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INTRODUCTION

Let T : V — V be a normal matrix on a finite dimensional complex vector space
V. Suppose that A\, Mg, ..., \, are distinct eigenvalues of T and M; (i =1,2...,n)
be the corresponding eigenspaces and FP; : V' — V be the orthogonal projections
onto M;. Then by the finite dimensional Spectral theorem, we have I = ZZ=1 Py
and T = ZZ:l )\kpk

In these lectures we see that this result can be extended to a particular class of
operators on infinite dimensional Hilbert spaces, which resembles finite dimensional
operators in some sense.

1. BOUNDED OPERATORS

In this section we define bounded linear operators between Hilbert spaces and
discuss some properties and examples. Throughout we consider only Complex
Hilbert spaces. Until other wise specified, all Hilbert spaces are assumed to be
infinite dimensional.

Definition 1.1. Let T : H; — Hy be linear. Then T is said to be bounded if and
only if T(B) is bounded in Hs for every bounded subset B of Hj.

If H; and H, are Hilbert spaces and T : Hy — Hs is a bounded operator, then
we denote this by T' € B(Hy, Hy). If H; = Hy = H, then B(H;, Hs) is denoted by
B(H). For T € B(H), the null space and range space are denoted by N(T) and
R(T) respectively. The unit sphere of a Hilbert space H is denoted by Sg. The
following conditions are equivalent for a linear operator to be bounded.
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Theorem 1.2. Let T : Hy — Hy be linear. Then the following are equivalent;
(1) T is bounded
(2) T is continuous at 0

(3) T is uniformly continuous
(4) there exists an M > 0 such that ||Tz|| < M||x| for all z € Hy

Definition 1.3. If T is bounded, then by Theorem 1.2, sup ||Tz| < oo. This

x€SH,

quantity is called the norm of 7" and is denoted by ||T||.

We have the following equivalent formulae for computing the norm of a bounded
linear operator.

Theorem 1.4. Let T € B(Hy, Hy). Then the following are equivalent;
(1) ||| = sup{||Tz| : v € Su, }
(2) IT|| = sup{||Tx|| : v € Hy, [|lz[| < 1}

@) 17 = sup (1720 4 ¢ 11y

[&d|
(4) ||| = inf {k > 0 : |Tz|| < kl|z|| for all z € Hy}.

Remark 1.5. The statement (4) of the above Theorem gives a geometric interpre-
tation of the norm a bounded operator as follows: ||T|| is the radius of the smallest
ball contatining the image of the unit ball in H;.

For every bounded linear operator there is an another bounded linear operator
associated with it in the following way.

Definition 1.6. Let T € B(Hy, H3). Then there exists a unique operator from Ho
into Hy, denoted by T™ such that

(Tx,y) = (x,T"y) for all x € Hy,y € Ho.
This operator T is called the adjoint of T

We have the following properties of T™*.
1) (T) =
(2) 1T~ = HTll
(3) if S € B(Hs, H3), then (ST)* =T*S*
(4) if R € B(Hy, Hs), then (R+T)* = R* + T*
(5) (T)" = aT™
Remark 1.7. let S,T € B(Hy, Hz) and a € C. Then

(@) IS+ T < [ISIl+ T

() o7 = fol 7]

() 1T=T|| = [|T|]* = | TT"|-
Exercise 1.1. Let T € B(H). Then show that

IT|| = sup{|{Tx,y)| : x,y € Spr}.

Exercise 1.2. Let T € B(H;, Hy). Then

(1) N(T) = R(T*)*
(2) N(T*) = R(T)*
(3) R(T) = N(T*)*
(4) R(T*) = N(T)*+
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(5) N(T*T) = N(T)

(6) R(IT*) = R(T).

1.3. Examples.

(1) (identity operator) Let H be a complex Hilbert space. Let I be the identity
map on H. Then ||| = 1.
(2) (right shift operator) Let R : ¢? — 2 be given by

R(zy,22,...) = (0,21, 29,...) forall (z1,zs,...) € (2.

Then we can show that |Rx| = ||z|| for all x € ¢2. Hence R is bounded
and ||R|| = 1. One can check that R*(y1,y2,93,-..) = (y2,ys,...) for all
(yn) € £2. Note that ||R*| = 1.

(3) (matrix) Let Hy be a finite dimensional Hilbert space and Hs be a Hilbert
space. Let T : H;y — Hsy be linear. Then T is bounded. To see this,
let {¢1, P2, Ps3,...Pn} be an orthonormal basis for Hy. If x € Hy, then

[ee] oo

T = Z(m, ¢r)dr. Hence Tz = Z(m, ¢r)T¢r. Using the Cauchy-Schwarz

k=0 k=0
inequality, we can show that

1Tz < (Z IIT¢jII2> [ for all n

|

k=1
1
That is || T]| < (Xr_, [|T9,]1%) 7.

Exercise 1.4. Solve the following.

(a) (diagonal matriz) Let D : C™ — C™ be a linear operator whose matrix with
respect to the standard orthonormal basis of C™ is the diagonal matriz with
entries {A1, A2, , An}. Show that |T|| = max {1}

JjsSn

(b) (diagonal operator) Let H be a separable Hilbert space with an orthonormal
basis {¢n} and (A,) be a bounded sequence of complex numbers. Define
T:H— H by

Tz =Y A2, ¢n)pn, forallzeH.
n=1

Show that T is bounded and ||T|| = sup {|\n| : n € N}.
(c) (multiplication operator)Let g € (C[0,1], ]| - ||). Define My : L2[0,1] —
L?[0,1] by
My(f) = gf, forall f € L?[0,1].
Show that My is bounded and || Mg|| = ||g||oc-
(d) find adjoint of each operator in (a), (b) and (c).

Definition 1.8. Let T' € B(H). Then T is said to be

1) self-adjoint if T = T*

) normal if T*T = TT*

) unitary if T*T =TT* =1

) isometry if |Tz| = ||z|| for all x € H (equivalently T*T = I )
) orthogonal projection if T? =T = T*.

(

(2
(3
(4
(5
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Remark 1.9. If T € B(H), then T*T and TT* are self-adjoint operators. Also
T+T* T-T*
T = A+ iB, where A = + and B = —. It can be easily checked that

i
A = A* and B = B*. This decomposition is called the cartesian decomposition
of T. It can be easily verified that T is normal if and only if AB = BA.

Definition 1.10. Let H be a separable Hilbert space with an orthonormal basis
&1, P2, @3, . ... Then the matrix of T' with respect to ¢1, ¢2, ¢3, ... is given by (a;;)
where a;; = (T'¢;,¢;) fori,j =1,2,3...,n.

Exercise 1.5. (1) Find the matriz of the right shift operator with respect to
the standard orthonormal basis of £2
(2) show that if (a;j) is a matriz of T with respect to an orthonormal basis,
then (aj;;) is the matriz of T* with respect to the same basis.

In order to get a spectral theorem analogous to the finite dimensional case,
we have to look for bounded operators with the similar properties of the finite
dimensional operators. One such property is that

If Hy, Hy are finite dimensional complex Hilbert spaces and T : Hy — Hs is
linear then:

For every bounded set S C Hy, T(S) is pre compact in Hy under T.(*)

For a set to be compact in a metric space, we have the following;

Theorem 1.11. Let X be a metric space and S C X. Then the following conditions
are equivalent.

(1) S is compact

(2) S is sequentially compact

(3) S is totally bounded and complete.

The following example shows that this property depends on the dimension of the
range of the operator.

Let H; and Hs be infinite dimensional Hilbert spaces. Let w € Hy and z € Hy
be a fixed vectors. Define T : H; — Hy by

Tx = (z,w)z, for all z € Hy.

As the range of the operator is one dimensional, T maps bounded sets into pre
compact sets. This can be generalized to a bounded operator whose range is finite
dimensional as follows:
Let wi,ws,...w, € Hy and z1,292,...,2, € Hs be fixed vectors. Define T :
H, — Hs given by
n
(1.1) Tr = Z(w,wj>zj, for all x € H;.
j=1
Then T is linear, bounded and has finite dimensional range. Such operators are
called as finite rank operators.

Definition 1.12. Let T € B(H). Then T is called a finite rank (rank n say) if
R(T) is finite dimensional.

Note 1.6. We have seen that any operator given by Equation (1.1) is a finite rank
operator and has the property (x). Can we express every finite rank operator as in
(1.1).
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Theorem 1.13. Let K : Hy — Hy be a bounded operator of rank n. Then there
exists vectors vi,vs, ... v, € Hi and vectors ¢1, ¢2, ..., ¢on € Hy such that for every

x € Hy, we have
n

Kz = Z<x7vi>¢i.

j=1
The vectors ¢1, ¢a, ..., dppmay be chosen to be any orthonormal basis for R(K).

Proof. Let ¢1,¢2,...,¢, be an orthonormal basis for R(K). Then
Kzx = Z(Kx,qﬁi)qbi, for every x € H;.
i=1
For each 4, the functionals f;(x) = (Kz,¢;) is a bounded linear functional on Hj.

Now by the Riesz Representation theorem, there exists a unique v; € Hy such that
fi(x) = (x,v;) and || fi]| = ||vi]| for each i. Hence the result follows. O

Remark 1.14. In the above theorem, the representation of K is not unique as it
depends on the orthonormal basis and hence on the vectors {v;}}_;.

Can this happen for operators whose range and domain are infinite dimensional?.

2. CoMPACT OPERATORS

In this section we discuss the properties of operators which are analogues of the
finite dimensional operators. In other words we describe the infinite dimensional
operators which have the property (x).

Definition 2.1. Let T : Hy — H> be a linear operator. Then T is said to be
compact if for every bounded set S C Hy, the set T'(S) is compact in Ho.

Example 2.2. Every m X n matrix corresponds to a compact operator.
Example 2.3. Every bounded finite rank operator is compact.

Notation: The set of all compact operators from H; into Hy is denoted by
]C(Hl,HQ) and if Hl = HQ = H, then ’C(H)

Remark 2.4. (1) Every compact operator is bounded.
The converse need not be true. For example consider the identity operator
I : H — H. Clearly I is bounded. Then [ is compact if and only if
dimension of H is finite.
(2) An isometry is compact if and only if it is a finite rank operator.
(3) Restriction of a compact operator to a closed subspace is again compact
(4) An orthogonal projection onto a closed subspace of a Hilbert space is com-
pact if and only if it is of finite rank.
(5) Let T' € B(H) be a compact operator which is not a finite rank operator.
Then R(T') cannot be closed.

In view of Theorem 1.11, the definition of a compact operator can be described
as follows.

Let T': Hy — Hj be a bounded operator and B := {z € H : ||z|| < 1}. Then the
following conditions are equivalent.

(1) T(B) is compact
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(2) For every bounded sequence (x,) € Hi, (Tx,) has a convergent subse-
quence in Hy
(3) T maps bounded sets into totally bounded sets.

2.1. Properties.

Theorem 2.5. Let 11,15 : Hy — Hs be compact operators and o € C. Then
(1) oTy is compact
(2) Ty + T» is compact.

Proof. Proof of (1) is obvious.

For the proof of (2), let (z,,) C H be a bounded sequence. Since T; is compact,
Tix, has a subsequence Tjz,, which is convergent, say Ti1z,, — y. Now z,,
is bounded sequence. Since T, is compact, there exists a subsequence (l’nkl> of
(zn, ) such that Toxy,, is convergent. Note that Tz, is convergent. Therefore
(Th + Tg)l'nkl is convergent. Hence T7 + T5 is compact. O

From Theorem 2.5, we can conclude that KC(Hy, Hs) is a vector subspace of
B(Hy, Hs).

Theorem 2.6. Let A: Hy — Hs be compact and B : H3 — Hy, C : Hy — Hj3 are
bounded. Then CA and AC are compact.

Proof. Let (x,) C H; be a bounded sequence. As A is compact, there exists a
subsequence (zp,) of (z,) such that Awx,, is convergent. Since C is bounded,
CAx,, is also convergent. Hence C'A is compact.

Now

B is bounded = (Bx,,) is bounded
= (ABuz,) has a convergent subsequence, since A is compact
= AB is compact.
O
Conclusion: From the above two results one can conclude that the set of all

compact operator on H is a two sided ideal in B(H), the space of all bounded
operators on H.

Remark 2.7. By Theorem 2.6, if T € K(H), then T? € K(H). But the converse
need not be true.

Exercise 2.2. Let T : (> ® (2 = (> ® (2 given by
T(z,y) = (0,2), (z,y) €l
is not compact (Note that T? =0).

Theorem 2.8. Let Te B(H;, Hs). Then

(1) T is compact < T*T or TT* is compact
(2) T is compact < T* is compact

Proof. Proof of (1):

If T is compact, then T*T is compact by Theorem 2.6. To prove the converse,
assume that T*T : H; — H; is compact. If (x,) C H; is a bounded sequence
with bound M > 0, then T#T'z,, has a convergent subsequence namely 7Tz, ,
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say T*Txz,, — y. For notational convenience we denote the subsequence (z,, )by

For n > m, we have
T2y — T |* = (T (20 — 2m), T(xn — 2m))
= <T*T(xn - xm)a (xn - xm»
< |TT(@n — )| lzn — 2|
S2M || T*T(zp, — Tom)||-
Hence (T'zy,) is Cauchy and hence convergent.
Similarly, TT* € K(H>).
Proof of (2):
Let (z,) € Hy be a bounded sequence. As TT* is compact, (T'T*z,) has a conver-
gent subsequence, say 11*z,, converging to z. Now for k > [,
”T*an - T*an H2 = <TT*(ZTUC - an)7znk - Z’ﬂz>
< ||TT*(an - ZTLL)H ||an - an”
— 0asn — oo.

That is (T*zy,, ) is Cauchy, hence convergent. Thus T™ is compact.
By the above argument, T is compact implies that T** = T is compact. O

Theorem 2.9. K(H) is a closed in B(H).

Proof. Let (K,) be a sequence of compact operators converging to K. Let M > 0
be such that || K, || < M for all n. Our aim is to show that K is compact. Let (z;)
be a bounded sequence in H. Let (x}) be a subsequence of (z;) be such that (K;x})
is convergent. Let (z2) C (z}) such that (K.z?) is convergent. Let (z3) C z? be
such that (K3x?) is convergent. Continuing this process, let (z') be a subsequence
of (#771) such that (K,2!) is convergent.

The sequence (z;) = (z¢) is a subsequence of (x;). Also for each n, except the
first n terms, (z;) is a subsequence of (z}') such that (K, z;) is convergent.

Now for all 4,7 and n we have,

| Kz — Kzi|| = (K — Kp)zi + Kpzi — Kpzj — (K — Ky)z|
< 1K = Kall (il + z51) + 121 = 2)].

That is (Kz;) is Cauchy, hence convergent as H is a Hilbert space. This concludes
that K is compact. ([l

Lemma 2.10. Let K be a compact operator on a separable Hilbert space H and
suppose that (T,,) C B(H) and T € B(H) are such that for each x € H, the sequence
T,x — Tx. Then T,,K — TK in the norm of B(H).

Proof. Suppose that || T, K—TK|| - 0. Then there exists a § > 0 and a subsequence
{T; K} such that

|T,, K — TK| > 0.

Choose unit vectors (z,,) of H such that

[(Tn; K — TK)(2n,)

| > 6.
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Since K is compact, we get a subsequence (z,,,) of (x,,) such that Kx, is conver-
gent. Assume that Kx,, — y. Then

(2.1) 6 < (T, K = TK)an,|| < [(Tn, = T)(Kzn; = y)ll + [(Tn, = T)yll
Since Kz,,; — y, there exists n such that for n; > n,
)
Kz, —y|| < —.
1Kz, —yll < o
Also as T,,;y — Ty for ach y € H, there exists m such that n; > m implies

]
1T =Tyl < 5

Since (T,,) C B(H) is bounded, then ||T,|| < C and | Tz| = lim || T,,z| < C. Hence
n—
|T —T,,|| <2C. Now from Equation 2.1,

6 o6 0
T, K—-TK)x,. -4 -=-
5 < (T, K = T)an, | < 5+ 5 =5,

a contradiction. O

Theorem 2.11. FEvery compact operator on a separable Hilbert space H is a norm
limit of a sequence of finite rank operators. In other words , the set of finite rank
operators is dense in the space of compact operators.

Proof. Let {¢,, : n € N} be an orthonormal basis for H and H,, := span{¢;}}_;.
Then the orthogonal projections P, : H — H defined by

n

an = Z<x7 ¢j>¢j

j=1
has the property that P,z — x for each z € H.

Now, if K is compact, then by Lemma 2.10, it follows that P, K — K in the
operator norm of B(H). Here R(P,K) C R(P,) = H,, is finite dimensional. |

Example 2.12. Let H = /% and {e,} be the standard orthonormal basis of H.

Define D : H — H by
T2
D(lL’l, T2,X3,.. ) = (CBl, 72, 33
Then D is bounded. Next, we show that D € K(H). Define D,, : H — H by

,...), for all (z,) € H.

D,x = Z<$,€j>€j. Then D, is finite rank bounded operator and D, — D as
j=1
n — oco. Hence by theorem 2.11, D is compact.

Example 2.13. Let T = RD and S = DR where R is the right shift operator and
D is as in example 2.12. Then both T and S are compact.

Example 2.14. Let k(-,-) € L*[a,b]. Define K : L*[a,b] — L?[a,b] by

b
(Kf)(s):/ k(s,t)f(t)dt, for all f € L?[a,b].



SPECTRAL THEOREM 9

It can be verified that K € B(L?[a,b]). Let {¢, : n € N} be an orthonormal basis
for L?[a,b]. Then ¥, n(s,t) = ¢dn(s)dm(t) for all s,t € [a,b] and for all m,n € N
forms an orthonormal basis for L?([a,b] x [a,b]). Hence

oo

k(svt) = Z <k(8at)’wm,n(sat»wmm(sat)'

m,n=1

Let
N

kv (s,0) = Y (k(5,0), Y (5,0 Pmn (s, ).

m,n=1

Now define Ky : L*[a,b] — L?[a,b] by

b
(Knf)(s) :/ kn (s, t)f(t)dt, for all f € L*[a,b].

Note that Ky is a finite rank operator and Ky — K as N — oo. Hence by
Theorem 2.11, K € K(L?[a,b]).

3. THE SPECTRAL THEOREM

Definition 3.1. A complex number A € C is called an eigenvalue of T € B(H)
if there exists a vector 0 # x € H such that Tx = Az. The vector x is called an
eigenvector for T' corresponding to the eigenvalue A. Equivalently A is an eigenvalue
of T iff T'— AI is not one-to-one.
Example 3.2. Let H = /2. Define T : H — H by
To T
T(SCl,(EQ,.’Eg,...) = (ifl,g,?d,...), (1’1,1}2,{173,...) € H.

Let {e, : n € N} denote the standard orthonormal basis for H. Then Te, = %en.
Hence {1} is a set of eigenvalues of T with corresponding eigenvectors e;,.

Exercise 3.1. Let R : {2 — (2 be given by
R(x1,22,...) = (0,21,22,...), (x1,72,...) € (%
Find the eigenvalues and eigenvectors of R.
Exercise 3.2. Show that the operator T : {2 — (2 defined by
T(xl,xQ,...):(0,%,%,...)7 (1,2, . ..)
is compact but has no eigenvalues.
3.3. Self-adjoint Operators.
Definition 3.3. Let T' € B(H). If T' = T*, then T is called self-adjoint.

The operators in Example 3.2 is self-adjoint, where as the operator in Exercise
3.1 is not.

Exercise 3.4. Let M : L?[0,1] — L?[0, 1] be given by
(Mf)(t)=tf(t), feL?0,1], telo,1].
Show that M is self-adjoint and has no eigenvalue.

Proposition 3.4. Let T € B(H) be self-adjoint. Then
(1) eigenvalues of T are real
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(2) eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. Proof of 1:
Let A be an eigenvalue of T and x be the corresponding eigen vector. Then Tx = Az.
Mzl = Mz, z) = O, z) = (T2, z) = (z,Tz) = (x, ) = X z||>.

Since = # 0, we have A = \.
Proof of 2:
Let A and p be distinct eigenvalues of T and x and y be the corresponding eigen-
vectors. Then Tz = Ax and Ty = py. Now

piz,y) = (@, py) = (z, Ty) = (Tz,y) = Nz, y).
Since A, € R and distict, it follows that (z,y) = 0. O
Theorem 3.5. Let T € B(H) be self-adjoint. Then ||T|| = sup |(Tz,z)|.

llzll=1

Proof. Let m = sup |[(Tx,x)|. Note that [(Tz,z)| < m for each x € H with
llzll=1
lz]| = 1. If ||z|| = 1, then by the Cauchy-Schwartz-Bunyakovsky inequality,
(T, z)| < || T|| [l2] = [|T=]].

Hence m < ||T.
To prove the other way, let x,y € H. Then (T(x + y),z +y) = (Tx,z) +
2Re(Tz,y) + (T'y, y). Therefore,
ARe(Tz,y) = (T(x +y),z +y) — (T(x —y),x —y)
<[(T(z+y),z+y)l+ [Tz —y),z—y)

<m(llo +yl? + o - y1?)
=2m (||lz||* + |lyl|*>) (by the parallelogram law).

Now (T'z,y) = |(Tx,y)| exp(if) for some real 6. Substituting = exp(if) in the above
equation, we get

ARe(Tz exp(—if),y) < 2m([|z[* + ly|I*)
ATz, y)| < 2m(]|x]* + [|y]*).

Substituting y = ””;'H”Tm in place of y in the above equation, we get || Tx| < m ||z
x

Hence ||T|| = m. O

Corollary 3.6. Let T € B(H) be self-adjoint. If (Tx,x) = 0, for each x € H.
Then T = 0.

Theorem 3.7. Let T € B(H) be self-adjoint.

(1) Let A = inf |, = (T'x,x). If there exists an xq € H such that ||zo]| = 1 and
A= (Txg,zo), then X is an eigenvalue of T with corresponding eigenvector
ZXo-

(2) Let p = supy, =1 (T'z,x). If there exists a x1 € H, ||z1]| =1 such that p =
(Txq,21), then p is eigenvalue value of T with corresponding eigenvector
Xq.
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Proof. Let a € C and v € H, by defintion of A, we have
(T(x0 + av), zo + av) > Mz + av, zo + av).
Hence
(Txo,20) + a{Txo,v) + a(Tv, 20) + |a|*(Tw,v)
> Mo, To) + Aa(zo,v) + Aalzo, v) + Mal?(v,v).
That is
(Txo, T0)+2 aRe (Txg, v)+|a|*(Tv,v) > Mo, To)+Na|* (v, v)+2Re aX(z, v).

Substituting A = (Txg,xo) and taking o = r (v, (T — AI)xg), r € R, we can con-
clude that (v, (T — Al )zo) = 0 for each v € H. Hence Txg = Axg.
The proof of the other statement follows by taking —T in place of T O

Theorem 3.8. If T € B(H) is compact and self-adjoint, then at least one of the
numbers ||T|| or —||T|| is an eigenvalue.

Proof. By Theorem 3.7, there exists a sequence (x,,) C H with ||x,|| = 1 for each
n such that and A € R such that (T'z,,z,) — A, where A = +||T|| or A = —||T|.
Now
| Tzn — Aznl|? = |Tznl|® + A2 = 20Tz, )
< 20% — 2\ (T, ) — 0 as n — oo.

Since 7' is compact, there exists a sub sequence (T'z,,;) of (T'z,) such that T'z,,;, — y.
So Txn; — ATy, — 0 as n — oo. That is z,, — %y Hence y = lim Tz, = %Ty.
Hence ) is an eigen value. ([l

Corollary 3.9. If T € K(H) be self-adjoint, then mlajcl [(Tz,z)| = ||T].

Exercise 3.5. Let K : L?[0,1] — L?[0,1] be defined by

/ (s
Check that K is non self-adjoint, compact and does not possesses eigenvalues.

Definition 3.10. A closed subspace M of H is said to be invariant under T €
B(H) if and only if T(M) C M. If both M and M~ are invariant under T, then
we say that M is a reducing subspace for 7.

