizes into the training set.
However, the maximum error shows an improvement of only
3%. For systems where the set of CNNs and DPU sizes to be
used are known to be limited, we could improve the prediction
accuracy by training with all CNNs and DPU sizes. However,
due to rapid evolution of CNNs and DPUs being developed
for variety of sizes, a prediction model trained on limited set
is a reasonable choice.

5) Applicability to other CNN counts: Now, we study the
usability of the proposed predictor for a smaller (two) and
larger (four) number of CNNSs. For the former case, we execute
various combinations of two CNNs on two separate DPUs on
ZCU102 board and measure the increase in runtime, averaged
over atleast 50 measurements for each CNN. For the purpose
of prediction, we set the bandwidth and MBpl! of the third
CNN as 0. Similarly, we generate various combinations of
four CNNs and execute first two on two separate DPUs and
the other two alternatively on the third DPU. We measure
the increase in runtime for each of these CNNs. We set the
bandwidth and MBpl values of the third CNN as the average
of the two CNNs executing on the third DPU. CNNs executing
on the same DPU do not face any interference from each other.

We use the prediction model developed so far, without any
additional training, to predict the execution time for two and
four CNN scenarios (1040 and 6636 test points, respectively).
We obtain a mean error of 7.1% and 6.9%, and a maximum
error of 25.8% and 24.7% for two and four CNN scenarios
respectively. These error rates are of similar order as presented
earlier for three CNNs (Fig. 6), indicating that the proposed
predictor generalizes well for different count of CNNs.

TABLE III
RUNTIME AND ACCURACY TRADE-OFFS FOR DIFFERENT CNNs

. . Runtime for different
Different traffic densities DPU sizes (ms)
CNN 5
igh Moderate Low Small Large
MAP | Precision | Recall | MAP | Precision | Recall | MAP | Precision | Recall 8
yolo_v2 78 0.78 0.73 89 0.85 0.89 91 0.76 0.93 231 31
yolo_v3-320 76 0.91 0.76 87 0.95 0.84 87 0.90 0.77 247 38
yolo_v3-416 93 0.88 0.94 94 0.91 0.96 95 0.83 0.96 428 61
yolo_v3-608 94 0.91 0.94 94 0.94 0.96 95 0.91 0.96 873 123

C. Illustrative Application: Traffic Monitoring System

We illustrate the use of execution time estimation of CNNs
on DPUs using the example of a traffic monitoring system [2].
Table III shows the inference accuracy (measured as mean
average precision) for different CNNs trained using the road
traffic dataset [2], as well as their execution time for two differ-
ent sizes of DPU. We experimentally observe that based on the
number of vehicles on the road, different CNNs show different
vehicle detection accuracy values. Further, the execution time
of these networks varies significantly from 231 ms to 873 ms,
providing trade-off opportunity. Vehicle detection systems can
be used for multiple tasks with different accuracy requirements
e.g., signal violation and speed violation.

Higher traffic density has fewer violations in comparison to
lower traffic density and thus can do with a lower FPS (frames
per second). At a lower FPS, both yolo_v3-416 and yolo_v3-
608 have similar accuracy (MAP) but since yolo_v3-608 has
higher precision, it can be chosen if we have adequate time
available. At a higher FPS, the choice is between yolo_v2
and yolo_v3-320 and both have similar accuracy and runtime,
but yolo_v3-320 is preferred based on precision. The runtime
predicted by INFER for different DPU sizes, given any CNN,
is crucial to make such dynamic choices of CNN based on
the current traffic density. Table III only shows the runtime
when a single CNN is running on a single DPU. But INFER
can also predict the time when multiple CNNs run together
(taking interference into consideration).

