
Machine-Independent Optimizations

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Machine-Independent Optimizations



Outline of the Lecture

Global common sub-expression elimination
Copy propagation
Loop invariant code motion
Induction variable elimination and strength reduction
Region based data-flow analysis

Y.N. Srikant Machine-Independent Optimizations



Elimination of Global Common Sub-expressions

Needs available expression information
For every s : x := y + z, such that y + z is available at the
beginning of s’ block, and neither y nor z is defined prior to
s in that block, do the following

1 Search backwards from s’ block in the flow graph, and find
first block in which y + z is evaluated. We need not go
through any block that evaluates y + z.

2 Create a new variable u and replace each statement
w := y + z found in the above step by the code segment
{u := y + z;w := u}, and replace s by x := u

3 Repeat 1 and 2 above for every predecessor block of s’
block

Repeated application of GCSE may be needed to catch
“deep” CSE

Y.N. Srikant Machine-Independent Optimizations



GCSE Conceptual Example

Y.N. Srikant Machine-Independent Optimizations



GCSE on Running Example - 1

Y.N. Srikant Machine-Independent Optimizations



GCSE on Running Example - 2

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation

Eliminate copy statements of the form s : x := y , by
substituting y for x in all uses of x reached by this copy
Conditions to be checked

1 u-d chain of use u of x must consist of s only. Then, s is the
only definition of x reaching u

2 On every path from s to u, including paths that go through u
several times (but do not go through s a second time), there
are no assignments to y . This ensures that the copy is valid

The second condition above is checked by using
information obtained by a new data-flow analysis problem

c_gen[B] is the set of all copy statements, s : x := y in B,
such that there are no subsequent assignments to either x
or y within B, after s
c_kill[B] is the set of all copy statements, s : x := y , s not in
B, such that either x or y is assigned a value in B
Let U be the universal set of all copy statements in the
program

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation - The Data-flow Equations

c_in[B] is the set of all copy statements, x := y reaching
the beginning of B along every path such that there are no
assignments to either x or y following the last occurrence
of x := y on the path
c_out [B] is the set of all copy statements, x := y reaching
the end of B along every path such that there are no
assignments to either x or y following the last occurrence
of x := y on the path

c_in[B] =
⋂

P is a predecessor of B

c_out [P], B not initial

c_out [B] = c_gen[B]
⋃

(c_in[B]− c_kill[B])

c_in[B1] = φ, where B1 is the initial block
c_out [B] = U − c_kill[B], for all B 6= B1 (initialization only)

Y.N. Srikant Machine-Independent Optimizations



Algorithm for Copy Propagation

For each copy, s : x := y , do the following
1 Using the du − chain, determine those uses of x that are

reached by s
2 For each use u of x found in (1) above, check that

(i) u-d chain of u consists of s only
(ii) s is in c_in[B], where B is the block to which u belongs.

This ensures that
s is the only definition of x that reaches this block
No definitions of x or y appear on this path from s to B

(iii) no definitions x or y occur within B prior to u found in (1)
above

3 If s meets the conditions above, then remove s and replace
all uses of x found in (1) above by y

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation Example 1

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation on Running Example 1.1

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation on Running Example 1.2

Y.N. Srikant Machine-Independent Optimizations



GCSE and Copy Propagation on Running Example 1.1

Y.N. Srikant Machine-Independent Optimizations



GCSE and Copy Propagation on Running Example 1.2

Y.N. Srikant Machine-Independent Optimizations



Detection of Loop-invariant Computations

Given a loop L, and the u − d and d − u chains

Mark as “invariant”, those statements whose operands are all
either constant or have all their reaching definitions outside L

Repeat {
Mark as “invariant” all those statements not previously
so marked all of whose operands are constants, or have all
their reaching definitions outside L, or have exactly
one reaching definition, and that definition is a statement
in L marked “invariant”

} until no new statements are marked “invariant”

u − d chains are useful in marking statements as “invariant”
d − u chains are useful in examining all uses of a definition
marked “invariant”

Y.N. Srikant Machine-Independent Optimizations



Loop Invariant Code motion Example

Y.N. Srikant Machine-Independent Optimizations



Loop-Invariant Code Motion Algorithm

1 Find loop-invariant statements
2 For each statement s defining x found in step (1), check

that
(a) it is in a block that dominates all exits of L
(b) x is not defined elsewhere in L
(c) all uses in L of x can only be reached by the definition of x

in s
3 Move each statement s found in step (1) and satisfying

conditions of step (2) to a newly created preheader
provided any operands of s that are defined in loop L have
previously had their definition statements moved to the
preheader

4 Update all the u − d and d − u chains appropriately

Y.N. Srikant Machine-Independent Optimizations



Code Motion - Violation of condition 2(a)

Y.N. Srikant Machine-Independent Optimizations



Code Motion - Violation of condition 2(b)

Y.N. Srikant Machine-Independent Optimizations



Code Motion - Violation of condition 2(c)

Y.N. Srikant Machine-Independent Optimizations



Induction Variables

An induction variable x of a loop L changes its value only
through an increment or decrement operation by a
constant amount
Basic induction variables: variables i whose only
assignments within a loop L are of the form i := i ± n,
where n is a constant
Another variable j which is defined only once within L, and
whose value is c ∗ i + d (linear function of i) is an i .v . in the
family of i
We associate a triple (i , c,d) with j (c and d are constants),
and i belongs to its own family with a triple (i ,1,0)

Y.N. Srikant Machine-Independent Optimizations



Induction Variables - Example 1

Y.N. Srikant Machine-Independent Optimizations



Induction Variables - Example 2

Y.N. Srikant Machine-Independent Optimizations



Detection of Induction Variables

We need a loop L, reaching definitions, and loop-invariant
computation information

1 Find all the basic i .v ., by scanning the statements of L
2 Search for variables k , with a single assignment to k within

L, having one of the following forms:
k := j ∗ b, k := b ∗ j , k := j/b, k := j ± b, k := b ± j ,
k := j ∗ b ± a, k := a± j ∗ b, where b is a constant and j is
an i.v., basic or otherwise
(a) If j is basic, then for k := j ∗ b, the triple for k is (j ,b,0)

(similarly for other forms)
(b) If j is not basic, then let its triple be (i , c,d). We need to

check two more conditions
(i) there is no assignment to i between the lone point of

assignment to j in L and the assignment to k
(ii) no definition of j outside L reaches k

Y.N. Srikant Machine-Independent Optimizations



Induction Variables - Conditions

Y.N. Srikant Machine-Independent Optimizations



Detection of Induction Variables (2)

If both j and k are temporaries in the same block, then
checking the conditions (i) and (ii) above is easy
Otherwise, we need to find all the basic blocks on the
paths from the point of assignment to j , to the point of
assignment to k , and check condition (i)
Condition (ii) can be checked using u-d chain of j in the
assignment to k
Triple for k can be computed from (i , c,d) and the form of
assignment to k

If k := j ∗ b and j is i ∗ c + d ,
k = (i ∗ c + d) ∗ b = (i ∗ b ∗ c) + (d ∗ b)
Hence the triple for k is (i ,b ∗ c,d ∗ b)
Note that b ∗ c and d ∗ b are constants and can be
evaluated by the compiler

Y.N. Srikant Machine-Independent Optimizations



Strength Reduction

Consider each basic IV, i in turn. For each IV j in the family of i ,
with triple (i , c,d) do the following

1 Create a new variable s and replace the assignment to j by
j := s (for two IVs, j1 and j2, with the same triples, create a
single variable)

2 Immediately after each assignment i := i + n in L, where n
is a constant, append s := s + c ∗ n (note that c ∗ n is a
constant)

3 Place s in the family of i with the triple (i , c,d). We have
replaced a costly * operation by a cheaper + operation

4 Place the code to initialize s to c ∗ i + d at the end of the
preheader

Y.N. Srikant Machine-Independent Optimizations



Induction Variables - Strength Reduction Ex 1

Y.N. Srikant Machine-Independent Optimizations



Induction Variables - Strength Reduction Ex 2

Y.N. Srikant Machine-Independent Optimizations



Elimination of Induction Variables

Consider each basic IV i whose only uses are to compute
other IV in its family and in conditional branches
Consider j in i ’s family with the triple (i , c,d)
Replace if i relop x goto B by the code sequence
{r := c ∗ x ; r := r + d ; if j relop r goto B}
If c is negative, then we use relop in place of relop in the
above code sequence

For example, if c is -4, then if i ≥ x goto B is replaced by
the code sequence, {r := −4 ∗ x ; r := r + d ; if j ≤ r goto B}

Delete all assignments to the eliminated IV in loop L
Apply copy propagation (to eliminate statements j := s)

Y.N. Srikant Machine-Independent Optimizations



Induction Variable Elimination

Y.N. Srikant Machine-Independent Optimizations



Induction Variable Elimination and Strength Reduction

Y.N. Srikant Machine-Independent Optimizations



I.V. Detection - Running Example

Y.N. Srikant Machine-Independent Optimizations



I.V. Strength Reduction - Running Example

Y.N. Srikant Machine-Independent Optimizations



I.V. CSE and Copy Elimination - Running Example

Y.N. Srikant Machine-Independent Optimizations



I.V. Elimination - Running Example

Y.N. Srikant Machine-Independent Optimizations



Region Based Data-flow Analysis

Region: A set of nodes N that includes a header, which
dominates all other nodes in the region
All edges between nodes in N are in the region, except
(possibly) for some of those that enter the header
All intervals are regions but there are regions that are not
intervals

A region may omit some nodes that an interval would
include or they may omit some edges back to the header
For example, I(7) = {7,8,9,10,11}, but {8,9,10} could be
a region (see next slide)

A region may have multiple exits
We shall compute genR,B and killR,B of definitions
generated and killed (resp.), along paths within the region
R, from the header to the end of the block B

Y.N. Srikant Machine-Independent Optimizations



Intervals and Regions

Y.N. Srikant Machine-Independent Optimizations



Intervals and Regions

Y.N. Srikant Machine-Independent Optimizations



Region Based Data-flow Analysis (2)

These will be used to define a transfer function
transR,B(S), that tells for any set S of definitions, what
subset of definitions reach the end of B by travelling along
paths wholly within R, assuming that all and only the
definitions in S reach the header of R
transR,B(S) = genR,B

⋃
(S − killR,B)

transU,B(φ) = OUT [B] = genU,B, where U is the region
consisting of the entire flow graph
We need to provide a method to compute the transfer
functions transR,B, for progressively larger regions defined
by some (T1 − T2) transformation of a CFG
Since OUT [B] = genU,B, we need to compute only genR,B
and killR,B, for each basic block, for progressively larger
regions
Interestingly, this approach does not compute IN[B] at all

Y.N. Srikant Machine-Independent Optimizations



Region Based Data-flow Analysis (3)

As we reduce a flow graph G by T1 and T2 transformations,
at all times, the following conditions are true

1 A node represents a region of G
2 An edge from a to b in a reduced graph represents a set of

edges
3 Each node and edge of G is represented by exactly one

node or edge of the current graph

Region based DFA can be compared to syntax-directed
translation, with the structure being provided by the
hierarchy of regions
We consider data-flow analysis for reaching definitions
It should be emphasized that all data-flow values which
reach the header of a region will surely flow to all the
constituent regions and basic blocks, since all basic blocks
are reacheable from the header of the enclosing region

Y.N. Srikant Machine-Independent Optimizations



Region Example

Y.N. Srikant Machine-Independent Optimizations



Region Building by T2 Trans. - Reaching Def

Y.N. Srikant Machine-Independent Optimizations



Region Building by T1 Trans. - Reaching Def

Y.N. Srikant Machine-Independent Optimizations



Region Based RD Analysis - An Example (1)

Y.N. Srikant Machine-Independent Optimizations



Region Based RD Analysis - An Example (2)

Building region R from regions C and D by T2 transf.
genR,C = genC,C = 000; killR,C = killC,C = 010
Header of D is D and pred. of D in C is C
G = genC,C = 000 and K = killC,C = 010
genR,D = genD,D ∪ (G− killD,D) = 001+(000− 000) = 001
killR,D = killD,D ∪ (K − genD,D) = 000 + (010− 001) = 010

Y.N. Srikant Machine-Independent Optimizations



Region Based RD Analysis - An Example (3)

Building region S from region R by T1 transformation
The only predecessor of the header C, within S is D
Therefore, G = genR,D = 001
killS,C = killR,C = 010; killS,D = killR,D = 010
genS,C = genR,C ∪ (G− killR,C) = 000+(001− 010) = 001
genS,D = genR,D ∪ (G− killR,D) = 001+ (001− 010) = 001

Y.N. Srikant Machine-Independent Optimizations



Region Based RD Analysis - An Example (4)

Building region T from regions A and B by T2 transf.
genT ,A = genA,A = 100; killT ,A = killA,A = 010
Header of B is B and pred. of B in A is A
G = genA,A = 100 and K = killA,A = 010
genT ,B = genB,B ∪ (G− killB,B) = 010 + (100− 101) = 010
killT ,B = killB,B ∪ (K − genB,B) = 101 + (010− 010) = 101

Y.N. Srikant Machine-Independent Optimizations



Region Based RD Analysis - An Example (5)

Building region U from regions T and S by T2 transf.
genU,A = genT ,A = 100; killU,A = killT ,A = 010
genU,B = genT ,B = 010; killU,B = killT ,B = 101

Y.N. Srikant Machine-Independent Optimizations



Region Based RD Analysis - An Example (6)

Building region U from regions T and S by T2 transf.
Header of S is C and pred. of C in T are A and B
G = genT ,A ∪ genT ,B = 110 and
K = killT ,A ∩ killT ,B = 000
genU,C = genS,C ∪ (G− killS,C) = 001+ (110− 010) = 101
killU,C = killS,C ∪ (K − genS,C) = 010 + (000− 001) = 010
genU,D = genS,D ∪ (G− killS,D) = 001+ (110− 010) = 101
killU,D = killS,D ∪ (K − genS,D) = 010 + (000− 001) = 010

Y.N. Srikant Machine-Independent Optimizations



Region Based RD Analysis - An Example (7)

Building region V from region V by T1 transf.
Header of U is A and pred. of A in U are C and D
G = genU,C ∪ genU,D = 101
genV ,C = genU,C ∪ (G− killU,C) = 101+(101−010) = 101
genV ,D = genU,D ∪ (G− killU,D) = 101+(101−010) = 101
killV ,C = killU,C = 010; killV ,D = killU,D = 010

Y.N. Srikant Machine-Independent Optimizations



Region Based RD Analysis - An Example (8)

Building region V from region V by T1 transf.
Header of U is A and pred. of A in U are C and D
G = genU,C ∪ genU,D = 101
genV ,A = genU,A ∪ (G− killU,A) = 100+ (101− 010) = 101
genV ,B = genU,B ∪ (G− killU,B) = 010+ (101− 101) = 010
killV ,A = killU,A = 010; killV ,B = killU,B = 101

Y.N. Srikant Machine-Independent Optimizations



Results from Iterative RD DFA for the same example

Y.N. Srikant Machine-Independent Optimizations



Region Building by T2 Trans. - Available Exp

Y.N. Srikant Machine-Independent Optimizations



Region Building by T1 Trans. - Available Exp

Y.N. Srikant Machine-Independent Optimizations



Results from Iterative AE DFA for the same example

Y.N. Srikant Machine-Independent Optimizations



Handling Irreducible Flow-Graphs

At some point of reduction in T1 − T2 analysis, no further
reduction is possible if the graph is irreducible
At this point, we split nodes (regions are now nodes) and
duplicate them as explained earlier
We then continue our analysis
If we wish to retain the original graph with no splitting, then
after analyzing the split graph, we compute
IN[B] = IN[B1] ∧ IN[B2] ∧ ... ∧ IN[Bk ], where, Bi , 1 ≤ i ≤ k
are the siblings of the split node B
Splitting regions may be some times beneficial to
optimizations since data-flow information may become
more precise after splitting

For example, fewer definitions may reach each of the
duplicated blocks than that reach the original block

Y.N. Srikant Machine-Independent Optimizations


