
The Static Single Assignment Form:
Construction and Application to Program Optimizations

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Program Optimizations and the SSA Form



The SSA Form: Introduction

A new intermediate representation
Incorporates def-use information
Every variable has exactly one definition in the program
text

This does not mean that there are no loops
This is a static single assignment form, and not a dynamic
single assignment form

Some compiler optimizations perform better on SSA forms
Conditional constant propagation and global value
numbering are faster and more effective on SSA forms

A sparse intermediate representation
If a variable has N uses and M definitions, then def-use
chains need space and time proportional to N.M
But, the corresponding instructions of uses and definitions
are only N + M in number
SSA form, for most realistic programs, is linear in the size of
the original program

Y.N. Srikant Program Optimizations and the SSA Form



A Program in non-SSA Form and its SSA Form

Y.N. Srikant Program Optimizations and the SSA Form



SSA Form: A Definition

A program is in SSA form, if each use of a variable is
reached by exactly one definition
Flow of control remains the same as in the non-SSA form
A special merge operator, φ, is used for selection of values
in join nodes
Not every join node needs a φ operator for every variable
No need for a φ operator, if the same definition of the
variable reaches the join node along all incoming edges
Often, an SSA form is augmented with u-d and d-u chains
to facilitate design of faster algorithms
Translation from SSA to machine code introduces copy
operations, which may introduce some inefficiency

Y.N. Srikant Program Optimizations and the SSA Form



Program 2 in non-SSA Text Form

Y.N. Srikant Program Optimizations and the SSA Form



Program 2 in non-SSA and SSA Form

Y.N. Srikant Program Optimizations and the SSA Form



Program 3 in non-SSA and SSA Form

Y.N. Srikant Program Optimizations and the SSA Form



Conditions on the SSA form

After translation, the SSA form should satisfy the following
conditions for every variable v in the original program.

1 If two non-null paths from nodes X and Y each having a
definition of v converge at a node p, then p contains a
trivial φ-function of the form v = φ(v , v , ..., v), with the
number of arguments equal to the in-degree of p.

2 Each appearance of v in the original program or a
φ-function in the new program has been replaced by a new
variable vi , leaving the new program in SSA form.

3 Any use of a variable v along any control path in the
original program and the corresponding use of vi in the
new program yield the same value for both v and vi .

Y.N. Srikant Program Optimizations and the SSA Form



Conditions on SSA Forms

Condition 1 in the previous slide is recursive.
It implies that φ-assignments introduced by the translation
procedure will also qualify as assignments to v
This in turn may lead to introduction of more φ-assignments
at other nodes

It would be wasteful to place φ-functions in all join nodes
It is possible to locate the nodes where φ-functions are
essential
This is captured by the dominance frontier

Y.N. Srikant Program Optimizations and the SSA Form



The Join Sets and φ Nodes

Given S: set of flow graph nodes, the set JOIN(S) is
the set of all nodes n, such that there are at least two
non-null paths in the flow graph that start at two distinct
nodes in S and converge at n

The paths considered should not have any other common
nodes apart from n

The iterated join set, JOIN+(S) is

JOIN(1)(S) = JOIN(S)
JOIN(i+1)(S) = JOIN(S ∪ JOIN(i)(S))

If S is the set of assignment nodes for a variable v , then
JOIN+(S) is precisely the set of flow graph nodes, where
φ-functions are needed (for v )
JOIN+(S) is termed the dominance frontier, DF (S), and
can be computed efficiently

Y.N. Srikant Program Optimizations and the SSA Form



JOIN Example -1

variable i : JOIN+({B1,B7}) = {B2}
variable n: JOIN+({B1,B5,B6}) = {B2,B7}

Y.N. Srikant Program Optimizations and the SSA Form



JOIN Example - 2

Y.N. Srikant Program Optimizations and the SSA Form



Dominators and Dominance Frontier

Given two nodes x and y in a flow graph, x dominates y
(x ∈ dom(y)) , if x appears in all paths from the Start node
to y
The node x strictly dominates y , if x dominates y and
x 6= y
x is the immediate dominator of y (denoted idom(y)), if x
is the closest strict dominator of y
A dominator tree shows all the immediate dominator
relationships
The dominance frontier of a node x , DF (x), is the set of all
nodes y such that

x dominates a predecessor of y
(p ∈ preds(y) and x ∈ dom(p))
but x does not strictly dominate y (x /∈ dom(y)− {y})