V. CONCLUSION AND FUTURE WORK

CNN s are evolving fast and DPUs themselves have a variety.
Since INFER can predict execution time without compiling
CNNs or generating bitfiles, it is useful at design-time for
choosing a suitable size FPGA along with suitable CNNs and
DPUs as per cost-accuracy trade-off analysis [8]. After design-
time decisions, execution times could be stored in a table for
use at run-time. INFER allows seamless addition of new CNNs
as it can also predict their run-time. We presented an approach
for predicting the execution time of CNNs on generic CNN ac-
celerators like DPU. Subsequently, we presented results from
our framework INFER that predicts the runtime of a CNN
on a given size of DPU. For systems that use multiple DPUs
to concurrently execute CNNs, we developed an interference
estimation model that is used to refine the predicted runtime
to account for interference due to shared memory bandwidth.
We evaluated INFER, our prediction framework, using various

mixes of 16 standard CNNs and 8 different sizes of DPU.
Using only 8 CNNs and 3 DPU sizes for training, we obtain
an average prediction error of 6.6% across the entire set of
CNNs and DPU sizes. Specifically for the vggl6 network,
INFER has an estimation error of 9% compared to ~30% in
prior works.

INFER uses basic CNN and DPU characteristics which
are publicly available. We show that INFER generalizes to
different number of concurrent CNNs and can be used at both
design-time and at run-time. In our future work, we would
like to incorporate energy estimation into INFER to enable
energy-aware decision making under performance constraints.
We also plan to integrate INFER in a scheduler so that one can
choose an “optimal” CNN that is able to meet the deadlines.

REFERENCES

J. Peng et al., “Multi-task ADAS system on FPGA,” in AICAS, 2019.
M. S. Chauhan et al., “Embedded CNN based vehicle classification and
counting in non-laned road traffic,” in I/CTD, 2019.

R. Kedia et al., “MAVI: Mobility assistant for visually impaired with
optional use of local and cloud resources,” in VLSID, 2019.

K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of FPGA-
based neural network inference accelerators,” ACM TRETS, 2019.
“DPU for CNN v3.0,” 2019. [Online]. Available: https://www.xilinx.
com/support/documentation/ip_documentation/dpu/v3_0/pg338-dpu.pdf
K. Guo et al., “Angel-eye: A complete design flow for mapping cnn
onto embedded FPGA,” IEEE TCAD, 2018.

J. Qiu et al, “Going deeper with embedded FPGA platform for
convolutional neural network,” in FPGA, 2016.

R. Kedia, S. Goel, M. Balakrishnan, K. Paul, and R. Sen, “Design space
exploration of FPGA based system with multiple DNN accelerators,”
IEEE ESL, in press.

Xilinx, “Zynq UltraScale+ MPSoC ZCUI102 evaluation kit.”
[Online]. Available: https://www.xilinx.com/products/boards-and-kits/
ek-ul-zcul02-g.html

H. Sharma et al., “From high-level deep neural models to FPGAs,” in
MICRO, 2016.

Y. Umuroglu et al., “FINN: A framework for fast, scalable binarized
neural network inference,” in FPGA, 2017.

K. Abdelouahab et al., “A holistic approach for optimizing DSP block
utilization of a CNN implementation on FPGA,” in ICDSC, 2016.

H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture
search on target task and hardware,” in /CLR, 2019.

M. Ferianc, H. Fan, R. S. Chu, J. Stano, and W. Luk, “Improving
performance estimation for fpga-based accelerators for convolutional
neural networks,” in ARC, 2020.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in CVPR, 2018.
L. Breiman, “Random forests,” Mach. Learn., 2001. [Online]. Available:
https://doi.org/10.1023/A:1010933404324

H. Mohammadi Makrani et al., “Pyramid: Machine learning framework
to estimate the optimal timing and resource usage of a high-level
synthesis design,” in FPL, 2019.

Xilinx, “Zynq UltraScale+ Device.” [Online].
https://www.xilinx.com/support/documentation/user_guides/
ug1085-zyng-ultrascale-trm.pdf

[1]
[2]

[3]
[4]
[5]
[6]
[7]
[8]

[9]

[10]
[11]
[12]
[13]

[14]

[15]
[16]

(17]

[18] Available:

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_0/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_0/pg338-dpu.pdf
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://doi.org/10.1023/A:1010933404324
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf

