The Static Single Assignment Form: Construction and Application to Program Optimizations

Y.N. Srikant

Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012

NPTEL Course on Compiler Design

イロン 不得 とくほ とくほ とうほ

The SSA Form: Introduction

- A new intermediate representation
- Incorporates def-use information
- Every variable has exactly one definition in the program text
 - This does not mean that there are no loops
 - This is a *static* single assignment form, and not a *dynamic* single assignment form
- Some compiler optimizations perform better on SSA forms
 - Conditional constant propagation and global value numbering are faster and more effective on SSA forms
- A sparse intermediate representation
 - If a variable has *N* uses and *M* definitions, then *def-use chains* need space and time proportional to *N*.*M*
 - But, the corresponding instructions of uses and definitions are only *N* + *M* in number
 - SSA form, for most realistic programs, is linear in the size of the original program

A Program in non-SSA Form and its SSA Form

- A program is in SSA form, if each use of a variable is reached by exactly one definition
- Flow of control remains the same as in the non-SSA form
- A special merge operator, φ, is used for selection of values in join nodes
- Not every join node needs a ϕ operator for every variable
- No need for a *\phi* operator, if the same definition of the variable reaches the join node along all incoming edges
- Often, an SSA form is augmented with *u-d* and *d-u* chains to facilitate design of faster algorithms
- Translation from SSA to machine code introduces copy operations, which may introduce some inefficiency

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Program 2 in non-SSA Text Form

```
{ Read A; LSR = 1; RSR = A;
 SR = (LSR+RSR)/2;
 Repeat {
    T = SR*SR;
    if (T>A) RSR = SR;
    else if (T < A) LSR = SR;
         else { LSR = SR; RSR = SR}
    SR = (LSR+RSR)/2;
 Until (LSR \neq RSR);
 Print SR:
}
```

Program 2 in non-SSA and SSA Form

くロン くだい くさい くさい

=

Program 3 in non-SSA and SSA Form

=

After translation, the SSA form should satisfy the following conditions for every variable v in the original program.

- If two non-null paths from nodes X and Y each having a definition of v converge at a node p, then p contains a trivial ϕ -function of the form $v = \phi(v, v, ..., v)$, with the number of arguments equal to the in-degree of p.
- Each appearance of *v* in the original program or a φ-function in the new program has been replaced by a new variable *v_i*, leaving the new program in SSA form.
- Any use of a variable v along any control path in the original program and the corresponding use of v_i in the new program yield the same value for both v and v_i.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Condition 1 in the previous slide is recursive.
 - It implies that φ-assignments introduced by the translation procedure will also qualify as assignments to v
 - This in turn may lead to introduction of more φ-assignments at other nodes
- It would be wasteful to place ϕ -functions in all join nodes
- It is possible to locate the nodes where φ-functions are essential
- This is captured by the *dominance frontier*

イロン 不良 とくほう 不良 とうほ

Given S: set of flow graph nodes, the set JOIN(S) is

- the set of all nodes n, such that there are at least two non-null paths in the flow graph that start at two distinct nodes in S and converge at n
 - The paths considered should not have any other common nodes apart from *n*
- The iterated join set, $JOIN^+(S)$ is

$$JOIN^{(1)}(S) = JOIN(S)$$
$$JOIN^{(i+1)}(S) = JOIN(S \cup JOIN^{(i)}(S))$$

- If S is the set of assignment nodes for a variable ν, then JOIN⁺(S) is precisely the set of flow graph nodes, where φ-functions are needed (for ν)
- *JOIN*⁺(*S*) is termed the *dominance frontier*, *DF*(*S*), and can be computed efficiently

ヘロト ヘアト ヘビト ヘビト

JOIN Example -1

variable *i*: JOIN⁺({B1, B7}) = {B2}
variable *n*: JOIN⁺({B1, B5, B6}) = {B2, B7}

