
Instruction Scheduling

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Instruction Scheduling

Outline

Instruction Scheduling
Simple Basic Block Scheduling
Automaton-based Scheduling
Integer programming based scheduling
Optimal Delayed-load Scheduling (DLS) for trees
Trace, Superblock and Hyperblock scheduling

Y.N. Srikant Instruction Scheduling

Instruction Scheduling

Reordering of instructions so as to keep the pipelines of
functional units full with no stalls

NP-Complete and needs heuristcs

Applied on basic blocks (local)

Global scheduling requires elongation of basic blocks
(super-blocks)

Y.N. Srikant Instruction Scheduling

Instruction Scheduling - Motivating Example

time: load - 2 cycles, op - 1 cycle
This code has 2 stalls, at i3 and at i5,
due to the loads

i1: r1 load ai2: r2 load bi3: r3 r1 + r2i4: r4 load
i5: r5 r3 - r4i6: r6 r3 * r5i7: d st r6(a) Sample Code Sequen
e

i1 i2 i4

i3

i5

i7

i6

load load load

add

sub

st

mult

(b) DAG
Y.N. Srikant Instruction Scheduling

Scheduled Code - no stalls

There are no stalls, but dependences are indeed satisfied

i1: r1 load ai2: r2 load bi4: r4 load
i3: r3 r1 + r2i5: r5 r3 - r4i6: r6 r3 * r5i7: d st r6
Y.N. Srikant Instruction Scheduling

Definitions - Dependences

Consider the following code:
i1 : r1← load(r2)
i2 : r3← r1 + 4
i3 : r1← r4 + r5

The dependences are
i1 δ i2 (flow dependence) i2 δ i3 (anti-dependence)
i1 δo i3 (output dependence)

anti- and ouput dependences can be eliminated by register
renaming

Y.N. Srikant Instruction Scheduling

Dependence DAG

full line: flow dependence, dash line: anti-dependence
dash-dot line: output dependence
some anti- and output dependences are because memory
disambiguation could not be done

i1: t1 load ai2: t2 load bi3: t3 t1 + 4i4: t4 t1 - 2i5: t5 t2 + 3i6: t6 t4 * t2i7: t7 t3 + t6i8:
 st t7i9: b st t5(a) Instru
tion Sequen
e
st

add

mult st

add

ldld

add sub

i1

i3 i4

i7

i8

i6

i2

i5

i9

(b) DAG
Y.N. Srikant Instruction Scheduling

Basic Block Scheduling

Basic block consists of micro-operation sequences (MOS),
which are indivisible

Each MOS has several steps, each requiring resources

Each step of an MOS requires one cycle for execution
Precedence constraints and resource constraints must be
satisfied by the scheduled program

PC’s relate to data dependences and execution delays
RC’s relate to limited availability of shared resources

Y.N. Srikant Instruction Scheduling

The Basic Block Scheduling Problem

Basic block is modelled as a digraph, G = (V ,E)

R: number of resources
Nodes (V): MOS; Edges (E): Precedence
Label on node v

resource usage functions, ρv (i) for each step of the MOS
associated with v
length l(v) of node v

Label on edge e: Execution delay of the MOS, d(e)

Problem: Find the shortest schedule σ : V → N such that
∀e = (u, v) ∈ E , σ(v)− σ(u) ≥ d(e) and

∀i ,
v∈V
∑

ρv (i − σ(v)) ≤ R, where
length of the schedule is max

v∈V
{σ(v) + l(v)}

Y.N. Srikant Instruction Scheduling

Instruction Scheduling - Precedence and Resource
Constraints

Y.N. Srikant Instruction Scheduling

A Simple List Scheduling Algorithm

Find the shortest schedule σ : V → N, such that precedence
and resource constraints are satisfied. Holes are filled with
NOPs.

FUNCTION ListSchedule (V,E)
BEGIN

Ready = root nodes of V; Schedule = φ;
WHILE Ready 6= φ DO
BEGIN

v = highest priority node in Ready;
Lb = SatisfyPrecedenceConstraints (v , Schedule, σ);
σ(v) = SatisfyResourceConstraints (v , Schedule, σ, Lb);
Schedule = Schedule + {v};
Ready = Ready − {v} + {u | NOT (u ∈ Schedule)

AND ∀ (w , u) ∈ E , w ∈ Schedule};
END
RETURN σ;

END
Y.N. Srikant Instruction Scheduling

List Scheduling - Ready Queue Update

Y.N. Srikant Instruction Scheduling

Constraint Satisfaction Functions

FUNCTION SatisfyPrecedenceConstraint(v, Sched, σ)
BEGIN

RETURN (max
u∈Sched

σ(u) + d(u, v))

END

FUNCTION SatisfyResourceConstraint(v, Sched, σ, Lb)
BEGIN

FOR i := Lb TO∞ DO

IF ∀0 ≤ j < l(v), ρv (j) +
u∈Sched
∑

ρu(i + j − σ(u)) ≤ R THEN
RETURN (i);

END

Y.N. Srikant Instruction Scheduling

Precedence Constraint Satisfaction

Y.N. Srikant Instruction Scheduling

Resource Constraint Satisfaction

Y.N. Srikant Instruction Scheduling

List Scheduling - Priority Ordering for Nodes

1 Height of the node in the DAG (i.e., longest path from the
node to a terminal node

2 Estart, and Lstart, the earliest and latest start times
Violating Estart and Lstart may result in pipeline stalls
Estart(v) = max

i=1,··· ,k
(Estart(ui) + d(ui , v))

where u1,u2, · · · ,uk are predecessors of v . Estart value of
the source node is 0.
Lstart(u) = min

i=1,··· ,k
(Lstart(vi)− d(u, vi))

where v1, v2, · · · , vk are successors of u. Lstart value of the
sink node is set as its Estart value.
Estart and Lstart values can be computed using a
top-down and a bottom-up pass, respectively, either
statically (before scheduling begins), or dynamically during
scheduling

Y.N. Srikant Instruction Scheduling

Estart and Lstart Computation

Y.N. Srikant Instruction Scheduling

List Scheduling - Slack

1 A node with a lower Estart (or Lstart) value has a higher
priority

2 Slack = Lstart − Estart
Nodes with lower slack are given higher priority
Instructions on the critical path may have a slack value of
zero and hence get priority

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 1

1

3

6

2

4

5

1

0

1

1

2 0

1 2

2

1

1

4

5

1 2

3

node no.path length exec time

LEGEND

latency

path length (n) = exec time (n) , if n is a leaf

 = max { latency (n,m) + path length (m) }
ε m succ (n)

Schedule = {3, 1, 2, 4, 6, 5}

INSTRUCTION SCHEDULING - EXAMPLE

3

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 2

latencies
add,sub,store: 1 cycle; load: 2 cycles; mult: 3 cycles

path length and slack are shown on the left side and right
side of the pair of numbers in parentheses
 = (a+4)+(a-2)*b;b = b+3;(a) High-Level Codei1: t1 load ai2: t2 load bi3: t3 t1 + 4i4: t4 t1 - 2i5: t5 t2 + 3i6: t6 t4 * t2i7: t7 t3 + t6i8:
 st t7i9: b st t5(b) 3-Address Code

ld

sub

mult st

add

st

add

ld

add

5(3, 3)0

6(2, 2)0

8(0, 0)0

3(2, 5)3 1(2, 7)5

7(0, 1)1

0(8, 8)0

2(6, 6)0

1(7, 7)0

i1

i3 i4

i7

i8

i6

i2

i5

i9

(
) DAG with (Estart, Lstart) Values
Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 2 (contd.)

latencies
add,sub,store: 1 cycle; load: 2 cycles; mult: 3 cycles
2 Integer units and 1 Multiplication unit, all capable of load
and store as well

Heuristic used: height of the node or slack

int1 int2 mult Cycle # Instr.No. Instruction
1 1 0 0 i1, i2 t1 ← load a, t2 ← load b
1 1 0 1
1 1 0 2 i4, i3 t4 ← t1 − 2, t3 ← t1 + 4
1 0 1 3 i6, i5 t5 ← t2 + 3, t6 ← t4 ∗ t2
0 0 1 4 i6/i5 not sched. in cycle 2
0 0 1 5 due to shortage of int units
1 0 0 6 i7 t7 ← t3 + t6
1 0 0 7 i8 c ← st t7
1 0 0 8 i9 b ← st t5

Y.N. Srikant Instruction Scheduling

Resource Usage Models - Reservation Table

Resour
es Time Steps0 1 2 3r0 1 0 0 0r1 0 1 1 0r2 0 0 0 1(a) Reservation Table for I1

Resour
es Time Steps0 1 2 3r0 1 0 0 0r3 0 1 0 0r4 0 0 1 1(b) Reservation Table for I2
Y.N. Srikant Instruction Scheduling

Resource Usage Models - Global Reservation Table

r0 r1 r2 · · · rM

t0 1 0 1 0
t1 1 1 0 1
t2 0 0 0 1

tT

M: No. of resources in the machine
T: Length of the schedule

Y.N. Srikant Instruction Scheduling

Resource Usage Models - Global Reservation Table

GRT is constructed as the schedule is built (cycle by cycle)

All entries of GRT are initialized to 0

GRT maintains the state of all the resources in the machine

GRTs can answer questions of the type:
“can an instruction of class I be scheduled in the current
cycle (say tk)?”
Answer is obtained by ANDing RT of I with the GRT
starting from row tk

If the resulting table contains only 0’s, then YES, otherwise
NO

The GRT is updated after scheduling the instruction with a
similar OR operation

Y.N. Srikant Instruction Scheduling

Operation Scheduling

List scheduling discussed so far schedules instructions on
a cycle-by-cycle basis

Operation scheduling attempts to schedule instructions
one after another

Tries to find the first cycle at which each instruction can be
scheduled

After choosing an operation i of highest priority, an attempt
is made to schedule it at time t between Estart(i) and
Lstart(i) that does not have any resource conflict

This scheduling may affect the Estart and Lstart values of
unscheduled instructions

Priorities may have to be recomputed for these instructions

Y.N. Srikant Instruction Scheduling

Operation Scheduling

If no time slot as above can be found for instruction i , an
already scheduled instruction j , which has resource
conflicts with instruction i is de-scheduled

Instruction i is placed in this slot and instruction j is placed
in the ready list once again

In order to ensure that the algorithm does no get into an
infinite loop (a group of instructions mutually de-schedule
each other), a threshold on the number of de-scheduled
instructions is kept

Once the threshold is crossed, the partial schedule is
abandoned, the Lstart value of the sink node is increased,
new value of Lstart is computed, and the whole process is
restarted

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Operation Scheduling

latencies
add,sub,store: 1 cycle; load: 2 cycles; mult: 3 cycles
2 Integer units and 1 Multiplication unit, all capable of load
and store as well
 = (a+4)+(a-2)*b;b = b+3;(a) High-Level Codei1: t1 load ai2: t2 load bi3: t3 t1 + 4i4: t4 t1 - 2i5: t5 t2 + 3i6: t6 t4 * t2i7: t7 t3 + t6i8:
 st t7i9: b st t5(b) 3-Address Code

ld

sub

mult st

add

st

add

ld

add

5(3, 3)0

6(2, 2)0

8(0, 0)0

3(2, 5)3 1(2, 7)5

7(0, 1)1

0(8, 8)0

2(6, 6)0

1(7, 7)0

i1

i3 i4

i7

i8

i6

i2

i5

i9

(
) DAG with (Estart, Lstart) Values
Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Operation Scheduling
(contd.)

Instructions sorted on slack, with (Estart , Lstart) values
slack 0: i1(0, 0), i4(2, 2), i6(3, 3), i7(6, 6), i8(7, 7), i9(8, 8)
slack 1: i2(0, 1), slack 3: i3(2, 5), slack 5: i5(2, 7)

Cycle # Instr.No. Instruction
0 i1, i2 t1 ← load a, t2 ← load b
1
2 i4, i3 t4 ← t1 − 2, t3 ← t1 + 4
3 i6, i5 t5 ← t2 + 3, t6 ← t4 ∗ t2
4
5
6 i7 t7 ← t3 + t6
7 i8 c ← st t7
8 i9 b ← st t5

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Disadvantages

Checking resource constraints is inefficient here because it
involves repeated ANDing and ORing of bit matrices for
many instructions in each scheduling step

Space overhead may become considerable, but still
manageable

Y.N. Srikant Instruction Scheduling

Automaton Based Scheduling

Constructs a collision automaton which indicates whether it
is legal to issue an instruction in a given cycle (i.e., no
resource contentions)

Collision automaton recognises legal instruction
sequences

Avoids extensive searching that is needed in list scheduling

Uses the same topological ordering and ready queue as in
list scheduling, to handle precedence constraints

Automaton can be constructed offline using resource
reservation tables

Y.N. Srikant Instruction Scheduling

Collision Automaton

Uses a collision matrix for each state
Size: #instruction classes × length of the longest pipeline
S[i , j] = 1, iff i th instruction class creates a conflict with the
current pipeline state S, if issued j cycles after the machine
enters the current state S

Each instruction class I also has a similar collision matrix
I[i , j] = 1, iff instruction of class i would create a conflict with
instruction class I in cycle j , if launched in the current cycle
These collision matrices are created using resource vectors

For the example, consider a dual issue machine

Y.N. Srikant Instruction Scheduling

Collision Automaton - Example

Resource Usage Vectors

instr class
0

pipeline cycle
1

i

f

ls

fd

mem

id

id+mem

Collision Matrices

0 1 0 1 0 1

ii i

f

ls ls ls

f f0 0

1 0

 1 0

 1 0

0 0

0 0

0 0

1 1

 1 0

int/inop
(i class)

fp/fnop
(f class)

ld/st
(ls class)

0 0
0 0
0 0

0 0
1 0
0 01 0

0 0
1 1

0 0
1 0
1 0

0 0
0 0
1 0

1 0
0 0
1 0

F3

F5

F4

F2

F0 F1

f

i

i

f
ls

f

ls

i

f

i

COLLISION AUTOMATON

Y.N. Srikant Instruction Scheduling

Transitions in a Collision Automaton

Given a state S and any instruction i from an instruction
class I

S[I,1] = 0 implies that it is legal to issue i from S
Only legal issues have edges in the automaton
The collision matrix of the target state S′ is produced by
OR-ing collision matrices of S and I
When no instruction is legal to be issued from S, S is said
to be cycle-advancing

In any state, a NOP instruction can be issued
such a state behaves as a cycle-advancing state, only
when a NOP is issued (not otherwise)

Y.N. Srikant Instruction Scheduling

Cycle-advancing State

Collision matrix is produced by left-shifting by one column,
the collision matrix of S

Such a state represents start of a new clock tick in all
pipelines

In single instruction issue processors, all states are
cycle-advancing

Start state is cycle-advancing

States in which NOP is issued behave like a
cycle-advancing state

Y.N. Srikant Instruction Scheduling

Instruction Scheduling with Collision Automaton

1 Start at the Start state of the automaton
2 Pick instructions one by one, in priority order from the

ready list
3 If it is legal to issue the picked instruction in the current

state (i.e., cycle), issue it; there is no advancement of the
cycle counter

4 Change state, compute collision matrix, update ready list
and repeat the steps 2-3-4

5 If no instructions in the ready list are legal to be issued in a
state, then insert a NOP in the output and compute the
collision matrix as explained above for cycle-advancing
states, and advance the cycle counter; goto step 2

Note: If step 5 is executed repeatedly, start state will be
reached at some point and in the start state, all resources will
be available

Y.N. Srikant Instruction Scheduling

Optimal Instruction Scheduling using Integer Linear
Programming

This is useful for the evaluation of instruction scheduling
heuristics that do not generate optimal schedules

Careful implementation may enable these methods to be
deployed even in production quality compilers

Assume a simple resource model in which all the
functional units are fully pipelined

Assume an architecture with integer ALU, FP add unit, FP
mult/div unit, and load/store unit with possibly differing
execution latencies

Assume that there are Rr instances of the functional unit r

Y.N. Srikant Instruction Scheduling

Optimal Instruction Scheduling using Integer Linear
Programming

Let σi be the time at which instruction i is scheduled

Let d(i,j) be the weight of the edge (i , j) of the DAG

To satisfy dependence constraints, for each arc (i , j) of the
DAG

σj ≥ σi + d(i,j) (1)

A matrix Kn×T , where n is the number of instructions in the
DAG and T is an estimate of the worst case execution time
of the schedule, is used

T can be estimated by summing up the execution times of
all the instructions in the DAG

K [i , t] is 1, if instruction i is scheduled at time step t and 0
otherwise

Y.N. Srikant Instruction Scheduling

Optimal Instruction Scheduling using Integer Linear
Programming

The schedule time σi of instruction i can be expressed as

σi = ki,0 · 0 + ki,1 · 1 + · · ·+ ki,T−1 · (T − 1)

where exactly one of the ki,j is 1
This can be written in matrix form for all σi ’s as:










σ0

σ1
...
σn−1











=











k0,0 k0,1, · · · k0,T−1

k1,0 k1,1 · · · k1,T−1
...

...
...

...
kn−1,0 kn−1,1 · · · kn−1,T−1











∗











0
1
...

T − 1











(2)
To express that each instruction is scheduled exactly once,
we include the constraint

∑

t

ki,t = 1, ∀i (3)

Y.N. Srikant Instruction Scheduling

Optimal Instruction Scheduling using Integer Linear
Programming

The resource constraint that no more than Rr instructions
are scheduled in any time step can be expressed as

∑

i ∈ F (r)

ki,t ≤ Rr , ∀ t and ∀ r (4)

where F (r) represents the set of instructions that can be
executed in functional unit type r .

The objective function is to minimize the execution time or
schedule length, subject to the constraints in equations 1-4
above. This can be represented as:

minimize(max
i

(σi + d(i,j)))

Y.N. Srikant Instruction Scheduling

Delayed Load Scheduling Algorithm for Trees

RISC load/store architecture with delayed loads

Single cycle issue/execution, with only loads pipelined
(load delay = 1 cycle)

Generates optimal code without any interlocks for
expression trees
Three phases

Computation of minReg as in Sethi-Ullman code generation
algorithm
Ordering of loads and operations as in the SU algorithm
Emitting code in canonical DLS order

Uses 1 + minReg number of registers and can handle only
one cycle load delay

Y.N. Srikant Instruction Scheduling

Sethi-Ullman minReg Computation Algorithm

procedure label (node){
if (isLeaf(node)) then {node.minReg = 1}
else { label(node.left); label(node.right);
if (node.left.minReg == node.right.minReg) then

{node.minReg = node.left.minReg + 1}
else {node.minReg = MAX(node.left.minReg,

node.right.minReg)}
}
}

Y.N. Srikant Instruction Scheduling

Sethi-Ullman minReg Computation Example

i1: t1 load ai2: t2 load bi3: t3 t1 + t2i4: t4 load
i5: t5 load ai6: t6 load bi7: t7 t5 + t6i8: t8 t7 - t4i9: t9 t3 * t8i10: d st t9(a) 3-Address Code

3

3

2

1 1 111

2 2

i10

i9

i3

i1 i2 i5

i7

i8

i4i6

st

mult

add add

sub

loadloadloadloadload (b) Expression Tree
Y.N. Srikant Instruction Scheduling

Sethi-Ullman Algorithm Code Gen Example

i1: r1 load ai2: r2 load bi3: r1 r1 + r2i4: r2 load
i5: r3 load ai6: r4 load bi7: r3 r3 + r4i8: r2 r3 - r2i9: r1 r1 * r2i10: d st r1(a) Code Sequen
e using 4 Registers
i5: r1 load ai6: r2 load bi7: r1 r1 + r2i4: r2 load
i8: r1 r1 - r2i1: r2 load ai2: r3 load bi3: r2 r2 + r3i9: r1 r1 * r2i10: d st r1(b) Optimal Code Sequen
e with 3 Registers

Y.N. Srikant Instruction Scheduling

DLS Computation Example

i5: r1 load ai6: r2 load bi7: r1 r1 + r2 % 1 stalli4: r2 load
i8: r1 r1 - r2 % 1 stalli1: r2 load ai2: r3 load bi3: r2 r2 + r3 % 1 stalli9: r1 r1 * r2i10: d st r1(a) Stalls in Sethi-Ullman Sequen
e
i5: r1 load ai6: r2 load bi4: r3 load
i1: r4 load ai7: r1 r1 + r2i2: r2 load bi8: r1 r1 - r3i3: r4 r4 + r2i9: r1 r1 * r4i10: d st r1(b) DLS Sequen
e with No Stalls

Y.N. Srikant Instruction Scheduling

DLS Algorithm - Main Program

Procedure Generate(root: ExprNode)
{ label(root); //Calculate minReg values
opSched = loadSched = emptyList(); //Initialize
order(root, opSched, loadSched);
//Find load and operation order
schedule(opSched, loadSched, root.minReg+1);
//Emit canonical order

}

Y.N. Srikant Instruction Scheduling

DLS Algorithm - Finding SU Order

Procedure Order(root: ExprNode;
var opSched, loadSched: NodeList)

{ if (not(isLeaf(root))
{ if (root.left.minReg < root.right.minReg)

{ order(root.right, opSched, loadSched);
order(root.left, opSched, loadSched);

} else
{order(root.left, opSched, loadSched);
order(root.right, opSched, loadSched);
}

append(root, opSched);
}

else { append(root, loadSched);
}

Y.N. Srikant Instruction Scheduling

DLS Algorithm - Scheduling

Procedure schedule(opSched, loadSched: NodeList;
Regs: integer)

{ for i = 1 to MIN(Regs, length(loadSched)) do
// loads first
{ ld = popHead(loadSched);

ld.reg = getReg(); gen(Load, ld.name, ld.Reg)}
while (not Empty(loadSched))
// (Operation,Load) pairs next
{ op = popHead(opSched); op.reg = op.left.reg;

gen(op.op, op.left.reg, op.right.reg, op.reg);
ld = popHead(loadSched); ld.reg = op.right.reg;
gen(Load, ld.name, ld.reg) }

while (not Empty(opSched)) //Remaining Operations
{ op = popHead(opSched); op.reg = op.left.reg;

gen(op.op, op.left.reg, op.right.reg, op.reg);
freeReg(op.right.reg) }

}
Y.N. Srikant Instruction Scheduling

Global Acyclic Scheduling

Average size of a basic block is quite small (5 to 20
instructions)

Effectiveness of instruction scheduling is limited
This is a serious concern in architectures supporting
greater ILP

VLIW architectures with several function units
superscalar architectures (multiple instruction issue)

Global scheduling is for a set of basic blocks
Overlaps execution of successive basic blocks
Trace scheduling, Superblock scheduling, Hyperblock
scheduling, Software pipelining, etc.

Y.N. Srikant Instruction Scheduling

Trace Scheduling

A Trace is a frequently executed acyclic sequence of basic
blocks in a CFG (part of a path)
Identifying a trace

Identify the most frequently executed basic block
Extend the trace starting from this block, forward and
backward, along most frequently executed edges

Apply list scheduling on the trace (including the branch
instructions)

Execution time for the trace may reduce, but execution time
for the other paths may increase

However, overall performance will improve

Y.N. Srikant Instruction Scheduling

Trace Example

for (i=0; i < 100; i++){ if (A[i℄ == 0)B[i℄ = B[i℄ + s;elseB[i℄ = A[i℄;sum = sum + B[i℄;} (a) High-Level Code

%% r1 0%% r5 0%% r6 400%% r7 sB1: i1: r2 load a(r1)i2: if (r2 != 0) goto i7B2: i3: r3 load b(r1)i4: r4 r3 + r7i5: b(r1) r4i6: goto i9B3: i7: r4 r2i8: b(r1) r2B4: i9: r5 r5 + r4i10: r1 r1 + 4i11: if (r1 < r6) goto i1(b) Assembly Code
B2

B1

B3

B4

main trace(
) Control Flow Graph
Y.N. Srikant Instruction Scheduling

Trace - Basic Block Schedule

2-way issue architecture with 2 integer units
add, sub, store: 1 cycle, load: 2 cycles, goto: no stall
9 cycles for the main trace and 6 cycles for the off-traceTime Int. Unit 1 Int. Unit 20 i1: r2 load a(r1)12 i2: if (r2 != 0) goto i73 i3: r3 load b(r1)45 i4: r4 r3 + r76 i5: b(r1) r4 i6: goto i93 i7: r4 r2 i8: b(r1) r27 (4) i9: r5 r5 + r4 i10: r1 r1 + 48 (5) i11: if (r1 < r6) goto i1

Y.N. Srikant Instruction Scheduling

Trace Schedule

Y.N. Srikant Instruction Scheduling

Trace Schedule

6 cycles for the main trace and 7 cycles for the off-traceTime Int. Unit 1 Int. Unit 20 i1: r2 load a(r1) i3: r3 load b(r1)12 i2: if (r2 != 0) goto i7 i4: r4 r3 + r73 i5: b(r1) r44 (5) i9: r5 r5 + r4 i10: r1 r1 + 45 (6) i11: if (r1 < r6) goto i13 i7: r4 r2 i8: b(r1) r24 i12: goto i9
Y.N. Srikant Instruction Scheduling

Trace Scheduling - Issues

Side exits and side entrances are ignored during
scheduling of a trace

Required compensation code is inserted during
book-keeping (after scheduling the trace)
Speculative code motion - load instruction moved ahead of
conditional branch

Example: Register r3 should not be live in block B3
(off-trace path)
May cause unwanted exceptions

Requires additional hardware support!

