
Software Pipelining

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Software Pipelining

Introduction to Software Pipelining

Overlaps execution of instructions from multiple iterations
of a loop

Executes instructions from different iterations in the same
pipeline, so that pipelines are kept busy without stalls
Objective is to sustain a high initiation rate

Initiation of a subsequent iteration may start even before
the previous iteration is complete

Unrolling loops several times and performing global
scheduling on the unrolled loop

Exploits greater ILP within unrolled iterations
Very little or no overlap across iterations of the loop

Y.N. Srikant Software Pipelining

Approaches to Software Pipelining

Iterative modulo scheduling
Similar to list scheduling, computes priorities and uses
operation scheduling (details later)
Uses Modulo Reservation Tables (MRT)

A global resource reservation table with II columns and R
rows
MRT records resource usage of the schedule (of the kernel)
as it is constructed
Initially all entries are 0
If an instruction uses a resource r at time step t , then the
entry MRT (r , t mod II) is set to 1

Slack scheduling
Uses earliest and latest issue times for each instruction
(difference is slack)
Schedules an instruction within its slack
Also uses MRT

Y.N. Srikant Software Pipelining

Introduction to Software Pipelining - contd.

More complex than instruction scheduling

NP-Complete
Involves finding initiation interval for successive iterations

Trial and error procedure
Start with minimum II, schedule the body of the loop using
one of the approaches below and check if schedule length
is within bounds

Stop, if yes
Try next value of II, if no

Requires a modulo reservation table

Schedule lengths are dependent on II, dependence
distance between instructions and resource contentions

Y.N. Srikant Software Pipelining

Software Pipelining Example-1

for (i=1; i<=n; i++) {
 a[i+1] = a[i] + 1;
 b[i] = a[i+1]/2;
 c[i] = b[i] + 3;
 d[i] = c[i]
}

(1,1)

(0,1)

(0,1)

(0,1)

4

1

2

3

(dep.dist, delay)

 Iterations

1 S1
2 S2 S1
3 S3 S2 S1
4 S4 S3 S2 S1
5 S4 S3 S2 S1

7 S4 S3 S2 S1
6 S4 S3 S2 S1

8 S4 S3 S2
9 S4 S3
10 S4

T

I

M

E

Y.N. Srikant Software Pipelining

Software Pipelining Example-2.1

No. of tokens present on an arc indicates the dependence
distancefor (i = 0; i < n; i++) fa[i] = s * a[i];g (a) High-Level Code% t0 0 %% t1 (n-1) %% t2 s %i0: t3 load a(t0)i1: t4 t2 * t3i2: a(t0) t4i3: t0 t0 + 4i4: t1 t1 - 1i5: if (t1 � 0) goto i0(b) Instruction Sequence

i0

i1

i2

add

i3

i4

i5

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

ld

mult

st

sub

bge(c) Dependence graphSoftware Pipelining Example

152

Y.N. Srikant Software Pipelining

Software Pipelining Example-2.2

Number of tokens present on an arc indicates the
dependence distance

Assume that the possible dependence from i2 to i0 can be
disambiguated

Assume 2 INT units (latency 1 cycle), 2 FP units (latency 2
cycles), and 1 LD/STR unit (latency 2 cycles/1 cycle)

Branch can be executed by INT units

Acyclic schedule takes 5 cycles (see figure)

Corresponds to an initiation rate of 1/5 iteration per cycle

Cyclic schedule takes 2 cycles (see figure)

Y.N. Srikant Software Pipelining

Acyclic and Cyclic Schedules

Y.N. Srikant Instruction Scheduling

Software Pipelining Example-2.3

i1 : mult

i3 : add

i4 : sub

i5 : bge
i2 : st

i0 : ld

i1 : mult

i3 : add

i4 : sub

i5 : bge
i2 : st

i0 : ld

i1 : mult

i3 : add

i4 : sub

i5 : bge
i2 : st

i0 : ld

0

1

2

3

4

5

6

7

8

9

Iter. 1 Iter. 2Iter. 0Time
Step

Prolog

Epilog

Kernel

A Software Pipelined Schedule with II = 2

153

Y.N. Srikant Software Pipelining

Software Pipelining Example-3

3+

0+ 1*

5*

2+

4+

(0,1)

(0,1)

(0,1)

(0,1)

(0,1)

