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Introduction

Let T : V → V be a normal matrix on a finite dimensional complex vector space
V . Suppose that λ1, λ2, . . . , λn are distinct eigenvalues of T and Mi (i = 1, 2 . . . , n)
be the corresponding eigenspaces and Pi : V → V be the orthogonal projections
onto Mi. Then by the finite dimensional Spectral theorem, we have I =

∑n
k=1 Pk

and T =
∑n
k=1 λkPk.

In these lectures we see that this result can be extended to a particular class of
operators on infinite dimensional Hilbert spaces, which resembles finite dimensional
operators in some sense.

1. Bounded Operators

In this section we define bounded linear operators between Hilbert spaces and
discuss some properties and examples. Throughout we consider only Complex
Hilbert spaces. Until other wise specified, all Hilbert spaces are assumed to be
infinite dimensional.

Definition 1.1. Let T : H1 → H2 be linear. Then T is said to be bounded if and
only if T (B) is bounded in H2 for every bounded subset B of H1.

If H1 and H2 are Hilbert spaces and T : H1 → H2 is a bounded operator, then
we denote this by T ∈ B(H1, H2). If H1 = H2 = H, then B(H1, H2) is denoted by
B(H). For T ∈ B(H), the null space and range space are denoted by N(T ) and
R(T ) respectively. The unit sphere of a Hilbert space H is denoted by SH . The
following conditions are equivalent for a linear operator to be bounded.
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Theorem 1.2. Let T : H1 → H2 be linear. Then the following are equivalent;

(1) T is bounded
(2) T is continuous at 0
(3) T is uniformly continuous
(4) there exists an M > 0 such that ‖Tx‖ ≤M‖x‖ for all x ∈ H1

Definition 1.3. If T is bounded, then by Theorem 1.2, sup
x∈SH1

‖Tx‖ < ∞. This

quantity is called the norm of T and is denoted by ‖T‖.

We have the following equivalent formulae for computing the norm of a bounded
linear operator.

Theorem 1.4. Let T ∈ B(H1, H2). Then the following are equivalent;

(1) ‖T‖ = sup {‖Tx‖ : x ∈ SH1
}

(2) ‖T‖ = sup {‖Tx‖ : x ∈ H1, ‖x‖ ≤ 1}

(3) ‖T‖ = sup {‖Tx‖
‖x‖

: x ∈ H1}

(4) ‖T‖ = inf {k > 0 : ‖Tx‖ ≤ k‖x‖ for all x ∈ H1}.

Remark 1.5. The statement (4) of the above Theorem gives a geometric interpre-
tation of the norm a bounded operator as follows: ‖T‖ is the radius of the smallest
ball contatining the image of the unit ball in H1.

For every bounded linear operator there is an another bounded linear operator
associated with it in the following way.

Definition 1.6. Let T ∈ B(H1, H2). Then there exists a unique operator from H2

into H1, denoted by T ∗ such that

〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ H1, y ∈ H2.

This operator T ∗ is called the adjoint of T .

We have the following properties of T ∗.

(1) (T ∗)∗ = T
(2) ‖T ∗‖ = ‖T‖
(3) if S ∈ B(H2, H3), then (ST )∗ = T ∗S∗

(4) if R ∈ B(H1, H2), then (R+ T )∗ = R∗ + T ∗

(5) (αT )∗ = ᾱT ∗

Remark 1.7. let S, T ∈ B(H1, H2) and α ∈ C. Then

(a) ‖S + T‖ ≤ ‖S‖+ ‖T‖
(b) ‖αT‖ = |α| ‖T‖
(c) ‖T ∗T‖ = ‖T‖2 = ‖TT ∗‖.

Exercise 1.1. Let T ∈ B(H). Then show that

‖T‖ = sup {|〈Tx, y〉| : x, y ∈ SH}.

Exercise 1.2. Let T ∈ B(H1, H2). Then

(1) N(T ) = R(T ∗)⊥

(2) N(T ∗) = R(T )⊥

(3) R(T ) = N(T ∗)⊥

(4) R(T ∗) = N(T )⊥
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(5) N(T ∗T ) = N(T )

(6) R(TT ∗) = R(T ).

1.3. Examples.

(1) (identity operator) Let H be a complex Hilbert space. Let I be the identity
map on H. Then ‖I‖ = 1.

(2) (right shift operator) Let R : `2 → `2 be given by

R(x1, x2, . . . ) = (0, x1, x2, . . . ) for all (x1, x2, . . . ) ∈ `2.

Then we can show that ‖Rx‖ = ‖x‖ for all x ∈ `2. Hence R is bounded
and ‖R‖ = 1. One can check that R∗(y1, y2, y3, . . . ) = (y2, y3, . . . ) for all
(yn) ∈ `2. Note that ‖R∗‖ = 1.