ъ

JOIN Example - 2

Dominators and Dominance Frontier

- Given two nodes x and y in a flow graph, x dominates y
 (x ∈ dom(y)), if x appears in all paths from the Start node
 to y
- The node x strictly dominates y, if x dominates y and $x \neq y$
- x is the *immediate dominator* of y (denoted *idom*(y)), if x is the closest strict dominator of y
- A *dominator tree* shows all the immediate dominator relationships
- The *dominance frontier* of a node *x*, *DF*(*x*), is the set of all nodes *y* such that
 - x dominates a predecessor of y (p ∈ preds(y) and x ∈ dom(p))
 - but x does not strictly dominate $y (x \notin dom(y) \{y\})$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Dominance frontiers - An Intuitive Explanation

- A definition in node *n* forces a φ-function in join nodes that lie just outside the region of the flow graph that *n* dominates; hence the name *dominance frontier*
- Informally, DF(x) contains the *first* nodes reachable from x that x does not dominate, on *each* path leaving x
 - In example 1 (next slide), DF(B1) = Ø, since B1 dominates all nodes in the flow graph except Start and B1, and there is no path from B1 to Start or B1
 - In the same example, $DF(B2) = \{B2\}$, since B2 dominates all nodes except *Start*, B1, and B2, and there is a path from B2 to B2 (via the back edge)
 - Continuing in the same example, B5, B6, and B7 do not dominate any node and the first reachable nodes are B7, B7, and B2 (respectively). Therefore, DF(B5) = DF(B6) = {B7} and DF(B7) = {B2}
 - In example 2 (second next slide), B5 dominates B6 and B7, but not B8; B8 is the first reachable node from B5 that B5 does not dominate; therefore, DF(B5) = {B8}

DF Example - 1

DF(x) is the set of all nodes y such that x dominates a predecessor of y, but x does not strictly dominate y

 $\mathsf{DF}(\mathsf{x})$ contains the first nodes reachable from x , that x does not dominate

DF Example - 2

Y.N. Srikant Program Optimizations and the SSA Form

Computation of Dominance Frontiers - 2

- Identify each join node x in the flow graph
- For each predecessor, p of x in the flow graph, traverse the dominator tree upwards from p, till *idom*(x)
- Solution of the provided and the provided and the set of each node met
 - In example 1 (second previous slide), consider the join node B2; its predecessors are B1 and B7
 - B1 is also *idom*(B2) and hence is not considered
 - Starting from B7 in the dominator tree, in the upward traversal till B1 (i.e., *idom*(B2)) B2 is added to the DF sets of B7, B3, and B2
 - In example 2 (previous slide), consider the join node B8; its predecessors are B4, B6, and B7
 - Consider B4: B8 is added to DF(B4)
 - Consider B6: B8 is added to DF(B6) and DF(B5)
 - Consider B7: B8 is added to DF(B7); B8 has already been added to DF(B5)
 - All the above traversals stop at B3, which is *idom*(B8)

DF Algorithm

for all nodes *n* in the flow graph do $DF(n) = \emptyset;$ for all nodes *n* in the flow graph do { /* It is enough to consider only join nodes */ /* Other nodes automatically get their DF sets */ /* computed during this process /* for each predecessor p of n in the flow graph do { t = p;while $(t \neq idom(n))$ do { $DF(t) = DF(t) \cup \{n\};$

t = idom(t);

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Compute DF sets for each node of the flow graph
- For each variable v, place trivial \u03c6-functions in the nodes of the flow graph using the algorithm place-phi-function(v)
- Rename variables using the algorithm Rename-variables(x,B)
- ϕ -Placement Algorithm
 - The φ-placement algorithm picks the nodes n_i with assignments to a variable
 - It places trivial φ-functions in all the nodes which are in DF(n_i), for each i
 - It uses a work list (i.e., queue) for this purpose