Y.N. Srikant Program Optimizations and the SSA Form



Dominance frontiers - An Intuitive Explanation

A definition in node n forces a φ-function in join nodes that
lie just outside the region of the flow graph that n
dominates; hence the name dominance frontier
Informally, DF (x) contains the first nodes reachable from x
that x does not dominate, on each path leaving x

In example 1 (next slide), DF (B1) = ∅, since B1 dominates
all nodes in the flow graph except Start and B1, and there is
no path from B1 to Start or B1
In the same example, DF (B2) = {B2}, since B2 dominates
all nodes except Start, B1, and B2, and there is a path from
B2 to B2 (via the back edge)
Continuing in the same example, B5, B6, and B7 do not
dominate any node and the first reachable nodes are B7,
B7, and B2 (respectively). Therefore,
DF (B5) = DF (B6) = {B7} and DF (B7) = {B2}
In example 2 (second next slide), B5 dominates B6 and B7,
but not B8; B8 is the first reachable node from B5 that B5
does not dominate; therefore, DF (B5) = {B8}

Y.N. Srikant Program Optimizations and the SSA Form



DF Example - 1

Y.N. Srikant Program Optimizations and the SSA Form



DF Example - 2

Y.N. Srikant Program Optimizations and the SSA Form



Computation of Dominance Frontiers - 2

1 Identify each join node x in the flow graph
2 For each predecessor, p of x in the flow graph, traverse the

dominator tree upwards from p, till idom(x)
3 During this traversal, add x to the DF -set of each node met

In example 1 (second previous slide), consider the join
node B2; its predecessors are B1 and B7

B1 is also idom(B2) and hence is not considered
Starting from B7 in the dominator tree, in the upward
traversal till B1 (i.e., idom(B2)) B2 is added to the DF sets
of B7, B3, and B2

In example 2 (previous slide), consider the join node B8; its
predecessors are B4, B6, and B7

Consider B4: B8 is added to DF (B4)
Consider B6: B8 is added to DF (B6) and DF (B5)
Consider B7: B8 is added to DF (B7); B8 has already been
added to DF (B5)
All the above traversals stop at B3, which is idom(B8)

Y.N. Srikant Program Optimizations and the SSA Form



DF Algorithm

{
for all nodes n in the flow graph do
DF (n) = ∅;
for all nodes n in the flow graph do {
/* It is enough to consider only join nodes */
/* Other nodes automatically get their DF sets */
/* computed during this process /*

for each predecessor p of n in the flow graph do {
t = p;
while (t 6= idom(n)) do {

DF (t) = DF (t) ∪ {n};
t = idom(t);

}
}

}
}

Y.N. Srikant Program Optimizations and the SSA Form



Minimal SSA Form Construction 1

1 Compute DF sets for each node of the flow graph
2 For each variable v , place trivial φ-functions in the nodes of

the flow graph using the algorithm place-phi-function(v)
3 Rename variables using the algorithm

Rename-variables(x,B)

φ-Placement Algorithm
The φ-placement algorithm picks the nodes ni with
assignments to a variable
It places trivial φ-functions in all the nodes which are in
DF (ni), for each i
It uses a work list (i.e., queue) for this purpose

Y.N. Srikant Program Optimizations and the SSA Form



φ-function placement Example

Y.N. Srikant Program Optimizations and the SSA Form



The function place-phi-function(v) - 1

function Place-phi-function(v ) // v is a variable
// This function is executed once for each variable in the flow graph
begin

// has-phi(B, v ) is true if a φ-function has already
// been placed in B, for the variable v
// processed(B) is true if B has already been processed once
// for variable v
for all nodes B in the flow graph do

has-phi(B, v ) = false; processed(B) = false;
end for
W = ∅; // W is the work list
// Assignment-nodes(v ) is the set of nodes containing
// statements assigning to v
for all nodes B ∈ Assignment-nodes(v ) do

processed(B) = true; Add(W ,B);
end for

Y.N. Srikant Program Optimizations and the SSA Form



The function place-phi-function(v) - 2

while W 6= ∅ do
begin

B = Remove(W );
for all nodes y ∈ DF (B) do

if (not has-phi(y , v )) then
begin

place < v = φ(v , v , ..., v) > in y ;
has-phi(y , v ) = true;
if (not processed(y )) then
begin processed(y ) = true;

Add(W , y );
end

end
end for

end
end

Y.N. Srikant Program Optimizations and the SSA Form



SSA Form Construction Example - 1

Y.N. Srikant Program Optimizations and the SSA Form



SSA Form Construction Example - 2

Y.N. Srikant Program Optimizations and the SSA Form



Minimal SSA Form Construction 2

Renaming Algorithm
The renaming algorithm performs a top-down traversal of
the dominator tree
A separate pair of version stack and version counter are
used for each variable

The top element of the version stack V is always the
version to be used for a variable usage encountered (in the
appropriate range, of course)
The counter v is used to generate a new version number

The alogorithm shown later is for a single variable only; a
similar algorithm is executed for all variables with an array
of version stacks and counters

Y.N. Srikant Program Optimizations and the SSA Form



The Renaming Algorithm

An SSA form should satisfy the dominance property:
the definition of a variable dominates each use or
when the use is in a φ-function, the predecessor of the use

Therefore, it is apt that the renaming algorithm performs a
top-down traversal of the dominator tree

Renaming for non-φ-statements is carried out while visiting
a node n
Renaming parameters of a φ-statement in a node n is
carried out while visiting the appropriate predecessors of n

Y.N. Srikant Program Optimizations and the SSA Form



The function Rename-variables(x,B)

function Rename-variables(x ,B) // x is a variable and B is a block
begin

ve = Top(V ); // V is the version stack of x
// variables are defined before use; hence no renaming can
// happen on empty stack
for all statements s ∈ B do

if s is a non-φ statement then
replace all uses of x in the RHS(s) with Top(V );

if s defines x then
begin

replace x with xv in its definition; push xv onto V ;
// xv is the renamed version of x in this definition
v = v + 1; // v is the version number counter

end
end for

Y.N. Srikant Program Optimizations and the SSA Form



The function Rename-variables(x,B)

for all successors s of B in the flow graph do
j = predecessor index of B with respect to s
for all φ-functions f in s which define x do

replace the j th operand of f with Top(V );
end for

end for
for all children c of B in the dominator tree do

Rename-variables(x , c);
end for
repeat Pop(V ); until (Top(V ) == ve);

end
begin // calling program

for all variables x in the flow graph do
V = ∅; v = 1; push 0 onto V ; // end-of-stack marker
Rename-variables(x ,Start);

end for
end

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.1

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.2

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.3

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.4

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.5

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.6

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.7

Y.N. Srikant Program Optimizations and the SSA Form



Renaming Variables Example 0.8

Y.N. Srikant Program Optimizations and the SSA Form



Translation to Machine Code - 1

Y.N. Srikant Program Optimizations and the SSA Form



Translation to Machine Code - 2

Y.N. Srikant Program Optimizations and the SSA Form



Translation to Machine Code - 3

The parameters of all φ-functions in a basic block are supposed
to be read concurrently before any other evaluation begins

Y.N. Srikant Program Optimizations and the SSA Form



Optimization Algorithms with SSA Forms

Dead-code elimination
Very simple, since there is exactly one definition reaching
each use
Examine the du-chain of each variable to see if its use list is
empty
Remove such variables and their definition statements
If a statement such as x = y + z (or x = φ(y1, y2)) is
deleted, care must be taken to remove the deleted
statement from the du-chains of y and z (or y1 and y2)

Simple constant propagation
Copy propagation
Conditional constant propagation and constant folding
Global value numbering

Y.N. Srikant Program Optimizations and the SSA Form



Simple Constant Propagation

{ Stmtpile = {S|S is a statement in the program}
while Stmtpile is not empty {

S = remove(Stmtpile);
if S is of the form x = φ(c, c, ..., c) for some constant c

replace S by x = c
if S is of the form x = c for some constant c

delete S from the program
for all statements T in the du-chain of x do

substitute c for x in T; simplify T
Stmtpile = Stmtpile ∪ {T}

}

Copy propagation is similar to constant propagation
A single-argument φ-function, x = φ(y), or a copy
statement, x = y can be deleted and y substituted for
every use of x