(3) (matrix) Let H1 be a finite dimensional Hilbert space and H2 be a Hilbert
space. Let T : H1 → H2 be linear. Then T is bounded. To see this,
let {φ1, φ2, φ3, . . . φn} be an orthonormal basis for H1. If x ∈ H1, then

x =

∞∑
k=0

〈x, φk〉φk. Hence Tx =

∞∑
k=0

〈x, φk〉Tφk. Using the Cauchy-Schwarz

inequality, we can show that

‖Tx‖ ≤

(
n∑
k=1

‖Tφj‖2
) 1

2

‖x‖ for all n

That is ‖T‖ ≤
(∑n

k=1 ‖Tφj‖2
) 1

2 .

Exercise 1.4. Solve the following.

(a) (diagonal matrix) Let D : Cn → Cn be a linear operator whose matrix with
respect to the standard orthonormal basis of Cn is the diagonal matrix with
entries {λ1, λ2, · · · , λn}. Show that ‖T‖ = max

1≤j≤n
{|λj |}.

(b) (diagonal operator) Let H be a separable Hilbert space with an orthonormal
basis {φn} and (λn) be a bounded sequence of complex numbers. Define
T : H → H by

Tx =

∞∑
n=1

λn〈x, φn〉φn, for all x ∈ H.

Show that T is bounded and ‖T‖ = sup {|λn| : n ∈ N}.
(c) (multiplication operator)Let g ∈

(
C[0, 1], ‖ · ‖∞

)
. Define Mg : L2[0, 1] →

L2[0, 1] by

Mg(f) = gf, for all f ∈ L2[0, 1].

Show that Mg is bounded and ‖Mg‖ = ‖g‖∞.
(d) find adjoint of each operator in (a), (b) and (c).

Definition 1.8. Let T ∈ B(H). Then T is said to be

(1) self-adjoint if T = T ∗

(2) normal if T ∗T = TT ∗

(3) unitary if T ∗T = TT ∗ = I
(4) isometry if ‖Tx‖ = ‖x‖ for all x ∈ H (equivalently T ∗T = I )
(5) orthogonal projection if T 2 = T = T ∗.
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Remark 1.9. If T ∈ B(H), then T ∗T and TT ∗ are self-adjoint operators. Also

T = A + iB, where A =
T + T ∗

2
and B =

T − T ∗

2i
. It can be easily checked that

A = A∗ and B = B∗. This decomposition is called the cartesian decomposition
of T . It can be easily verified that T is normal if and only if AB = BA.

Definition 1.10. Let H be a separable Hilbert space with an orthonormal basis
φ1, φ2, φ3, . . . . Then the matrix of T with respect to φ1, φ2, φ3, . . . is given by (aij)
where aij = 〈Tφj , φi〉 for i, j = 1, 2, 3 . . . , n.

Exercise 1.5. (1) Find the matrix of the right shift operator with respect to
the standard orthonormal basis of `2

(2) show that if (aij) is a matrix of T with respect to an orthonormal basis,

then (aji) is the matrix of T ∗ with respect to the same basis.

In order to get a spectral theorem analogous to the finite dimensional case,
we have to look for bounded operators with the similar properties of the finite
dimensional operators. One such property is that

If H1, H2 are finite dimensional complex Hilbert spaces and T : H1 → H2 is
linear then:

For every bounded set S ⊆ H1, T (S) is pre compact in H2 under T.(*)
For a set to be compact in a metric space, we have the following;

Theorem 1.11. Let X be a metric space and S ⊆ X. Then the following conditions
are equivalent.

(1) S is compact
(2) S is sequentially compact
(3) S is totally bounded and complete.

The following example shows that this property depends on the dimension of the
range of the operator.

Let H1 and H2 be infinite dimensional Hilbert spaces. Let w ∈ H1 and z ∈ H2

be a fixed vectors. Define T : H1 → H2 by

Tx = 〈x,w〉z, for all x ∈ H1.

As the range of the operator is one dimensional, T maps bounded sets into pre
compact sets. This can be generalized to a bounded operator whose range is finite
dimensional as follows:

Let w1, w2, . . . wn ∈ H1 and z1, z2, . . . , zn ∈ H2 be fixed vectors. Define T :
H1 → H2 given by

(1.1) Tx =

n∑
j=1

〈x,wj〉zj , for all x ∈ H1.

Then T is linear, bounded and has finite dimensional range. Such operators are
called as finite rank operators.

Definition 1.12. Let T ∈ B(H). Then T is called a finite rank (rank n say) if
R(T ) is finite dimensional.

Note 1.6. We have seen that any operator given by Equation (1.1) is a finite rank
operator and has the property (∗). Can we express every finite rank operator as in
(1.1).
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Theorem 1.13. Let K : H1 → H2 be a bounded operator of rank n. Then there
exists vectors v1, v2, . . . vn ∈ H1 and vectors φ1, φ2, . . . , φn ∈ H2 such that for every
x ∈ H1, we have

Kx =

n∑
j=1

〈x, vi〉φi.

The vectors φ1, φ2, . . . , φnmay be chosen to be any orthonormal basis for R(K).

Proof. Let φ1, φ2, . . . , φn be an orthonormal basis for R(K). Then

Kx =

n∑
i=1

〈Kx, φi〉φi, for every x ∈ H1.

For each i, the functionals fi(x) = 〈Kx, φi〉 is a bounded linear functional on H1.
Now by the Riesz Representation theorem, there exists a unique vi ∈ H1 such that
fi(x) = 〈x, vi〉 and ‖fi‖ = ‖vi‖ for each i. Hence the result follows. �

Remark 1.14. In the above theorem, the representation of K is not unique as it
depends on the orthonormal basis and hence on the vectors {vj}nj=1.

Can this happen for operators whose range and domain are infinite dimensional?.

2. Compact Operators

In this section we discuss the properties of operators which are analogues of the
finite dimensional operators. In other words we describe the infinite dimensional
operators which have the property (∗).

Definition 2.1. Let T : H1 → H2 be a linear operator. Then T is said to be
compact if for every bounded set S ⊆ H1, the set T (S) is compact in H2.

Example 2.2. Every m× n matrix corresponds to a compact operator.

Example 2.3. Every bounded finite rank operator is compact.

Notation: The set of all compact operators from H1 into H2 is denoted by
K(H1, H2) and if H1 = H2 = H, then K(H).

Remark 2.4. (1) Every compact operator is bounded.
The converse need not be true. For example consider the identity operator
I : H → H. Clearly I is bounded. Then I is compact if and only if
dimension of H is finite.

(2) An isometry is compact if and only if it is a finite rank operator.
(3) Restriction of a compact operator to a closed subspace is again compact
(4) An orthogonal projection onto a closed subspace of a Hilbert space is com-

pact if and only if it is of finite rank.
(5) Let T ∈ B(H) be a compact operator which is not a finite rank operator.

Then R(T ) cannot be closed.

In view of Theorem 1.11, the definition of a compact operator can be described
as follows.

Let T : H1 → H2 be a bounded operator and B := {x ∈ H : ‖x‖ ≤ 1}. Then the
following conditions are equivalent.

(1) T (B) is compact
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(2) For every bounded sequence (xn) ⊆ H1, (Txn) has a convergent subse-
quence in H2

(3) T maps bounded sets into totally bounded sets.

2.1. Properties.

Theorem 2.5. Let T1, T2 : H1 → H2 be compact operators and α ∈ C. Then

(1) αT1 is compact
(2) T1 + T2 is compact.

Proof. Proof of (1) is obvious.
For the proof of (2), let (xn) ⊆ H be a bounded sequence. Since T1 is compact,

T1xn has a subsequence T1xnk
which is convergent, say T1xnk

→ y. Now xnk

is bounded sequence. Since T2 is compact, there exists a subsequence (xnkl
) of

(xnk
) such that T2xnkl

is convergent. Note that T1xnkl
is convergent. Therefore

(T1 + T2)xnkl
is convergent. Hence T1 + T2 is compact. �

From Theorem 2.5, we can conclude that K(H1, H2) is a vector subspace of
B(H1, H2).

Theorem 2.6. Let A : H1 → H2 be compact and B : H3 → H1, C : H2 → H3 are
bounded. Then CA and AC are compact.

Proof. Let (xn) ⊆ H1 be a bounded sequence. As A is compact, there exists a
subsequence (xnk

) of (xn) such that Axnk
is convergent. Since C is bounded,

CAxnk
is also convergent. Hence CA is compact.

Now

B is bounded⇒ (Bxn) is bounded

⇒ (ABxn) has a convergent subsequence, since A is compact

⇒ AB is compact.

�

Conclusion: From the above two results one can conclude that the set of all
compact operator on H is a two sided ideal in B(H), the space of all bounded
operators on H.

Remark 2.7. By Theorem 2.6, if T ∈ K(H), then T 2 ∈ K(H). But the converse
need not be true.

Exercise 2.2. Let T : `2 ⊕ `2 → `2 ⊕ `2 given by

T (x, y) = (0, x), (x, y) ∈ `2 ⊕ `2

is not compact (Note that T 2 = 0).

Theorem 2.8. Let T∈B(H1, H2). Then

(1) T is compact ⇔ T ∗T or TT ∗ is compact
(2) T is compact ⇔ T ∗ is compact

Proof. Proof of (1):
If T is compact, then T ∗T is compact by Theorem 2.6. To prove the converse,
assume that T ∗T : H1 → H1 is compact. If (xn) ⊆ H1 is a bounded sequence
with bound M > 0, then T ∗Txn has a convergent subsequence namely T ∗Txnk

,
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say T ∗Txnk
→ y. For notational convenience we denote the subsequence (xnk

)by
(xn).

For n > m, we have

‖Txn − Txm‖2 = 〈T (xn − xm), T (xn − xm)〉
= 〈T ∗T (xn − xm), (xn − xm)〉
≤ ‖T ∗T (xn − xm)‖ ‖xn − xm‖
≤ 2M ‖T ∗T (xn − xm)‖.

Hence (Txn) is Cauchy and hence convergent.
Similarly, TT ∗ ∈ K(H2).

Proof of (2):
Let (zn) ⊆ H2 be a bounded sequence. As TT ∗ is compact, (TT ∗zn) has a conver-
gent subsequence, say TT ∗znk

converging to z. Now for k > l,

‖T ∗znk
− T ∗znl

‖2 = 〈TT ∗(znk
− znl

), znk
− znl

〉
≤ ‖TT ∗(znk

− znl
)‖ ‖znk

− znl
‖

→ 0 as n→∞.

That is (T ∗znk
) is Cauchy, hence convergent. Thus T ∗ is compact.

By the above argument, T ∗ is compact implies that T ∗∗ = T is compact. �

Theorem 2.9. K(H) is a closed in B(H).

Proof. Let (Kn) be a sequence of compact operators converging to K. Let M > 0
be such that ‖Kn‖ ≤M for all n. Our aim is to show that K is compact. Let (xi)
be a bounded sequence in H. Let (x1i ) be a subsequence of (xi) be such that (K1x

1
i )

is convergent. Let (x2i ) ⊆ (x1i ) such that (K2x
2
i ) is convergent. Let (x3i ) ⊆ x2i be

such that (K3x
3
i ) is convergent. Continuing this process, let (xni ) be a subsequence

of (xn−1i ) such that (Knx
n
i ) is convergent.

The sequence (zi) = (xii) is a subsequence of (xi). Also for each n, except the
first n terms, (zi) is a subsequence of (xni ) such that (Knzi) is convergent.

Now for all i, j and n we have,

‖Kzi −Kzi‖ = ‖(K −Kn)zi +Knzi −Knzj − (K −Kn)zj‖

≤ ‖K −Kn‖
(
‖zi‖+ ‖zj‖

)
+ ‖Kn(zi − zj)‖.

That is (Kzi) is Cauchy, hence convergent as H is a Hilbert space. This concludes
that K is compact. �

Lemma 2.10. Let K be a compact operator on a separable Hilbert space H and
suppose that (Tn) ⊆ B(H) and T ∈ B(H) are such that for each x ∈ H, the sequence
Tnx→ Tx. Then TnK → TK in the norm of B(H).

Proof. Suppose that ‖TnK−TK‖9 0. Then there exists a δ > 0 and a subsequence
{Tnj

K} such that

‖Tnj
K − TK‖ > δ.

Choose unit vectors (xni
) of H such that

‖(Tnj
K − TK)(xni

)‖ > δ.
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Since K is compact, we get a subsequence (xnj ) of (xni) such that Kxnj is conver-
gent. Assume that Kxnj

→ y. Then

(2.1) δ < ‖(Tnj
K − TK)xnj

‖ ≤ ‖(Tni
− T )(Kxnj

− y)‖+ ‖(Tnj
− T )y‖

Since Kxnj → y, there exists n such that for nj > n,

‖Kxnj − y‖ <
δ

8C
.

Also as Tnjy → Ty for ach y ∈ H, there exists m such that nj > m implies

‖(T − Tnj )y‖ < δ

4
.

Since (Tn) ⊆ B(H) is bounded, then ‖Tn‖ ≤ C and ‖Tx‖ = lim
n→
‖Tnx‖ ≤ C. Hence

‖T − Tnj
‖ ≤ 2C. Now from Equation 2.1,

δ < ‖(Tnj
K − TK)xnj

‖ < δ

4
+
δ

4
=
δ

2
,

a contradiction. �

Theorem 2.11. Every compact operator on a separable Hilbert space H is a norm
limit of a sequence of finite rank operators. In other words , the set of finite rank
operators is dense in the space of compact operators.

Proof. Let {φn : n ∈ N} be an orthonormal basis for H and Hn := span{φk}nk=1.
Then the orthogonal projections Pn : H → H defined by

Pnx =

n∑
j=1

〈x, φj〉φj

has the property that Pnx→ x for each x ∈ H.
Now, if K is compact, then by Lemma 2.10, it follows that PnK → K in the

operator norm of B(H). Here R(PnK) ⊆ R(Pn) = Hn is finite dimensional. �

Example 2.12. Let H = `2 and {en} be the standard orthonormal basis of H.
Define D : H → H by

D(x1, x2, x3, . . . ) = (x1,
x2
2
,
x3
3
, . . . ), for all (xn) ∈ H.

Then D is bounded. Next, we show that D ∈ K(H). Define Dn : H → H by

Dnx =

n∑
j=1

〈x, ej〉ej . Then Dn is finite rank bounded operator and Dn → D as

n→∞. Hence by theorem 2.11, D is compact.

Example 2.13. Let T = RD and S = DR where R is the right shift operator and
D is as in example 2.12. Then both T and S are compact.

Example 2.14. Let k(·, ·) ∈ L2[a, b]. Define K : L2[a, b]→ L2[a, b] by

(Kf)(s) =

∫ b

a

k(s, t)f(t)dt, for all f ∈ L2[a, b].
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It can be verified that K ∈ B(L2[a, b]). Let {φn : n ∈ N} be an orthonormal basis
for L2[a, b]. Then ψm,n(s, t) = φn(s)φm(t) for all s, t ∈ [a, b] and for all m,n ∈ N
forms an orthonormal basis for L2([a, b]× [a, b]). Hence

k(s, t) =

∞∑
m,n=1

〈k(s, t), ψm,n(s, t)〉ψm,n(s, t).

Let

kN (s, t) =

N∑
m,n=1

〈k(s, t), ψm,n(s, t)〉ψm,n(s, t).

Now define KN : L2[a, b]→ L2[a, b] by

(KNf)(s) =

∫ b

a

kN (s, t)f(t)dt, for all f ∈ L2[a, b].

Note that KN is a finite rank operator and KN → K as N → ∞. Hence by
Theorem 2.11, K ∈ K(L2[a, b]).

3. The Spectral Theorem

Definition 3.1. A complex number λ ∈ C is called an eigenvalue of T ∈ B(H)
if there exists a vector 0 6= x ∈ H such that Tx = λx. The vector x is called an
eigenvector for T corresponding to the eigenvalue λ. Equivalently λ is an eigenvalue
of T iff T − λI is not one-to-one.

Example 3.2. Let H = `2. Define T : H → H by

T (x1, x2, x3, . . . ) = (x1,
x2
2
,
x3
3
, . . . ), (x1, x2, x3, . . . ) ∈ H.

Let {en : n ∈ N} denote the standard orthonormal basis for H. Then Ten = 1
nen.

Hence { 1n} is a set of eigenvalues of T with corresponding eigenvectors en.

Exercise 3.1. Let R : `2 → `2 be given by

R(x1, x2, . . . ) = (0, x1, x2, . . . ), (x1, x2, . . . ) ∈ `2.
Find the eigenvalues and eigenvectors of R.

Exercise 3.2. Show that the operator T : `2 → `2 defined by

T (x1, x2, . . . ) = (0,
x1
2
,
x2
3
, . . . ), (x1, x2, . . . )

is compact but has no eigenvalues.

3.3. Self-adjoint Operators.

Definition 3.3. Let T ∈ B(H). If T = T ∗, then T is called self-adjoint.

The operators in Example 3.2 is self-adjoint, where as the operator in Exercise
3.1 is not.

Exercise 3.4. Let M : L2[0, 1]→ L2[0, 1] be given by

(Mf)(t) = tf(t), f ∈ L2[0, 1], t ∈ [0, 1].

Show that M is self-adjoint and has no eigenvalue.

Proposition 3.4. Let T ∈ B(H) be self-adjoint. Then

(1) eigenvalues of T are real
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(2) eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. Proof of 1:
Let λ be an eigenvalue of T and x be the corresponding eigen vector. Then Tx = λx.

λ‖x‖2 = λ 〈x, x〉 = 〈λx, x〉 = 〈Tx, x〉 = 〈x, Tx〉 = 〈x, λx〉 = λ̄ ‖x‖2.

Since x 6= 0, we have λ = λ̄.
Proof of 2:
Let λ and µ be distinct eigenvalues of T and x and y be the corresponding eigen-
vectors. Then Tx = λx and Ty = µy. Now

µ 〈x, y〉 = 〈x, µy〉 = 〈x, Ty〉 = 〈Tx, y〉 = λ〈x, y〉.

Since λ, µ ∈ R and distict, it follows that 〈x, y〉 = 0. �

Theorem 3.5. Let T ∈ B(H) be self-adjoint. Then ‖T‖ = sup
‖x‖=1

|〈Tx, x〉|.

Proof. Let m = sup
‖x‖=1

|〈Tx, x〉|. Note that |〈Tx, x〉| ≤ m for each x ∈ H with

‖x‖ = 1. If ‖x‖ = 1, then by the Cauchy-Schwartz-Bunyakovsky inequality,

|〈Tx, x〉| ≤ ‖Tx‖ ‖x‖ = ‖Tx‖.

Hence m ≤ ‖T‖.
To prove the other way, let x, y ∈ H. Then 〈T (x ± y), x ± y〉 = 〈Tx, x〉 +

2Re〈Tx, y〉+ 〈Ty, y〉. Therefore,

4Re〈Tx, y〉 = 〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉
≤ |〈T (x+ y), x+ y〉|+ |〈T (x− y), x− y〉|

≤ m
(
‖x+ y‖2 + ‖x− y‖2

)
= 2m (‖x‖2 + ‖y‖2) (by the parallelogram law).

Now 〈Tx, y〉 = |〈Tx, y〉| exp(iθ) for some real θ. Substituting x exp(iθ) in the above
equation, we get

4Re〈Tx exp(−iθ), y〉 ≤ 2m(‖x‖2 + ‖y‖2)

4|〈Tx, y〉| ≤ 2m(‖x‖2 + ‖y‖2).

Substituting y =
‖x‖
‖Tx‖

Tx in place of y in the above equation, we get ‖Tx‖ ≤ m ‖x‖.

Hence ‖T‖ = m. �

Corollary 3.6. Let T ∈ B(H) be self-adjoint. If 〈Tx, x〉 = 0, for each x ∈ H.
Then T = 0.

Theorem 3.7. Let T ∈ B(H) be self-adjoint.

(1) Let λ = inf‖x‖=1 〈Tx, x〉. If there exists an x0 ∈ H such that ‖x0‖ = 1 and
λ = 〈Tx0, x0〉, then λ is an eigenvalue of T with corresponding eigenvector
x0.

(2) Let µ = sup‖x‖=1 〈Tx, x〉. If there exists a x1 ∈ H, ‖x1‖ = 1 such that µ =

〈Tx1, x1〉, then µ is eigenvalue value of T with corresponding eigenvector
x1.
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Proof. Let α ∈ C and v ∈ H, by defintion of λ, we have

〈T (x0 + αv), x0 + αv〉 ≥ λ〈x0 + αv, x0 + αv〉.
Hence

〈Tx0, x0〉+ ᾱ〈Tx0, v〉+ α〈Tv, x0〉+ |α|2〈Tv, v〉
≥ λ〈x0, x0〉+ λᾱ〈x0, v〉+ λα〈x0, v〉+ λ|α|2〈v, v〉.

That is

〈Tx0, x0〉+2αRe 〈Tx0, v〉+|α|2〈Tv, v〉 ≥ λ〈x0, x0〉+λ|α|2〈v, v〉+2 Re αλ〈x0, v〉.

Substituting λ = 〈Tx0, x0〉 and taking α = r 〈v, (T − λI)x0〉, r ∈ R, we can con-
clude that 〈v, (T − λI)x0〉 = 0 for each v ∈ H. Hence Tx0 = λx0.

The proof of the other statement follows by taking −T in place of T . �

Theorem 3.8. If T ∈ B(H) is compact and self-adjoint, then at least one of the
numbers ‖T‖ or −‖T‖ is an eigenvalue.

Proof. By Theorem 3.7, there exists a sequence (xn) ⊆ H with ‖xn‖ = 1 for each
n such that and λ ∈ R such that 〈Txn, xn〉 → λ, where λ = +‖T‖ or λ = −‖T‖.
Now

‖Txn − λxn‖2 = ‖Txn‖2 + λ2 − 2λ〈Txn, xn〉
≤ 2λ2 − 2λ〈Txn, xn〉 → 0 as n→∞.

Since T is compact, there exists a sub sequence (Txnj
) of (Txn) such that Txnj

→ y.

So Txnj − λxnj → 0 as n → ∞. That is xn → 1
λy. Hence y = limTxnj = 1

λTy.
Hence λ is an eigen value. �

Corollary 3.9. If T ∈ K(H) be self-adjoint, then max
‖x‖=1

|〈Tx, x〉| = ‖T‖.

Exercise 3.5. Let K : L2[0, 1]→ L2[0, 1] be defined by

(Kf)(t) =

∫ t

0

f(s)ds.

Check that K is non self-adjoint, compact and does not possesses eigenvalues.

Definition 3.10. A closed subspace M of H is said to be invariant under T ∈
B(H) if and only if T (M) ⊆ M . If both M and M⊥ are invariant under T , then
we say that M is a reducing subspace for T .