Exercise 3.6. M is invariant under T iff M+ is invariant under T*.

Exercise 3.7. Let T € B(H). Let M be a closed subspace of a Hilbert space and
P : H — H be an orthogonal projection such that R(P) = M. Then

(1) M is invariant under T iff TP = PTP

(2) M reduces T iff TP = PT.

Observations

(1) If T is a self-adjoint operator, then every invariant subspace is reducing.

(2) every eigen space corresponding to a particular eigenvalue is invariant under
the operator. In particular, if the operator is self-adjoint every eigen space
reduce the operator.
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Note 3.8. If T is compact operator and M is a closed subspace of H, then the
restriction operator 7| is also compact.

Theorem 3.11 (The Spectral theorem). Suppose T € K(H) be self-adjoint. Then
there exists a system of orthonormal vectors ¢1, ¢a, ¢3, ... of eigenvectors of T and
corresponding eigenvalues A1, Aa, Az, ... such that |A\1| > [Xa] > |A3] > ...,

oo

Tz = Melx,éx)ér for all x € H.
k=1

If (\n) is infinite, then A\, — 0 as n — oo. The series on the right hand side
converges in the operator norm of B(H).

Proof. We prove the theorem step by step.
Step 1: Construction of eigen vectors

We use Theorem 3.8 repeatedly for constructing eigenvalues and eigenvectors.

Let Hy = H and 77 = T. Then by Theorem 3.8, there exists an eigenvalue A; of
T) and an eigenvector ¢, such that ||¢1]| and |A1| = ||T1]]. Now span{¢ } is a closed
subspace of Hj, hence by the projection theorem, H; = span{e¢;} ® span{¢;}+.
Let Hy = span{¢;}*. Clearly Hs is a closed subspace of H; and T(Hz) C Hs.

Now let To = T1|g,. Then T is a compact and self-adjoint operator in B(Hsz). If
T5 = 0, then there is nothing to prove. Assume that T3 # 0. Then by Theorem 3.8,
there exists an eigenvalue Ay of Ty with |Ag| = ||T2]|and a corresponding eigenvector
¢2 with ||@2]] = 1. Since Ty is a restriction of Ty, |Aa| = ||T2]] < ||T1]| = |A1]- By
the construction ¢, and ¢, are orthonormal. Now let Hz = span{¢;, ¢o}*. Clearly
Hs C H,. It is easy to show that T(Hs) C Hjz. The operator T5 = T'|p, is
compact and self-adjoint. Hence by Theorem 3.8, there exists an eigenvalue A3 of
T3 and a corresponding eigenvector ¢3 with ||¢3]| = 1. Here |A3| = ||73]|. Hence
sl < [Ao] < M.

Proceeding in this way, either after some stage n, T,, = 0 or there exists a se-
quence A, of eigenvalues of T and corresponding vector ¢, with ||¢,|| = 1 and
Anl = | Tnll. Also |Apy1] < |An| for each n.

Step 2: If ()\,) is infinite, then A, — 0

If A\, - 0, there exists an € > 0 such that |\,| > € for infinitely many n' s. If
n #m,

HT¢n - T(bmHZ = ||/\n¢n - Am¢m||2 = )‘371 + )\,21 > 62-

This shows that (T'¢,,) has no convergent subsequence, a contradiction to the com-
pactness of T. Hence \,, — 0 as n — oo.

Step 3: Representation of T'
Here we consider two cases

Case 1: T,, = 0 for some n
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n

Let z, == — Z(ac, or)0k. Then x, L ¢; for 1 < i < n. Hence
k=1

0= Tn.’ﬂn =Tx — Z )\k<$, ¢k>¢k

k=1

That is Tz = Z e (T, Or) -
k=1

Case 2: T, # 0 for infinitely many n

For x € H, by Case 1, we have

1Tz = M, dr)del = | Tozall < | Tl ]

k=1
= [Aal lznll < [Anl 2]l
— 0.
Hence Tz = Z e (2, 1) Dre. ]
k=1
Observations:

(a) N(T)* = spami{on, oo, ..} o

(b) By the projection theorem H = N(T) &+ N(T)*+ = N(T) @+ R(T). The

spectral theorem guarantees the existstence of the orthonormal basis for

R(T'). Hence R(T) is separable. In addition if N(T) is separable, then H

is separable.