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Exit

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Exit

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Entry

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Entry

Y.N. Srikant Instruction Scheduling

Superblock Scheduling

A Superblock is a trace without side entrances
Control can enter only from the top
Many exits are possible
Eliminates several book-keeping overheads

Superblock formation
Trace formation as before
Tail duplication to avoid side entrances into a superblock
Code size increases

Y.N. Srikant Instruction Scheduling

Superblock Example

5 cycles for the main trace and 6 cycles for the off-trace

B1

B2

B4

B3

B4’

SuperBlock 1

SuperBlock 2

(a) Control Flow Graph
Time Int. Unit 1 Int. Unit 20 i1: r2 load a(r1) i3: r3 load b(r1)12 i2: if (r2!=0) goto i7 i4: r4 r3 + r73 i5: b(r1) r4 i10: r1 r1 + 44 i9: r5 r5 + r4 i11: if (r1<r6) goto i13 i7: r4 r2 i8: b(r1) r24 i9': r5 r5 + r4 i10': r1 r1 + 45 i11': if (r1<r6) goto i1(b) Superblo
k S
hedule

Y.N. Srikant Instruction Scheduling

Hyperblock Scheduling

Superblock scheduling does not work well with
control-intensive programs which have many control flow
paths

Hyperblock scheduling was proposed to handle such
programs

Here, the control flow graph is IF-converted to eliminate
conditional branches

IF-conversion replaces conditional branches with
appropriate predicated instructions

Now, control dependence is changed to a data
dependence

Y.N. Srikant Instruction Scheduling

IF-Conversion Example

Y.N. Srikant Instruction Scheduling

Hyperblock Example Code

for (i=0; i < 100; i++){ if (A[i℄ == 0)B[i℄ = B[i℄ + s;elseB[i℄ = A[i℄;sum = sum + B[i℄;} (a) High-Level Code

%% r1 0%% r5 0%% r6 400%% r7 sB1: i1: r2 load a(r1)i2: if (r2 != 0) goto i7B2: i3: r3 load b(r1)i4: r4 r3 + r7i5: b(r1) r4i6: goto i9B3: i7: r4 r2i8: b(r1) r2B4: i9: r5 r5 + r4i10: r1 r1 + 4i11: if (r1 < r6) goto i1(b) Assembly Code
B2

B1

B3

B4

main trace(
) Control Flow Graph
Y.N. Srikant Instruction Scheduling

Hyperblock Example

6 cycles for the entire set of predicated instructions

Instructions i3 and i4 can be executed speculatively and
can be moved up, instead of being scheduled after cycle 2

B2

B1

B3

B4

Hyperblock(a) Control Flow Graph

Time Int. Unit 1 Int. Unit 20 i1: r2 load a(r1) i3: r3 load b(r1)12 i2': p1 (r2 == 0) i4: r4 r3 + r73 i5: b(r1) r4, if p1 i8: b(r1) r2, if !p14 i10: r1 r1 + 4 i7: r4 r2, if !p15 i9: r5 r5 + r4 i11: if (r1<r6) goto i1(b) Hyperblo
k S
hedule

151

Y.N. Srikant Instruction Scheduling

Delayed Branch Scheduling

Delayed branching
One instruction immediately following the delayed branch
instruction will be executed before the branch is taken
The instruction occupying the delay slot should be
independent of the branch instruction

It is best to fill the branch delay slot with an instruction from
the basic block that the branch terminates
Otherwise, an instruction from either the target block or the
fall-through block, whichever is most likely to be executed,
is selected

The selected instruction should either be a root node of the
DAG of the basic block (target of fall-through)
and has a destination register that is not live-in in the other
block
or has a destination register that can be renamed

Y.N. Srikant Instruction Scheduling

Delay Branch Scheduling Conditions - 1

Y.N. Srikant Instruction Scheduling

Delay Branch Scheduling Conditions - 2

Y.N. Srikant Instruction Scheduling