Exercise 3.6. M is invariant under T iff M⊥ is invariant under T ∗.

Exercise 3.7. Let T ∈ B(H). Let M be a closed subspace of a Hilbert space and
P : H → H be an orthogonal projection such that R(P ) = M . Then

(1) M is invariant under T iff TP = PTP
(2) M reduces T iff TP = PT .

Observations

(1) If T is a self-adjoint operator, then every invariant subspace is reducing.
(2) every eigen space corresponding to a particular eigenvalue is invariant under

the operator. In particular, if the operator is self-adjoint every eigen space
reduce the operator.
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Note 3.8. If T is compact operator and M is a closed subspace of H, then the
restriction operator T |M is also compact.

Theorem 3.11 (The Spectral theorem). Suppose T ∈ K(H) be self-adjoint. Then
there exists a system of orthonormal vectors φ1, φ2, φ3, . . . of eigenvectors of T and
corresponding eigenvalues λ1, λ2, λ3, . . . such that |λ1| ≥ |λ2| ≥ |λ3| ≥ . . . ,

Tx =

∞∑
k=1

λk〈x, φk〉φk for all x ∈ H.

If (λn) is infinite, then λn → 0 as n → ∞. The series on the right hand side
converges in the operator norm of B(H).

Proof. We prove the theorem step by step.

Step 1: Construction of eigen vectors

We use Theorem 3.8 repeatedly for constructing eigenvalues and eigenvectors.
Let H1 = H and T1 = T . Then by Theorem 3.8, there exists an eigenvalue λ1 of

T1 and an eigenvector φ1 such that ‖φ1‖ and |λ1| = ‖T1‖. Now span{φ1} is a closed
subspace of H1, hence by the projection theorem, H1 = span{φ1} ⊕⊥ span{φ1}⊥.
Let H2 = span{φ1}⊥. Clearly H2 is a closed subspace of H1 and T (H2) ⊆ H2.

Now let T2 = T1|H2
. Then T2 is a compact and self-adjoint operator in B(H2). If

T2 = 0, then there is nothing to prove. Assume that T2 6= 0. Then by Theorem 3.8,
there exists an eigenvalue λ2 of T2 with |λ2| = ‖T2‖and a corresponding eigenvector
φ2 with ‖φ2‖ = 1. Since T2 is a restriction of T1, |λ2| = ‖T2‖ ≤ ‖T1‖ = |λ1|. By
the construction φ1 and φ2 are orthonormal. Now let H3 = span{φ1, φ2}⊥. Clearly
H3 ⊆ H2. It is easy to show that T (H3) ⊆ H3. The operator T3 = T |H3

is
compact and self-adjoint. Hence by Theorem 3.8, there exists an eigenvalue λ3 of
T3 and a corresponding eigenvector φ3 with ‖φ3‖ = 1. Here |λ3| = ‖T3‖. Hence
|λ3| ≤ |λ2| ≤ |λ1|.

Proceeding in this way, either after some stage n, Tn = 0 or there exists a se-
quence λn of eigenvalues of T and corresponding vector φn with ‖φn‖ = 1 and
|λn| = ‖Tn‖. Also |λn+1| ≤ |λn| for each n.

Step 2: If (λn) is infinite, then λn → 0

If λn 9 0, there exists an ε > 0 such that |λn| ≥ ε for infinitely many n′ s. If
n 6= m,

‖Tφn − Tφm‖2 = ‖λnφn − λmφm‖2 = λ2m + λ2n > ε2.

This shows that (Tφn) has no convergent subsequence, a contradiction to the com-
pactness of T . Hence λn → 0 as n→∞.

Step 3: Representation of T

Here we consider two cases

Case 1: Tn = 0 for some n
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Let xn = x−
n∑
k=1

〈x, φk〉φk. Then xn⊥φi for 1 ≤ i ≤ n. Hence

0 = Tnxn = Tx−
n∑
k=1

λk〈x, φk〉φk.

That is Tx =

n∑
k=1

λk〈x, φk〉φk.

Case 2: Tn 6= 0 for infinitely many n

For x ∈ H, by Case 1, we have

‖Tx−
n∑
k=1

λk〈x, φk〉φk| = ‖Tnxn‖ ≤ ‖Tn‖ ‖xn‖

= |λn| ‖xn‖ ≤ |λn| ‖x‖
→ 0.

Hence Tx =

∞∑
k=1

λk〈x, φk〉φk. �

Observations:

(a) N(T )⊥ = span{φ1, φ2, . . .}
(b) By the projection theorem H = N(T ) ⊕⊥ N(T )⊥ = N(T ) ⊕⊥ R(T ). The

spectral theorem guarantees the existstence of the orthonormal basis for
R(T ). Hence R(T ) is separable. In addition if N(T ) is separable, then H
is separable.