H = N(T) @2, G;, where G, = Hr = ' N(T — \I).

T|N(T)L = diag(/\l, )\2, ey >\n7 NN )

(e) each A; is repeated in the sequence {\,} exactly p; = dimN(T — A\;I)
times. Since the sequence A, — 0, each A; appears finitely many times.
Let \j = An,, i = 1,2,...p. Then N(T'— \;I) = span{¢n,, ..., ¢n, }. If this
is not possible, then there exists a 0 # v € N(T — A;I) such that vL¢,,
where 1 <i<p. If k#n; 1 <i<p, vleg, as A\j # A Hence

Ao =Tv=> X\e(v,dp)dp =0
k

—
[*"K¢]
NN

which is impossible because A; # 0 and v # 0.
Example 3.12. Define D : /2 — {2 by

X
D(xl,xg,...):(xl,g,...) (21, 22,...) € £,

1 1
Then T' € K(H) and self-adjoint. Note that De,, = —e,,. Hence — is an eigenvalue
n n
1

with an eigen vector e,. Also - — 0 as n — oo. We can also represent D as
oo

1
D(z) = Z ﬁ<x, en)en for all x = (z,) € (2.

n=0
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Exercise 3.9. (1) Let K € K(H). Show that R(K — M) is closed for each
A e C\{0}.
The converse of the spectral theorem is also true.
Theorem 3.13. Suppose that ¢1, pa, ... is a sequence of orthogonal vectors in H

and (M) be a sequence of real numbers such that (\) is finite or converges to 0.
Then the operator defined by

Tx = Z Ae(z, dr) D
=1

is compact and self-adjoint.

Proof. We consider the following cases.
Case 1: ()\) is finite

Consider Tx = Z A (2, d1)Pr. Then
k=1

1T

(Tx, Tx)

D Pl on)
k=1

< max Ao

This shows that T' € B(H) and T is a finite rank operator. Hence T is compact.
Case 2: ()\) is infinite and Ay — 0 as n — oo.
By the Spectral Theorem, [|Tz||?* = Y |An]*[(z, ¢n)|* < max [Aelllz[|*. Hence

IT|| < oo. Now define Tp,x = Z A (2, dr)Pr. Then
k=1
1T =Tal* = sup || > Melx, dr)dnl®
lel=1 50,

<sup [Mf* =0 asn — oo
k>n

As each T, is finite rank and hence compact, T is compact. It easy to verify that
T=T* O
3.10. Second form of the Spectral Theorem.

Definition 3.14. An orthonormal system ¢1, ¢, ... of eigenvectors of T' € B(H
with corresponding non zero eigen values A1, Ao, ... is called a basic system of
eigenvalues and eigenvectors of T if

Tz = Nelx, dr)or
K

The Spectral Theorem guarantees the existence of a basic system of eigenvalues
and eigenvectors for a compact self-adjoint operator.

Theorem 3.15. Let T' be a compact self-adjoint operator and u; be the set of all
non zero eigenvalues of T and let P; be the orthogonal projection onto N(T — p;I).
Then
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(1) PP, =0, j#k
21T = Zj w; Pj, where the convergence of the series is with respect to the
norm of B(H).
(3) For each x € H,
x = Pyx + Z Pjx,
j
where Py is the orthogonal projection onto N(T).

Proof. Let {¢,}, {\.} be a basic system of eigen vectors and eigen values of T'. For
each k, a subset of {¢,,} is an orthonormal basis for N(T — uxI) say, ¢n, 1 <i < p.
Then Pyx = >0, (x, ¢n,)¢n, since each \, is py, it follows that

x=PFPyxr+ Zka and Tx = Z Mo Prx.
k

Furthermore P; P, =0, j # k, since N(T' — ;1) LN (T — pi1).
If (A\,) is an infinite sequence, then

n n
IT = pPill® = sup Tz = ppPez?
o Jall=1 P

<sup|)\j|* = 0asn — . O
ji>n