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

ϕ -function placement Example

0

The function place-phi-function(v) - 1

function *Place-phi-function(v)* // v is a variable

// This function is executed once for each variable in the flow graph begin

// *has-phi*(B, v) is *true* if a ϕ -function has already

// been placed in B, for the variable v

// processed(B) is *true* if *B* has already been processed once // for variable *v*

for all nodes *B* in the flow graph do

has-phi(B, v) = false; processed(B) = false;end for

 $W = \emptyset$; // W is the work list

// Assignment-nodes(v) is the set of nodes containing

// statements assigning to v

for all nodes $B \in Assignment-nodes(v)$ do

processed(B) = true; Add(W, B);end for

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The function place-phi-function(v) - 2

```
while W \neq \emptyset do
  begin
    B = Remove(W);
    for all nodes y \in DF(B) do
      if (not has-phi(v, v)) then
      begin
        place \langle v = \phi(v, v, ..., v) \rangle in y;
        has-phi(y, v) = true;
        if (not processed(y)) then
        begin processed(y) = true;
               Add(W, v):
        end
      end
    end for
  end
end
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

SSA Form Construction Example - 1

20

SSA Form Construction Example - 2

Program Optimizations and the SSA Form

くロン くだい くさい くさい

2

Renaming Algorithm

- The renaming algorithm performs a top-down traversal of the dominator tree
- A separate pair of version stack and version counter are used for each variable
 - The top element of the version stack *V* is always the version to be used for a variable usage encountered (in the appropriate range, of course)
 - The counter *v* is used to generate a new version number
- The alogorithm shown later is for a single variable only; a similar algorithm is executed for all variables with an array of version stacks and counters

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- An SSA form should satisfy the *dominance property*:
 - the definition of a variable dominates each use or
 - when the use is in a ϕ -function, the predecessor of the use
- Therefore, it is apt that the renaming algorithm performs a top-down traversal of the dominator tree
 - Renaming for non- ϕ -statements is carried out while visiting a node *n*
 - Renaming parameters of a *φ*-statement in a node *n* is carried out while visiting the appropriate predecessors of *n*

イロン 不良 とくほう イロン 二日

The function *Rename-variables(x,B)*

function *Rename-variables*(x, B) // x is a variable and B is a block begin

 $v_e = Top(V); // V$ is the version stack of x

// variables are defined before use; hence no renaming can

// happen on empty stack

for all statements $s \in B$ do

if s is a non- ϕ statement then

replace all uses of x in the RHS(s) with Top(V);

if *s* defines *x* then

begin

replace x with x_v in its definition; push x_v onto V;

// x_v is the renamed version of x in this definition

v = v + 1; // v is the version number counter

end

end for

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The function *Rename-variables(x,B)*

for all successors *s* of *B* in the flow graph do j = predecessor index of *B* with respect to *s* for all ϕ -functions *f* in *s* which define *x* do replace the *j*th operand of *f* with *Top*(*V*); end for

end for

for all children c of B in the dominator tree do

```
Rename-variables(x, c);
```

end for

```
repeat Pop(V); until (Top(V) == v_e);
```

end

begin // calling program

for all variables x in the flow graph do

 $V = \emptyset$; v = 1; push 0 onto V; // end-of-stack marker

Rename-variables(x, Start);

end for

end

イロン 不良 とくほう 不良 とうほ

Translation to Machine Code - 1

Translation to Machine Code - 2

Translation to Machine Code - 3

The parameters of all ϕ -functions in a basic block are supposed to be read concurrently before any other evaluation begins

Optimization Algorithms with SSA Forms

- Dead-code elimination
 - Very simple, since there is exactly one definition reaching each use
 - Examine the *du-chain* of each variable to see if its use list is empty
 - Remove such variables and their definition statements
 - If a statement such as x = y + z (or x = φ(y₁, y₂)) is deleted, care must be taken to remove the deleted statement from the *du-chains* of y and z (or y₁ and y₂)
- Simple constant propagation
- Copy propagation
- Conditional constant propagation and constant folding
- Global value numbering

・ロット (雪) (き) (き) (き)

Simple Constant Propagation

{ Stmtpile = {S|S is a statement in the program} while Stmtpile is not empty { S = remove(Stmtpile);if S is of the form $x = \phi(c, c, ..., c)$ for some constant c replace S by x = cif S is of the form x = c for some constant c delete S from the program for all statements T in the du-chain of x do substitute c for x in T; simplify T Stmtpile = Stmtpile \cup {T}

Copy propagation is similar to constant propagation

A single-argument φ-function, x = φ(y), or a copy statement, x = y can be deleted and y substituted for every use of x

・ロト ・ 理 ト ・ ヨ ト ・

The Constant Propagation Framework - An Overview

<i>m</i> (<i>y</i>)	m(z)	<i>m</i> ′(<i>x</i>)
UNDEF	UNDEF	UNDEF
	<i>c</i> ₂	UNDEF
	NAC	NAC
c ₁	UNDEF	UNDEF
	<i>c</i> ₂	$c_1 + c_2$
	NAC	NAC
NAC	UNDEF	NAC
	<i>c</i> ₂	NAC
	NAC	NAC
any ⊓ UNDEF = any		
any \sqcap NAC = NAC		
$c_1 \sqcap c_2 = \textit{NAC}, \textit{ if } c_1 \neq c_2$		
$c_1 \sqcap c_2 = c_1, \text{ if } c_1 = c_2$		

・ロト ・ 理 ト ・ ヨ ト ・

Conditional Constant Propagation - 1

- SSA forms along with extra edges corresponding to *d-u* information are used here
 - Edge from every definition to each of its uses in the SSA form (called henceforth as *SSA edges*)
- Uses both flow graph and SSA edges and maintains two different work-lists, one for each (*Flowpile* and *SSApile*, resp.)
- Flow graph edges are used to keep track of reachable code and SSA edges help in propagation of values
- Flow graph edges are added to *Flowpile*, whenever a branch node is symbolically executed or whenever an assignment node has a single successor

イロン 不良 とくほう イロン 二日

Conditional Constant Propagation - 2

- SSA edges coming out of a node are added to the SSA work-list whenever there is a change in the value of the assigned variable at the node
- This ensures that all *uses* of a definition are processed whenever a definition changes its lattice value.
- This algorithm needs only one lattice cell per variable (globally, not on a per node basis) and two lattice cells per node to store expression values
- Conditional expressions at branch nodes are evaluated and depending on the value, either one of outgoing edges (corresponding to *true* or *false*) or both edges (corresponding to ⊥) are added to the worklist
- However, at any join node, the *meet* operation considers only those predecessors which are marked *executable*.

ヘロン 人間 とくほ とくほ とう

CCP Algorithm - Contd.

// $\mathcal{G} = (\mathcal{N}, \mathcal{E}_f, \mathcal{E}_s)$ is the SSA graph,

// with flow edges and SSA edges, and

// $\ensuremath{\mathcal{V}}$ is the set of variables used in the SSA graph begin

 $\begin{array}{l} \textit{Flowpile} = \{(\textit{Start} \rightarrow n) \mid (\textit{Start} \rightarrow n) \in \mathcal{E}_{f} \}; \\ \textit{SSApile} = \emptyset; \\ \textit{for all } e \in \mathcal{E}_{f} \textit{ do } e.executable = \textit{false}; \textit{end for} \\ \textit{//v.cell} \textit{ is the lattice cell associated with the variable } v \\ \textit{for all } v \in \mathcal{V} \textit{ do } v.cell = \top; \textit{end for} \\ \textit{// y.oldval and } y.newval \textit{ store the lattice values} \\ \textit{// of expressions at node } y \\ \textit{for all } y \in \mathcal{N} \textit{ do} \\ y.oldval = \top; y.newval = \top; \\ \end{array}$

end for

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

CCP Algorithm - Contd.

```
while (Flowpile \neq \emptyset) or (SSApile \neq \emptyset) do
begin
  if (Flowpile \neq \emptyset) then
  begin
    (x, y) = remove(Flowpile);
    if (not (x, y).executable) then
    begin
      (x, y).executable = true;
      if (\phi-present(v)) then visit-\phi(v)
         else if (first-time-visit(y)) then visit-expr(y);
      // visit-expr is called on y only on the first visit
      // to y through a flow edge; subsequently, it is called
      // on y on visits through SSA edges only
      if (flow-outdegree(y) == 1) then
        // Only one successor flow edge for y
         Flowpile = Flowpile \cup {(y, z) \mid (y, z) \in \mathcal{E}_{f}};
                                                           (本語) (本語) (二語)
    end
```

// if the edge is already marked, then do nothing end if (SSApile $\neq \emptyset$) then begin (x, y) = remove(SSApile);if $(\phi$ -present(y)) then visit- $\phi(y)$ else if (already-visited(y)) then visit-expr(y); // A false returned by already-visited implies // that y is not yet reachable through flow edges end end // Both piles are empty end function ϕ -present(y) // $y \in \mathcal{N}$ begin if y is a ϕ -node then return true else return false ・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

end

CCP Algorithm - Contd.

```
function visit-\phi(\mathbf{v}) // \mathbf{v} \in \mathcal{N}
begin
  y.newval = \top; //|| y.instruction.inputs || is the number of
  // parameters of the \phi-instruction at node y
  for i = 1 to || y.instruction.inputs || do
    Let p_i be the i^{th} predecessor of v:
    if ((p_i, v).executable) then
    begin
       Let a_i = y.instruction.inputs[i];
      // a_i is the i<sup>th</sup> input and a_i.cell is the lattice cell
       // associated with that variable
       y.newval = y.newval \sqcap a_i.cell;
    end
  end for
```

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 → のへで

CCP Algorithm - Contd.

```
if (y.newval < y.instruction.output.cell) then
begin
y.instruction.output.cell = y.newval;
SSApile = SSApile \cup {(y, z) | (y, z) \in \mathcal{E}_s };
end
end
```

```
function already-visited(y) // y \in \mathcal{N}
// This function is called when processing an SSA edge
begin // Check in-coming flow graph edges of y
for all e \in \{(x, y) \mid (x, y) \in \mathcal{E}_f\}
if e.executable is true for at least one edge e
then return true else return false
end for
```

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

function *first-time-visit*(y) // $y \in \mathcal{N}$

// This function is called when processing a flow graph edge begin // Check in-coming flow graph edges of y

for all $e \in \{(x, y) \mid (x, y) \in \mathcal{E}_f\}$

if *e.executable* is true for more than one edge *e*

then return false else return true

end for

// At least one in-coming edge will have executable true

// because the edge through which node y is entered is

// marked as *executable* before calling this function

end

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

CCP Algorithm - Contd.

```
function visit-expr(y) // y \in \mathcal{N}
begin
  Let input_1 = y.instruction.inputs[1];
  Let input_2 = y.instruction.inputs[2];
  if (input_1.cell == \bot \text{ or } input_2.cell == \bot) then
    v.newval = \perp
  else if (input<sub>1</sub>.cell == \top or input<sub>2</sub>.cell == \top) then
          v.newval = \top
        else // evaluate expression at y as per lattice evaluation rules
          v.newval = evaluate(v);
          // It is easy to handle instructions with one operand
  if y is an assignment node then
    if (y.newval < y.instruction.output.cell) then
    begin
      y.instruction.output.cell = y.newval;
       SSApile = SSApile \cup \{(y, z) \mid (y, z) \in \mathcal{E}_{s}\};
                                                     ◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○
    end
                            Y.N. Srikant
                                         Program Optimizations and the SSA Form
```

```
CCP Algorithm - Contd.
```

```
else if y is a branch node then
    begin
      if (y.newval < y.oldval) then
      begin
        v.oldval = v.newval;
        switch(y.newval)
           case \perp: // Both true and false branches are equally likely
             Flowpile = Flowpile \cup {(y, z) \mid (y, z) \in \mathcal{E}_f };
           case true: Flowpile = Flowpile \cup {(y, z) | (y, z) \in \mathcal{E}_f and
                                    (y, z) is the true branch edge at y };
           case false: Flowpile = Flowpile \cup {(y, z) | (y, z) \in \mathcal{E}_f and
                                    (y, z) is the false branch edge at y };
         end switch
      end
    end
end
```

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

CCP Algorithm - Example - 1

Y.N. Srikant

Program Optimizations and the SSA Form

Y.N. Srikant

Program Optimizations and the SSA Form

.≡ →

CCP Algorithm - Example 2

Y.N. Srikant Program Optimizations and the SSA Form

Y.N. Srikant Program Optimizations and the SSA Form

=

Y.N. Srikant Program Optimizations and the SSA Form

Y.N. Srikant Program Optimizations and the SSA Form

=

Y.N. Srikant Program Optimizations and the SSA Form

Program Optimizations and the SSA Form

Y.N. Srikant Program Optimizations and the SSA Form

After second round of simplification – elimination of dead code, elimination of trivial Φ-functions, copy propagation etc.

Value Numbering with SSA Forms

- Global value numbering scheme
 - Similar to the scheme with extended basic blocks
 - Scope of the tables is over the dominator tree
 - Therefore more redundancies can be caught
 - For example, an assignment $a_{10} = u_1 + v_1$ in block *B*9 (if present) can use the value of the expression $u_1 + v_1$ of block *B*1, since *B*1 is a dominator of *B*9
- No *d-u* or *u-d* edges needed
- Uses reverse post order on the DFS tree of the SSA graph to process the dominator tree
 - This ensures that definitions are processed before use
- Back edges make the algorithm find *fewer* equivalences (more on this later)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Value Numbering with SSA Forms

- Variable names are not reused in SSA forms
 - Hence, no need to restore old entries in the scoped HashTable when the processing of a block is completed
 - Just deleting new entries will be sufficient
- Any copies generated because of common subexpressions can be deleted immediately
- Copy propagation is carried out during value-numbering
- Ex: Copy statements generated due to value numbering in blocks B2, B4, B5, B6, B7, and B8 can be deleted
- The *ValnumTable* stores the SSA name and its value number and is global; it is not scoped over the dominator tree (reasons in the next slide)
- Value numbering transformation retains the *dominance property* of the SSA form
 - Every definition dominates all its uses or predecessors of uses (in case of *phi*-functions)
Example: An SSA Form

Y.N. Srikant

Dominator Tree and Reverse Post order

Postorder on the DFS tree: Stop, B9, B8, B4, B5, B2, B6, B7, B3, B1, Start

<ロ> (四) (四) (三) (三) (三)

Global Unscoped ValnumTable

- Needed for *\(\phi\)*-instructions
- A φ-instruction receives inputs from several variables along different predecessors of a block
- These inputs are defined in the immediate predecessors or dominators of the predecessors of the current block
- For example, while processing block *B*9, we need definitions of *a*₅, *a*₆, and *a*₃
 - *a*₅, *a*₆: defined in the predecessor blocks, *B*8, and *B*6 (resp.)
 - a_3 : defined in *B*3, the dominator of the predecessor of *B*9
 - If the *ValnumTable* were to be scoped, only names in *B*1 would be available while processing *B*9
- SSA names being unique, unscoped *ValnumTable* does not cause problems
- Making *HashTable* also unscoped is not possible since expressions are not unique

HashTable entry (indexed by expression hash value)

Expression	Value number	Parameters for ϕ -function	Defining variable
------------	--------------	---------------------------------	----------------------

ValnumTable (indexed by name hash value)

Variable name	Value number	Constant value	Replacing variable
------------------	--------------	----------------	--------------------

Y.N. Srikant

Y.N. Srikant

Y.N. Srikant

Y.N. Srikant

Y.N. Srikant

Y.N. Srikant

Y.N. Srikant

Y.N. Srikant

SSA Value-Numbering Algorithm

function SSA-Value-Numbering (Block B) { Mark the beginning of a new scope; For each ϕ -function f of the form $x = \phi(y_1, ..., y_n)$ in B do { search for *f* in *HashTable*; //This involves getting the value numbers of the parameters also //Dominance property ensures that parameters are assigned //either in predecessor or dominator of predecessor of B if f is meaningless //all y_i are equivalent to some w replace value number of x by that of w in ValnumTable; delete f: else if f is redundant and is equivalent to $z = \phi(u_1, ..., u_n)$

replace value number of x by that of z in ValnumTable; delete f;

else insert simplified *f* into *HashTable* and *ValnumTable*;

・ロト ・回ト ・ヨト ・ヨト … ヨ

SSA Value-Numbering Algorithm - Contd.

```
For each assignment a of the form x = y + z in B do {
    search for y + z in HashTable;
    //This involves getting value numbers of y and z also
     If present with value number n
       replace value number of x by n in ValnumTable;
       delete a:
    else add simplified y + z to HashTable and x to ValnumTable;
  For each child c of B in the dominator tree do
  //in reverse postorder of DFS over the SSA graph
      SSA-Value-Numbering(c);
  clean up HashTable after leaving this scope;
//Calling program
```

```
SSA-Value-Numbering(Start);
```

・ロト ・ 理 ト ・ ヨ ト ・

-

- Some times, one or more of the inputs of a φ-instruction may not be defined yet
 - They may reach through the back edge of a loop
 - Such entries will not be found in the ValnumTable
 - For example, see a7 and c4 in the φ-functions in block B3 (next slide); their equivalence would not have been decided by the time B3 is processed
 - Simply assign a new value number to the ϕ -instruction and record it in the *ValnumTable* and the *HashTable* along with the new value number and the defining variable
- If all the inputs are found in the *ValnumTable* (subject to dominance property being satisfied)
 - Replace the inputs by the respective entries in the *ValnumTable*
 - Now, check whether the φ-instruction is either meaningless or redundant
 - If neither, simplify expression and enter into the tables

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Example: Effect of Back Edge on Value Numbering

Y.N. Srikant Program Optimizations and the SSA Form

Processing ϕ -instructions

Meaningless ϕ -instruction

- All inputs are identical. For example, see block B8
- It can be deleted and all occurences of the defining variable can be replaced by the input parameter. *ValnumTable* is updated

Redundant ϕ -instruction

- There is another φ-instruction in the same basic block with exactly the same parameters
- Block B9 has a redundant ϕ -instruction
- Another φ-instruction from a dominating block cannot be used because the control conditions may be different for the two blocks and hence the two φ-instructions may yield different values at runtime
- *HashTable* can be used to check redundancy
- A redundant φ-instruction can be deleted and all occurences of the defining variable in the redundant instruction can be replaced by the earlier non-redundant one. Tables are updated

Liveness Analysis with SSA Forms

- For each variable *v*, walk backwards from each use of *v*, stopping when the walk reaches the definition of *v*
- Collect the block numbers on the way, and the variable *v* is *live* at the entry/exit (one or both, as the case may be) of each of these blocks
- In the example (next slide), consider uses of the variable *i*₂ in B7 and B4. Traversing upwards till B2, we get: B7, B5, B6, B3, B4(IN and OUT points), and OUT[B2], as blocks where *i*₂ is live
- This procedure works because the SSA forms and the transformations we have discussed satisfy (preserve) the *dominance property*
 - the definition of a variable dominates each use or the predecessor of the use (when the use is in a φ-function)
 - Otherwise, the whole SSA graph may have to be searched for the corresponding definition

ヘロン ヘアン ヘビン ヘビン

Liveness Analysis with SSA Forms - Example

イヨトイヨト

2