Y.N. Srikant Program Optimizations and the SSA Form



The Constant Propagation Framework - An Overview

m(y) m(z) m′(x)

UNDEF UNDEF

UNDEF c2 UNDEF

NAC NAC

UNDEF UNDEF

c1 c2 c1 + c2

NAC NAC

UNDEF NAC

NAC c2 NAC

NAC NAC

any u UNDEF = any

any u NAC = NAC

c1 u c2 = NAC, if c1 6= c2

c1 u c2 = c1, if c1 = c2

Y.N. Srikant Program Optimizations and the SSA Form



Conditional Constant Propagation - 1

SSA forms along with extra edges corresponding to d-u
information are used here

Edge from every definition to each of its uses in the SSA
form (called henceforth as SSA edges)

Uses both flow graph and SSA edges and maintains two
different work-lists, one for each (Flowpile and SSApile ,
resp.)
Flow graph edges are used to keep track of reachable
code and SSA edges help in propagation of values
Flow graph edges are added to Flowpile, whenever a
branch node is symbolically executed or whenever an
assignment node has a single successor

Y.N. Srikant Program Optimizations and the SSA Form



Conditional Constant Propagation - 2

SSA edges coming out of a node are added to the SSA
work-list whenever there is a change in the value of the
assigned variable at the node
This ensures that all uses of a definition are processed
whenever a definition changes its lattice value.
This algorithm needs only one lattice cell per variable
(globally, not on a per node basis) and two lattice cells per
node to store expression values
Conditional expressions at branch nodes are evaluated
and depending on the value, either one of outgoing edges
(corresponding to true or false) or both edges
(corresponding to ⊥) are added to the worklist
However, at any join node, the meet operation considers
only those predecessors which are marked executable.

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

// G = (N ,Ef ,Es) is the SSA graph,
// with flow edges and SSA edges, and
// V is the set of variables used in the SSA graph
begin

Flowpile = {(Start → n) | (Start → n) ∈ Ef };
SSApile = ∅;
for all e ∈ Ef do e.executable = false; end for
//v .cell is the lattice cell associated with the variable v
for all v ∈ V do v .cell = >; end for
// y .oldval and y .newval store the lattice values
// of expressions at node y
for all y ∈ N do

y .oldval = >; y .newval = >;
end for

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

while (Flowpile 6= ∅) or (SSApile 6= ∅) do
begin

if (Flowpile 6= ∅) then
begin

(x , y ) = remove(Flowpile);
if (not (x , y ).executable) then
begin

(x , y ).executable = true;
if (φ-present(y )) then visit-φ(y )

else if (first-time-visit(y )) then visit-expr (y );
// visit-expr is called on y only on the first visit
// to y through a flow edge; subsequently, it is called
// on y on visits through SSA edges only
if (flow-outdegree(y ) == 1) then

// Only one successor flow edge for y
Flowpile = Flowpile ∪ {(y , z) | (y , z) ∈ Ef };

end
Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

// if the edge is already marked, then do nothing
end
if (SSApile 6= ∅) then

begin
(x , y ) = remove(SSApile);
if (φ-present(y )) then visit-φ(y )

else if (already -visited(y )) then visit-expr (y );
// A false returned by already -visited implies
// that y is not yet reachable through flow edges

end
end // Both piles are empty

end
function φ-present(y ) // y ∈ N
begin

if y is a φ-node then return true
else return false

end
Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

function visit-φ(y ) // y ∈ N
begin

y .newval = >; //‖y .instruction.inputs‖ is the number of
// parameters of the φ-instruction at node y
for i = 1 to ‖y .instruction.inputs‖ do

Let pi be the i th predecessor of y ;
if ((pi , y ).executable) then
begin

Let ai = y .instruction.inputs[i];
// ai is the i th input and ai .cell is the lattice cell
// associated with that variable
y .newval = y .newval u ai .cell ;

end
end for

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

if (y .newval < y .instruction.output .cell) then
begin

y .instruction.output .cell = y .newval ;
SSApile = SSApile ∪ {(y , z) | (y , z) ∈ Es };

end
end

function already -visited(y ) // y ∈ N
// This function is called when processing an SSA edge
begin // Check in-coming flow graph edges of y

for all e ∈ {(x , y ) | (x , y )∈ Ef }
if e.executable is true for at least one edge e

then return true else return false
end for

end

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

function first-time-visit(y ) // y ∈ N
// This function is called when processing a flow graph edge
begin // Check in-coming flow graph edges of y

for all e ∈ {(x , y ) | (x , y )∈ Ef }
if e.executable is true for more than one edge e

then return false else return true
end for
// At least one in-coming edge will have executable true
// because the edge through which node y is entered is
// marked as executable before calling this function

end

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

function visit-expr (y ) // y ∈ N
begin

Let input1 = y .instruction.inputs[1];
Let input2 = y .instruction.inputs[2];
if (input1.cell == ⊥ or input2.cell == ⊥) then

y .newval = ⊥
else if (input1.cell == > or input2.cell == >) then

y .newval = >
else // evaluate expression at y as per lattice evaluation rules

y .newval = evaluate(y );
// It is easy to handle instructions with one operand

if y is an assignment node then
if (y .newval < y .instruction.output .cell) then
begin

y .instruction.output .cell = y .newval ;
SSApile = SSApile ∪ {(y , z) | (y , z) ∈ Es };

end
Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Contd.

else if y is a branch node then
begin

if (y .newval < y .oldval) then
begin

y .oldval = y .newval ;
switch(y .newval)

case ⊥: // Both true and false branches are equally likely
Flowpile = Flowpile ∪ {(y , z) | (y , z) ∈ Ef };

case true: Flowpile = Flowpile ∪ {(y , z) | (y , z) ∈ Ef and
(y , z) is the true branch edge at y };

case false: Flowpile = Flowpile ∪ {(y , z) | (y , z) ∈ Ef and
(y , z) is the false branch edge at y };

end switch
end

end
end

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example - 1

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 1

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 2

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 3

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 1

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 2

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 3

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 4

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 5

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 6

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 7

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 8

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 9

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 10

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 11

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 12

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2 - Trace 13

Y.N. Srikant Program Optimizations and the SSA Form



Value Numbering with SSA Forms

Global value numbering scheme
Similar to the scheme with extended basic blocks
Scope of the tables is over the dominator tree
Therefore more redundancies can be caught

For example, an assignment a10 = u1 + v1 in block B9 (if
present) can use the value of the expression u1 + v1 of block
B1, since B1 is a dominator of B9

No d-u or u-d edges needed
Uses reverse post order on the DFS tree of the SSA graph
to process the dominator tree

This ensures that definitions are processed before use

Back edges make the algorithm find fewer equivalences
(more on this later)

Y.N. Srikant Program Optimizations and the SSA Form



Value Numbering with SSA Forms

Variable names are not reused in SSA forms
Hence, no need to restore old entries in the scoped
HashTable when the processing of a block is completed
Just deleting new entries will be sufficient

Any copies generated because of common subexpressions
can be deleted immediately
Copy propagation is carried out during value-numbering
Ex: Copy statements generated due to value numbering in
blocks B2, B4, B5, B6, B7, and B8 can be deleted
The ValnumTable stores the SSA name and its value
number and is global; it is not scoped over the dominator
tree (reasons in the next slide)
Value numbering transformation retains the dominance
property of the SSA form

Every definition dominates all its uses or predecessors of
uses (in case of phi-functions)

Y.N. Srikant Program Optimizations and the SSA Form



Example: An SSA Form

Y.N. Srikant Program Optimizations and the SSA Form



Dominator Tree and Reverse Post order

Y.N. Srikant Program Optimizations and the SSA Form



Global Unscoped ValnumTable

Needed for φ-instructions
A φ-instruction receives inputs from several variables along
different predecessors of a block
These inputs are defined in the immediate predecessors or
dominators of the predecessors of the current block
For example, while processing block B9, we need
definitions of a5,a6, and a3

a5,a6: defined in the predecessor blocks, B8, and B6
(resp.)
a3: defined in B3, the dominator of the predecessor of B9
If the ValnumTable were to be scoped, only names in B1
would be available while processing B9

SSA names being unique, unscoped ValnumTable does
not cause problems
Making HashTable also unscoped is not possible since
expressions are not unique

Y.N. Srikant Program Optimizations and the SSA Form



HashTable and ValnumTable

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.0

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.1

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.2

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.3

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.4

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.5

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.6

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.7

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.8

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.9

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-numbering Example - 1.10

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-Numbering Algorithm

function SSA-Value-Numbering (Block B) {
Mark the beginning of a new scope;
For each φ-function f of the form x = φ(y1, ..., yn) in B do {

search for f in HashTable;
//This involves getting the value numbers of the parameters also
//Dominance property ensures that parameters are assigned
//either in predecessor or dominator of predecessor of B
if f is meaningless //all yi are equivalent to some w

replace value number of x by that of w in ValnumTable;
delete f ;

else if f is redundant and is equivalent to z = φ(u1, ...,un)
replace value number of x by that of z in ValnumTable;
delete f ;

else insert simplified f into HashTable and ValnumTable;
}

Y.N. Srikant Program Optimizations and the SSA Form



SSA Value-Numbering Algorithm - Contd.

For each assignment a of the form x = y + z in B do {
search for y + z in HashTable;
//This involves getting value numbers of y and z also
If present with value number n

replace value number of x by n in ValnumTable;
delete a;

else add simplified y + z to HashTable and x to ValnumTable;
}
For each child c of B in the dominator tree do
//in reverse postorder of DFS over the SSA graph

SSA-Value-Numbering(c);
clean up HashTable after leaving this scope;

}

//Calling program
SSA-Value-Numbering(Start);

Y.N. Srikant Program Optimizations and the SSA Form



Processing φ-instructions

Some times, one or more of the inputs of a φ-instruction
may not be defined yet

They may reach through the back edge of a loop
Such entries will not be found in the ValnumTable
For example, see a7 and c4 in the φ-functions in block B3
(next slide); their equivalence would not have been decided
by the time B3 is processed
Simply assign a new value number to the φ-instruction and
record it in the ValnumTable and the HashTable along with
the new value number and the defining variable

If all the inputs are found in the ValnumTable (subject to
dominance property being satisfied)

Replace the inputs by the respective entries in the
ValnumTable
Now, check whether the φ-instruction is either meaningless
or redundant
If neither, simplify expression and enter into the tables

Y.N. Srikant Program Optimizations and the SSA Form



Example: Effect of Back Edge on Value Numbering

Y.N. Srikant Program Optimizations and the SSA Form



Processing φ-instructions
Meaningless φ-instruction

All inputs are identical. For example, see block B8

It can be deleted and all occurences of the defining variable can
be replaced by the input parameter. ValnumTable is updated

Redundant φ-instruction

There is another φ-instruction in the same basic block with
exactly the same parameters

Block B9 has a redundant φ-instruction

Another φ-instruction from a dominating block cannot be used
because the control conditions may be different for the two
blocks and hence the two φ-instructions may yield different
values at runtime

HashTable can be used to check redundancy

A redundant φ-instruction can be deleted and all occurences of
the defining variable in the redundant instruction can be
replaced by the earlier non-redundant one. Tables are updated

Y.N. Srikant Program Optimizations and the SSA Form



Liveness Analysis with SSA Forms

For each variable v , walk backwards from each use of v ,
stopping when the walk reaches the definition of v
Collect the block numbers on the way, and the variable v is
live at the entry/exit (one or both, as the case may be) of
each of these blocks
In the example (next slide), consider uses of the variable i2
in B7 and B4. Traversing upwards till B2, we get: B7, B5,
B6, B3, B4(IN and OUT points), and OUT[B2], as blocks
where i2 is live
This procedure works because the SSA forms and the
transformations we have discussed satisfy (preserve) the
dominance property

the definition of a variable dominates each use or the
predecessor of the use (when the use is in a φ-function)
Otherwise, the whole SSA graph may have to be searched
for the corresponding definition

Y.N. Srikant Program Optimizations and the SSA Form



Liveness Analysis with SSA Forms - Example

Y.N. Srikant Program Optimizations and the SSA Form