(2,1)

for i = 1 to n {
 0: t0[i] = a[i] + b[i];
 1: t1[i] = c[i] * const1;
 2: t2[i] = d[i] + e[i−2];
 3: t3[i] = t0[i] + c[i];
 4: t4[i] = t1[i] + t2[i];
 5: e[i] = t3[i] * t4[i];
}

Program

0+

0+

0+

1*

1*

1* 2+

2+

2+

3+

3+

3+ 4+

4+

4+

5*

5*

5*

Dependence
 Graph

i = 1

i = 2

i = 3

Loop unrolled to

3+

5* 0+ 1* 2+

PS0 PS1

1

0t
i
m
e

2 multipliers, 2 adders,
1 cluster, single cycle
operations

reveal the
software pipeline

Pipe stages

4+

Y.N. Srikant Software Pipelining

Minimum Initiation Interval (MII)

Minimum time before which, successive iterations cannot
be started
MII = max(ResMII,RecMII)

ResMII is the minimum MII due to resource constraints
RecMII is the minimum MII due to recurrences or cyclic
data dependences

Y.N. Srikant Software Pipelining

Resource Minimum Initiation Interval (ResMII)

Very expensive to determine exactly
For pipelined function units

ResMII = max
∀ r

(⌈

Nr

Fr

⌉)

(1)

where Nr represents the number of instructions that
execute on a functional unit of type r , and Fr is the number
of functional units of type r
For non-pipelined FUs or FUs with complex structural
hazards

ResMII = max
∀ r

⌈∑

a Na,r

Fr

⌉

(2)

where Na,r represents the maximum number of time steps
for which instruction a uses any of the stages of a
functional unit of type r . For example, for a non-pipelined
FU, Na,r equals to the latency of the functional unit.

Y.N. Srikant Software Pipelining

Resource MII Example - Fully Pipelined FU

ResMII = max(ResMIIINT ,ResMIIFP ,ResMIILD/STR) (3)

ResMII = max
(

3
2
,

1
2
,

2
1

)

= 2 (4)for (i = 0; i < n; i++) fa[i] = s * a[i];g (a) High-Level Code% t0 0 %% t1 (n-1) %% t2 s %i0: t3 load a(t0)i1: t4 t2 * t3i2: a(t0) t4i3: t0 t0 + 4i4: t1 t1 - 1i5: if (t1 � 0) goto i0(b) Instruction Sequence

i0

i1

i2

add

i3

i4

i5

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

ld

mult

st

sub

bge(c) Dependence graphSoftware Pipelining Example

152

Y.N. Srikant Software Pipelining

Resource MII Example 2

Y.N. Srikant Instruction Scheduling

Recurrence MII

Recurrence Minimum Initiation Interval (RecMII)
Dependent on the cycle length (both delay length and
distance length) in the dependence graph

RecMII = max
c∈cycles

⌈

delay(c)
distance(c)

⌉

Can be computed by enumerating all cycles

Y.N. Srikant Software Pipelining

Recurrence MII Example

RecMII = max(RecMIIcycle on i3,RecMIIcycle on i4) (5)

RecMII = max
(

1
1
,

1
1

)

= 1 (6)for (i = 0; i < n; i++) fa[i] = s * a[i];g (a) High-Level Code% t0 0 %% t1 (n-1) %% t2 s %i0: t3 load a(t0)i1: t4 t2 * t3i2: a(t0) t4i3: t0 t0 + 4i4: t1 t1 - 1i5: if (t1 � 0) goto i0(b) Instruction Sequence

i0

i1

i2

add

i3

i4

i5

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

ld

mult

st

sub

bge(c) Dependence graphSoftware Pipelining Example

152

Y.N. Srikant Software Pipelining

ResMII and RecMII Example - Fully Pipelined FUs

ResMII = max
(

4
2
,

2
2

)

= 2 (7)

RecMII = max
(⌈

1 + 1 + 1
0 + 0 + 2

⌉)

=

(⌈

3
2

⌉)

= 2 (8)

3+

0+ 1*

5*

2+

4+

(0,1)

(0,1)

(0,1)

(0,1)

(0,1)

(2,1)

for i = 1 to n {
 0: t0[i] = a[i] + b[i];
 1: t1[i] = c[i] * const1;
 2: t2[i] = d[i] + e[i−2];
 3: t3[i] = t0[i] + c[i];
 4: t4[i] = t1[i] + t2[i];
 5: e[i] = t3[i] * t4[i];
}

Program

0+

0+

0+

1*

1*

1* 2+

2+

2+

3+

3+

3+ 4+

4+

4+

5*

5*

5*

Dependence
 Graph

i = 1

i = 2

i = 3

Loop unrolled to

3+

5* 0+ 1* 2+

PS0 PS1

1

0t
i
m
e

2 multipliers, 2 adders,
1 cluster, single cycle
operations

reveal the
software pipeline

Pipe stages

4+

Y.N. Srikant Software Pipelining

Modulo Scheduling Algorithm

1 Compute MII and set II to MII
2 Compute priority for each node

Height of a node is one of the priority functions and is
described later
Height is computed using both delay and distance

3 Choose an operation of highest priority for scheduling
4 Compute Estart for the operation (described later)
5 Try slots within the range (Estart , Estart+II-1), for resource

contentions (all ranges are modulo II)

Y.N. Srikant Software Pipelining

Modulo Scheduling Algorithm

6 If one is available, then schedule the instruction; this may
involve unscheduling those immediate successors of the
instruction, with whom there is a dependence conflict (no
resource conflicts are possible; this has just been checked
before scheduling the instruction)

7 If none is available
choose Estart, if the instruction has not been scheduled so
far
choose prev-sched-time+1 if the instruction was previously
scheduled at prev-sched-time
this will invariably involve unscheduling all the instructions
which have resource contentions with the instruction being
scheduled

8 If there have been too many failures of the above types (6)
or (7), then increment II and repeat the steps

Y.N. Srikant Software Pipelining

Operation Scheduling

Ready list has no use here because unscheduling of
previously scheduled instructions is possible

MRT with II columns and R rows is used to record
commitments of scheduled instructions

Conflict at time T means conflict at T + k ∗ II and T − k ∗ II

Estart(P) = max
Q∈Pred(P)

0, if Q is unscheduled
max(0,SchedTime(Q) + Delay(Q,P)
−II ∗ Distance(Q,P)), otherwise

Height(P) =

0, if P is the STOP pseudo − op
max

Q∈Succ(P)
(Height(Q) + Delay(P,Q)−

II ∗ Distance(P,Q)), otherwise

Note that only scheduled predecessors will be considered
in the computation of Estart

Y.N. Srikant Software Pipelining

Rotating Register Set and Modulo-Variable Expansion

Instances of a single variable defined in a loop are active
simultaneously in different concurrently active iterations
(see figure in next slide)

Value produced by i1 in time step 2 is used by i2 only in
time step 5
However, another instance of i1 from iter 1 in time step 4
could overwrite the destination register
Assigning the same register for each such variable will be
incorrect

Automatic register renaming through rotating register sets
is one hardware solution
Unrolling the loop as many as II times (max) and then
applying the usual RA is another solution (Modulo-variable
expansion)

This process essentially renames the destination registers
appropriately
Increases II

Y.N. Srikant Software Pipelining

Interacting Live Range Problem

i1 : mult

i3 : add

i4 : sub

i5 : bge
i2 : st

i0 : ld

i1 : mult

i3 : add

i4 : sub

i5 : bge
i2 : st

i0 : ld

i1 : mult

i3 : add

i4 : sub

i5 : bge
i2 : st

i0 : ld

0

1

2

3

4

5

6

7

8

9

Iter. 1 Iter. 2Iter. 0Time
Step

Prolog

Epilog

Kernel

A Software Pipelined Schedule with II = 2

153

Y.N. Srikant Software Pipelining

Register Spilling in Software Pipelining

Register requirement is higher than the available no. of
registers

Spill a few variables to memory
Register spills need additional loads and stores
If the memory unit is saturated in the kernel, and additional
LD/STR cannot be scheduled

II value needs to be increased and loop must be rescheduled

Reschedule loop with a larger II but without inserting spills
Increased II in general reduces register requirement of the
schedule

Generally, increasing II produces worse schedules than
adding spill code

Y.N. Srikant Software Pipelining

Handling Loops With Multiple Basic Blocks

Hierarchical reduction
Two branches of a conditional are first scheduled
independently
Entire conditional is them treated as a single node

Resource requirements is union of the resource
requirements of the two branches
Length of schedule (latency) equal to the max of the lengths
of the branches

After the entire loop is scheduled, conditionals are
reinserted

IF-Conversion and then scheduling the predicated code
(resource usage here is the sum of the usages of the two
branches)

Y.N. Srikant Software Pipelining