(c) H = N(T )⊕∞k=1 Gi, where Gn = H⊥n = ⊕n−1i=1 N(T − λiI).
(d) T |N(T )⊥ = diag(λ1, λ2, . . . , λn, . . . ).
(e) each λj is repeated in the sequence {λn} exactly pj = dimN(T − λjI)

times. Since the sequence λn → 0, each λj appears finitely many times.
Let λj = λni

, i = 1, 2, . . . p. Then N(T −λjI) = span{φn1
, . . . , φnp

}. If this
is not possible, then there exists a 0 6= v ∈ N(T − λjI) such that v⊥φni

where 1 ≤ i ≤ p. If k 6= ni 1 ≤ i ≤ p, v⊥φk as λj 6= λk. Hence

λjv = Tv =
∑
k

λk〈v, φk〉φk = 0

which is impossible because λj 6= 0 and v 6= 0.

Example 3.12. Define D : `2 → `2 by

D(x1, x2, . . . ) = (x1,
x2
2
, . . . ) (x1, x2, . . . ) ∈ `2.

Then T ∈ K(H) and self-adjoint. Note that Den =
1

n
en. Hence

1

n
is an eigenvalue

with an eigen vector en. Also 1
n → 0 as n → ∞. We can also represent D as

D(x) =

∞∑
n=0

1

n
〈x, en〉en for all x = (xn) ∈ `2.
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Exercise 3.9. (1) Let K ∈ K(H). Show that R(K − λI) is closed for each
λ ∈ C \ {0}.

The converse of the spectral theorem is also true.

Theorem 3.13. Suppose that φ1, φ2, . . . is a sequence of orthogonal vectors in H
and (λk) be a sequence of real numbers such that (λk) is finite or converges to 0.
Then the operator defined by

Tx =

∞∑
k=1

λk〈x, φk〉φk

is compact and self-adjoint.

Proof. We consider the following cases.
Case 1: (λk) is finite

Consider Tx =

n∑
k=1

λk〈x, φk〉φk. Then

‖Tx‖2 = 〈Tx, Tx〉

=

n∑
k=1

|λk|2|〈x, φk〉|2

≤ max
k
|λk|‖x‖2.

This shows that T ∈ B(H) and T is a finite rank operator. Hence T is compact.
Case 2: (λk) is infinite and λk → 0 as n→∞.
By the Spectral Theorem, ‖Tx‖2 =

∑
n |λn|2|〈x, φn〉|2 ≤ max

k≥n
|λk|‖x‖2. Hence

‖T‖ <∞. Now define Tnx =

n∑
k=1

λk〈x, φk〉φk. Then

‖T − Tn‖2 = sup
‖x‖=1

‖
∑

k=n+1

λk〈x, φk〉φk‖2

≤ sup
k>n
|λk|2 → 0 as n→∞.

As each Tn is finite rank and hence compact, T is compact. It easy to verify that
T = T ∗. �

3.10. Second form of the Spectral Theorem.

Definition 3.14. An orthonormal system φ1, φ2, . . . of eigenvectors of T ∈ B(H
with corresponding non zero eigen values λ1, λ2, . . . is called a basic system of
eigenvalues and eigenvectors of T if

Tx =
∑
k

λk〈x, φk〉φk

.

The Spectral Theorem guarantees the existence of a basic system of eigenvalues
and eigenvectors for a compact self-adjoint operator.

Theorem 3.15. Let T be a compact self-adjoint operator and µj be the set of all
non zero eigenvalues of T and let Pj be the orthogonal projection onto N(T −µjI).
Then
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(1) PjPk = 0, j 6= k
(2) T =

∑
j µjPj, where the convergence of the series is with respect to the

norm of B(H).
(3) For each x ∈ H,

x = P0x+
∑
j

Pjx,

where P0 is the orthogonal projection onto N(T ).

Proof. Let {φn}, {λn} be a basic system of eigen vectors and eigen values of T . For
each k, a subset of {φn} is an orthonormal basis for N(T −µkI) say, φni

1 ≤ i ≤ p.
Then Pkx =

∑p
i=1〈x, φni

〉φni
since each λn is µk, it follows that

x = P0x+
∑

Pkx and Tx =
∑
k

λkPkx.

Furthermore PjPk = 0, j 6= k, since N(T − µjI)⊥N(T − µkI).
If (λn) is an infinite sequence, then

‖T −
n∑
k=1

µkPk‖2 = sup
‖x‖=1

‖Tx−
n∑
k=1

µkPkx‖2

≤ sup
‖x‖=1

∑
j≥n

λ2j |〈x, φj〉|2

≤ sup
j>n
|λj |2 → 0 as n→∞. �


