Machine-Independent Optimizations

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Machine-Independent Optimizations

Outline of the Lecture

@ Global common sub-expression elimination

@ Copy propagation

@ Loop invariant code motion

@ Induction variable elimination and strength reduction
@ Region based data-flow analysis

Y.N. Srikant Machine-Independent Optimizations

Elimination of Global Common Sub-expressions

@ Needs available expression information

@ Forevery s: x:=y+ z, such that y + z is available at the
beginning of s’ block, and neither y nor z is defined prior to
s in that block, do the following

@ Search backwards from s’ block in the flow graph, and find
first block in which y + z is evaluated. We need not go
through any block that evaluates y + z.

@ Create a new variable u and replace each statement
w := y + z found in the above step by the code segment
{u:=y+ 2z, w:=u},and replace sby x .= u

© Repeat 1 and 2 above for every predecessor block of s’
block

@ Repeated application of GCSE may be needed to catch
“deep” CSE

Y.N. Srikant Machine-Independent Optimizations

GCSE Conceptual Example

= = = u:=y+z ui=y+z ui=y+z
k:i=y+z l:=y+z m:=y+z e
I
GCSE
SIXISy+z
a=x+y e ur=xry ey
b:=atz a:=u . vi=u*z
i b:=a*z i bi=v
m——
—_— —_—
GCSE Copy GCSE
propagation
CiI=X+ c:=u
d:=c*¥ d:=c*z e =

Demonstrating the need for repeated application of GCSE

Y.N. Srikant Machine-Independent Optimizations

GCSE on Running Example - 1

B

B2

B4

BS

1

t1=1>1
if 1t1 goto B9
false l
i=o
B3 |42 =1

l tru

13 = j<t2
if 1t3 goto B8

false l
t4 = 4%j
15 = a[td]
t6 = j+1
t7 =
18 = a[t7]
t9=t5>1t8

j E/:e:

B9

B8

t21 =i-1
i=t21
goto B2

if !t9 goto B7

false

t10 = 4%j
t11 = a[t10]
temp = t11
t12 = 4%
t13=a+ 112
t14 = j+1

t16 = a[t15]
13 = 116
t17 = j+1

t19=a+ 118
*t19 = temp

B6

Y.N. Srikant

120 = j+1
j=t20

goto B4

Machine-Independent Optimizations

B7

GCSE on Running Example - 2

B1

B2

B4

BS

t1=1>1
if 1t1 goto B9
false l
ji=o
B3 |42 =1

if 1t3 goto B8

false l
t4 = 4%j
15 = a[td]
t6 = j+1
t7=4+*1t6
18 = a[t7]
t9=t5>1t8

-+
=
c
1]

if !t9 goto B7

false

B9

l t% B8
. t21 = t2
13 = j<t2 i =t21

goto B2

t10=14
t11 = a[t10]
temp = t11
ti2=14
t13=a+ 112
t14 =16
t15=4*t14
t16 = a[t15]
13 =t16
t17 =16
t18=4*t17
t19=a+t18
*t19 = temp

B6

t20 = t6
j=t20
goto B4

Y.N. Srikant

Machine-Independent Optimizations

B7

Copy Propagation

@ Eliminate copy statements of the form s: x := y, by
substituting y for x in all uses of x reached by this copy
@ Conditions to be checked

@ u-d chain of use u of x must consist of s only. Then, s is the
only definition of x reaching u

@ On every path from s to v, including paths that go through u
several times (but do not go through s a second time), there
are no assignments to y. This ensures that the copy is valid

@ The second condition above is checked by using
information obtained by a new data-flow analysis problem

e c_gen[B] is the set of all copy statements, s: x := y in B,
such that there are no subsequent assignments to either x
or y within B, after s

e c_kill[B] is the set of all copy statements, s: x := y, s notin
B, such that either x or y is assigned a value in B

o Let U be the universal set of all copy statements in the
program

Y.N. Srikant Machine-Independent Optimizations

Copy Propagation - The Data-flow Equations

@ c_in[B] is the set of all copy statements, x := y reaching
the beginning of B along every path such that there are no
assignments to either x or y following the last occurrence
of x := y on the path

@ c_out[B] is the set of all copy statements, x := y reaching
the end of B along every path such that there are no
assignments to either x or y following the last occurrence
of x := y on the path

c_in[B] = N c_out[P], B not initial

P is a predecessor of B
c_out[B] = c_gen[B] U (c_in[B] — c_kill[B])
c_in[B1] = ¢, where B1 is the initial block
c_out[B] = U—c_killlB], for all B+# B1 (initialization only)

Y.N. Srikant Machine-Independent Optimizations

Algorithm for Copy Propagation

For each copy, s : x := y, do the following

@ Using the du — chain, determine those uses of x that are
reached by s
@ For each use u of x found in (1) above, check that

(i) u-d chain of u consists of s only
(i) sisin c_in[B], where B is the block to which u belongs.
This ensures that

@ s is the only definition of x that reaches this block
@ No definitions of x or y appear on this path from sto B

(iii) no definitions x or y occur within B prior to u found in (1)
above

© If s meets the conditions above, then remove s and replace
all uses of x found in (1) above by y

Y.N. Srikant Machine-Independent Optimizations

Copy Propagation Example 1

B sl:x:=y | C_in[Bi]=®
C_in[B2] = {s1,52} $2: pi=q | C_out[B1] = {s1,52}

C_out[B2] = {s2,s4}
B3 C_in[B3] = {s1,52}
C_out[B3] = {s2,s5}

C_in[B4] = {s2,s65}
C_out[B4] = {s2,s5}

X in s6 can be B4 | s6: k:=x+6
replaced by z in 85

X in s7 cannot be

replaced by z in s4 s7: m:=x+9 | g5 C_in[B5] = {s2}

or s5 (two different s8: n:=p C_out[B5] = {s2,s8}
copies of z)

p in s8 can be Adapted from
replaced by q in s2 “The Dragon Book”
(s2 reaches B5 thro’ AW 1986

both the paths)

Y.N. Srikant Machine-Independent Optimizations

Copy Propagation on Running Example 1.1

B1

B2

B4

BS

t1=1>1
if 1t1 goto B9
false l
j=0
B3 |42 =1

if 1t3 goto B8

false l

-+
=
c
1]

t4 = 4%
15 = a[td]
t6 = j+1
t7=4+16
18 = a[t7]
t9=15>1t8
if 1t9 goto B7

B9

l t% B8
. t21 = t2
13 = j<t2 i =t21

goto B2

false

t10=14
t11 = a[t10]
temp = t11
ti2=14
t13=a+ 112
t14 =16
t15=4*t14
t16 = a[t15]
13 =t16
t17 =16
t18=4*t17
t19=a+t18
*t19 = temp

B6

t20 = t6
j=t20
goto B4

Y.N. Srikant

Machine-Independent Optimizations

B7

Copy Propagation on Running Example 1.2

B1

B2

t1=i>1
if 1t1 gote B9

B3 |42 = i1

B4

false l

j=0

l tr

13 = j<t2
if 1t3 goto B8

false l

u

BS

t4 = 4%
15 = a[td]
t6 = j+1

18 = a[t7]
t9=15>1t8
if 1t9 goto B7

false

B9

B8

j E/:e:

i=1t2
goto B2

true

t11 = a[t4]
temp = t11
t13=a+t4

t16 = a[t15]
13 = 116

t19=a+ 118
*t19 = temp

B6

\

j=t6
goto B4

Y.N. Srikant

Machine-Independent Optimizations

B7

GCSE and Copy Propagation on Running Example 1.1

B1

B2

B4

BS

t1=1>1
if 1t1 goto B9
false l
j=0
B3 |42 = i1

l tr

13 = j<t2
if 1t3 goto B8

false l

u

j E/:e:

t4 = 4%
15 = a[td]
t6 = j+1

18 = a[t7]
t9=15>1t8
if 1t9 goto B7

false

B9

B8

i=1t2
goto B2

true

t11 = a[t4]
temp = t11
t13=a+t4

t16 = a[t15]
13 = 116

t19=a+ 118
*t19 = temp

B6

\

j=t6
goto B4

Y.N. Srikant

Machine-Independent Optimizations

B7

GCSE and Copy Propagation on Running Example 1.2

B1

B2

t1=i>1
if 1t1 gote B9

B3 |42 = i1

B4

false l
j=0

l tru

13 = j<t2
if 1t3 goto B8

false l

BS

t4 = 4%
15 = a[td]
t6 = j+1

18 = a[t7]
t9=15>1t8

if !t9 goto B7

false

B9

B8

j E/:e:

i=t2
goto B2

true

t11 = a[t4]
temp = t11
t13=a+t4
t16 = a[t7]
13 =t16
t19=a+
*t19 = temp

B6

\

j=té
goto B4

Y.N. Srikant

Machine-Independent Optimizations

B7

Detection of Loop-invariant Computations

Given a loop L, and the u — d and d — u chains

Mark as “invariant”, those statements whose operands are all
either constant or have all their reaching definitions outside L

Repeat {
Mark as “invariant” all those statements not previously
so marked all of whose operands are constants, or have all
their reaching definitions outside L, or have exactly
one reaching definition, and that definition is a statement
in L marked “invariant”

} until no new statements are marked “invariant”

u — d chains are useful in marking statements as “invariant”
d — u chains are useful in examining all uses of a definition
marked “invariant”

Y.N. Srikant Machine-Independent Optimizations

Loop Invariant Code motion Example

L1:

L2:

t1 =202
=1

t2 =i>100
if 12 goto L2
t1=t1-2

t3 = addr(a)
t4=t3-4
t5 = 4%

6 = t4+t5
6 =11

i =i+1

goto L1

Before LIV
code motion

Y.N. Srikant

L1:

L2:

t1 =202
=1

t3 = addr(a)
t4=t3-4
t2 =i>100
if 12 goto L2
t1=11-2

t5 =4%

6 = t4+t5
6 =11

i =i+1

goto L1

After LIV
code motion

Machine-Independent Optimizations

Loop-Invariant Code Motion Algorithm

@ Find loop-invariant statements
@ For each statement s defining x found in step (1), check
that
(a) itisin a block that dominates all exits of L
(b) x is not defined elsewhere in L
(c) all uses in L of x can only be reached by the definition of x
ins
© Move each statement s found in step (1) and satisfying
conditions of step (2) to a newly created preheader
e provided any operands of s that are defined in loop L have
previously had their definition statements moved to the
preheader

© Update all the u — d and d — u chains appropriately

Y.N. Srikant Machine-Independent Optimizations

Code Motion - Violation of condition 2(a)

=1
B2

B3

/ if u<v goto B3

The statement i:=2 from B3 cannot
be moved to a preheader since
condition 2(a) is violated

(B3 does not dominate B4)

The computation gets altered due
to code movement

i always gefts value 2, and never 1,
and hence f always gets value 2

v =
B4 if v<=20

v-1
goto BS

Condition 2(a):
s dominates all exits of L

Y.N. Srikant Machine-Independent Optimizations

Code Motion - Violation of condition 2(b)

-

i:=3
if u<v goto B3

i=2 g3

v = v-1
B4 | if v<=20 goto BS

B5 j::i

B2 dominates B4 and hence
condition 2(a) is satisfied for

i:=3 in B2. However statement
i:=3 from B2 cannot he moved

to a preheader since condition
2(b) is violated (i is defined in B3)

The computation gets altered due
to code movement

If the loop is executed twice, i may
pass its value of 3 from B2 toj in
the original loop.

In the revised loop, i gets the
value 2 in the second iteration
and retains it forever

Condition 2(a):
s dominates all exits of L

Condition 2(b):
x is not defined elsewhere in L

Y.N. Srikant

Machine-Independent Optimizations

Code Motion - Violation of condition 2(c)

B3
u:=u+1 k:=i
vi=v-1
i=2
B4 if v<=20 goto B5

BS

Conditions 2(a) and 2(b) are
satisfied. However statement

i-=2 from B4 cannot be moved

to a preheader since condition
2(c) is violated (use of i in BB is
reached by defs of i in B1 and B4)
Be The computation gets altered due
to code movement

in the revised loop, i gets the
value 2 from the def in the
preheader and k becomes 2.
However, k could have received
the value of either 1 (from B1) or
2 (from B4) in the original loop

Condition 2(a): s dominates all exits of L
Condition 2(b): x is not defined elsewhere in L
Condition 2(c): All uses of x in L can only be
reached by the definition of x in s

Y.N. Srikant Machine-Independent Optimizations

Induction Variables

@ An induction variable x of a loop L changes its value only
through an increment or decrement operation by a
constant amount

@ Basic induction variables: variables i whose only
assignments within a loop L are of the form j := i + n,
where nis a constant

@ Another variable j which is defined only once within L, and
whose value is ¢ x i + d (linear function of /) is an i.v. in the
family of /

@ We associate a triple (/, ¢, d) with j (c and d are constants),
and i belongs to its own family with a triple (i, 1,0)

Y.N. Srikant Machine-Independent Optimizations

Induction Variables - Example 1

L1:

L2:

t1 =202
=1

t3 = addr(a)
t4=t3-4
t2 =i>100
if 12 goto L2
t1=t1-2

th =4%

6 = t4+t5
6 =11

i =i+1

goto L1

Y.N. Srikant

i is a basic i.v. and
t5 is a derived i.v.
in the family of |

Machine-Independent Optimizations

Induction Variables - Example 2

i:==m-1
B1 J=n
t1:=4*n
v:=a[t1]

]

t2:=4%i
t3:=a[t2]

(i:=i+1
| |

w
N

" \ if 13 <v goto B2

i=i-1
B3 t4:=4%j

if t5 >v goto B

‘ t5:=a[td]

,,_, /%ﬁ\

/

Y.N. Srikant

i and j are both basici.v. in
both inner and outer loops

2 (in the family of i) and

t4 (in the family of j) are both
derived i.v. in both inner and
outer loops

Machine-Independent Optimizations

Detection of Induction Variables

We need a loop L, reaching definitions, and loop-invariant
computation information

@ Find all the basic i.v., by scanning the statements of L

© Search for variables k, with a single assignment to k within
L, having one of the following forms:
k:=jxb, k:=bxj, k:=j/b, kK:=j+b, K:=b=+]j,
k:=jxb+a, k:=a+jxb,where bis aconstant andj is
an i.v., basic or otherwise
(a) If jis basic, then for k := j * b, the triple for k is (j, b, 0)
(similarly for other forms)

(b) If j is not basic, then let its triple be (i, ¢, d). We need to
check two more conditions

(i) there is no assignment to i between the lone point of
assignment to j in L and the assignment to k
(i) no definition of j outside L reaches k

Y.N. Srikant Machine-Independent Optimizations

Induction Variables - Conditions

=1
B1 i=1 B1 =1 B1 d1: j:=1

k:=j*b

iz=i+1

|

d2: jimitced |

| B6 |
" L Condition 2.b.i is
Conditions 2.b.i and 2.b.ii Condition 2.b.1Is ot aiefieq but 2.b.i is
are both satisfied satisfied; value of jin ¢ caicied. Both d1
B2 is not up-to-date and d2 reach k in B2

Y.N. Srikant Machine-Independent Optimizations

Detection of Induction Variables (2)

@ If both j and k are temporaries in the same block, then
checking the conditions (i) and (ii) above is easy

@ Otherwise, we need to find all the basic blocks on the
paths from the point of assignment to j, to the point of
assignment to k, and check condition (i)

@ Condition (ii) can be checked using u-d chain of j in the
assignment to k
@ Triple for k can be computed from (/, ¢, d) and the form of
assignment to k
o lfk:=jxbandjisixc+d,
k=(ixc+d)xb=(ixbxc)+ (d«b)
e Hence the triple for k is (i, b c,d = b)
o Note that b+ ¢ and d b are constants and can be
evaluated by the compiler

Y.N. Srikant Machine-Independent Optimizations

Strength Reduction

Consider each basic IV, i in turn. For each IV j in the family of /,
with triple (i, ¢, d) do the following
@ Create a new variable s and replace the assignment to j by
j:= s (for two IVs, j; and jo, with the same triples, create a
single variable)

@ Immediately after each assignment i := i + nin L, where n
is a constant, append s := s+ c* n (notethat cx nis a
constant)

© Place s in the family of j with the triple (i, ¢, d). We have
replaced a costly * operation by a cheaper + operation

© Place the code to initialize s to ¢ x i + d at the end of the
preheader

Y.N. Srikant Machine-Independent Optimizations

Induction Variables - Strength Reduction Ex 1

t1 =202
i=1
t3 = addr(a)
t4=1t3-4
L1: t2=i>100
if 12 goto L2
t1=11-2
t5 = 4%
t6 = t4+t5
"6 =1
I =1i+1
goto L1
L2:

Before strength
reduction for t5

Y.N. Srikant

L1:

L2:

t1 =202
i=1

t3 = addr(a)
t4=t3-4
t7 =4

t2 =i>100
if t2 goto L2
t1=11-2
t5=1t7

t6 = t4+5
*t6 = t1
i=i+1
tr=t7+4
goto L1

After strength reduction for t5

Machine-Independent Optimizations

Induction Variables - Strength Reduction Ex 2

iz=m-1; j;=n
t1:=4*n

B1 vi= aft1]

s52:= 4%j; s4.= 4%j

ir=i+1
§2:= §2+4
B2 t2:= s2
t3:= a[t2]
if t3 <v goto B2

Ji= -1
B3 sd:=s4 -4
td:= s4
t5:= a[t4]
if t5 >v goto B3

if i >=j goto B6

Y.N. Srikant Machine-Independent Optimizations

Elimination of Induction Variables

@ Consider each basic IV i whose only uses are to compute
other IV in its family and in conditional branches

@ Consider j in i’s family with the triple (/, ¢, d)
@ Replace if i relop x goto B by the code sequence
{r-=cxx; r:=r+d, if j relop r goto B}

@ If ¢ is negative, then we use relop in place of relop in the
above code sequence

e For example, if cis -4, then if i > x goto B is replaced by
the code sequence, {r := —4xx; r:=r+d; if j < r goto B}

@ Delete all assignments to the eliminated 1V in loop L
@ Apply copy propagation (to eliminate statements j := s)

Y.N. Srikant Machine-Independent Optimizations

Induction Variable Elimination

t1 =202 t1 =202
i=1 t3 = addr(a)
t3 = addr(a) t4=13-4
t4=1t3-4 t7=4
t7=4 L1: t2 =t7 =400
L1: t2=1i>100 if t2 goto L2
if t2 goto L2 t1=11-2
t1=11-2 16 = t4+t7
t6 = t4+7 *16 = 11
*16 = t1 t7r=t7 + 4
i=i+1 goto L1
t7=t7r +4 L2:
goto L1
LZ: After eliminating i and

replacing it with t7

Before induction variable
elimination (i)

Y.N. Srikant Machine-Independent Optimizations

Induction Variable Elimination and Strength Reduction

iz=m-1
j:=n
t1:=4*n
v:=a[t1]

B1

=i+
t2:=4%
t3:=a[t2]
if t3 <v goto B2

B2

jr=i-1
t4:=4%j
t5:=a[t4]
if t5 >v goto B3

if i >=j goto B6

B3

i is basici.v

t2 is derived i.v
in both inner and
outer loops

jis basic i.v

t4 is derived i.v
in both inner
and outer loops

Y.N. Srikant

iz=m-1; j:=n
t1:=4*n
v:=a[t1]
s2:=4"i; s4:=4"]

B1

s2:=s2+4
t3:=a[s2]
if t3 <v goto B2

sd:=s4-4
t5:=a[s4]
if t5 >v goto B3

if s2 >=s4 goto B6

Machine-Independent Optimizations

l.V. Detection - Running Example

B1

t1=i>1

B2 |it 1t1 goto B9

true

false l
B3

j=0
t2 = i1

l

o

13 = j<t2

B4 if 1t3 goto B8

false l

tru
i=t2

goto B2

t4 = 4%
t5 = g[t4]
B5 16 = j+1

t7=4*t6

t8 = a[t7]
t9=t5>18
if 1t9 goto BY

false

triples for i.v. Identification
i (,1,0) — basic iv. | of i-v.

t4: (j,4,0)

t6: (j,1,1)

t7: (16,4,0) > (j,4,4)

t11 = a[t4]
temp =t11 B6
tiz3=a+t4
t16 = a[t7]
13 = t16
t19=a+t7
*19 = temp

\

j=t6 B7
goto B4

Y.N. Srikant

Machine-Independent Optimizations

l.V. Strength Reduction - Running Example

B1

B2

t1=i>1
if It1 goto B9
false l

true

B3

j=0;t2=i1
s4 = 4%; s6 = j+1
s7 = 4%; sT =s7+4

BS

o

B8

13 = j<t2
if 1t3 goto B8

true

goto B2

false l
t4=s4
t5 = g[t4]
t6=s6
t7 = 57
18 = a[t7]
t9=t5>18
if 1t9 goto B7

true

Y.N. Srikant

triples for i.v.

j: (j,1,0) = basic i.v.
td,s4: (j,4,0)

t6,s6: (j,1,1)

t7,87: (16,4,0) > (j,4,4)

After
strength
reduction

t11 = a[t4]
temp =t11
t13=a+t4
t16 = a[t7]
13 =116
t19=a+t7
*19 = temp

Bé

j=té
s4 = s4+4
56 = s6+1

Machine-Independent Optimizations

B7

l.V. CSE and Copy Elimination - Running Example

B2

B3

BS

B1

t1=i>1
if It1 goto B9
false l

true

i=0;t2=i1
s4 = 4%; s6 = j+1
s7 = g4+

o

T 1
13 = j<t2
if 1t3 goto B8

false l

B8

true goto B2

t4=s4
t5 = a[s4]
t6=1s6
t7 = 87
18 = a[s7]
9=t5>18
if 1t9 goto BY

true

Y.N. Srikant

triples for i.v.

j:(,1,0) = basic i.v.
t4,s4: (j,4,0)

t6,s6: (j,1,1)

t7,87: (16,4,0) > (,4.4)

After CSE
and copy
propagation

t11 = a[s4]
temp =t11
t13=a+s4
116 = a[s7]
13 =116
t19=a+s7
*19 = temp

Bé

o

j=sb

sd = sd+4
s6 = s6+1
sf=siH
goto B4

B7

Machine-Independent Optimizations

|.V. Elimination - Running Example

B triples for i.v. After useless
j: (1,1,0) — basic i.v. code removal
: t4,54: (j,4,0) and iv.)
B2 | t1=i=1 true 16,567 (j,1,1) elimination
if 11 910“’ B9 17,57 (t6,4,0) > (/,4,4)
false
i=0; 1271 BO
B3 | c4= 4*;; s6 = j+1 £11 = a[s4] B6&
sT= 4t B8 temp = t11
t13=a+s4
52 = 42 =12 t16 = a[s7)
t3=s4 <52 Hpye | 9010 B2 13 = t16
if It3 goto B8 t19=a+s7
false i *19 = temp
BS t5 = a[s4] sd=sd+ |B7
t8 = a[s7] s7 = s7+4
t9=t5>18 goto B4
if 1t9 goto B7

false

Machine-Independent Optimizations

Y.N. Srikant

Region Based Data-flow Analysis

@ Region: A set of nodes N that includes a header, which
dominates all other nodes in the region

@ All edges between nodes in N are in the region, except
(possibly) for some of those that enter the header

@ All intervals are regions but there are regions that are not
intervals

e A region may omit some nodes that an interval would
include or they may omit some edges back to the header

e For example, /(7) = {7,8,9,10,11}, but {8,9,10} could be
a region (see next slide)

@ A region may have multiple exits

@ We shall compute geng g and kill g of definitions
generated and killed (resp.), along paths within the region
R, from the header to the end of the block B

Y.N. Srikant Machine-Independent Optimizations

Intervals and Regions

Flow Graph

I(1)={1.2}, 1(3) = {3}

I(4)=1{4,56}; 1(7)={7,8,9,10,11}

Y.N. Srikant

Adapted from
“The Dragon Book”, A-W 1986

Machine-Independent Optimizations

Intervals and Regions

I(1)={1,2}; 1{3) = {3,4,5,6};
I(7)={7,8,9,10,11}

Flow Graph

Y.N. Srikant Machine-Independent Optimizations

Region Based Data-flow Analysis (2)

@ These will be used to define a transfer function
transg g(S), that tells for any set S of definitions, what
subset of definitions reach the end of B by travelling along
paths wholly within R, assuming that all and only the
definitions in S reach the header of R

@ fransg g(S) = genr s |U(S — killr B)

@ fransy g(¢) = OUT|B] = geny g, where U is the region
consisting of the entire flow graph

@ We need to provide a method to compute the transfer
functions transp g, for progressively larger regions defined
by some (T; — T») transformation of a CFG

@ Since OUT[B] = geny g, we need to compute only geng g
and Killp g, for each basic block, for progressively larger
regions

@ Interestingly, this approach does not compute /N[B] at all

Y.N. Srikant Machine-Independent Optimizations

Region Based Data-flow Analysis (3)

@ As we reduce a flow graph G by T1 and T» transformations,
at all times, the following conditions are true

@ A node represents a region of G
@ An edge from ato b in a reduced graph represents a set of
edges
© Each node and edge of G is represented by exactly one
node or edge of the current graph
@ Region based DFA can be compared to syntax-directed
translation, with the structure being provided by the
hierarchy of regions

@ We consider data-flow analysis for reaching definitions

@ It should be emphasized that all data-flow values which
reach the header of a region will surely flow to all the
constituent regions and basic blocks, since all basic blocks
are reacheable from the header of the enclosing region

Y.N. Srikant Machine-Independent Optimizations

Region Example

"_]

This arc corresponds ™,

., . B
to 2 arcs, CAand DA. ™, - = -
. ~ . o~
Hence, the predecessors ™., Tre— L —
of T, the headerof SinV ..
areCandD R
Y.N. Srikant

Machine-Independent Optimizations

Region Building by T2 Trans. - Reaching Def

For reaching definitions problem

Y.N. Srikant

Basic regions
geng g = gen[B]
killg g = kill[B]

Region building by T2

For basic blocks B within R1,
g€Ngg = 9€CNg 5
kill & = Killg, 5

Edges from R2 to header of R1 are
not part of R

For basic blocks B within R2,

gen.g = geng, ¢ U (G —Kill,,)

Kill g = Killg, g U (K —geng; g)

where, G=U geng, ., and
K=Nkillg, -

for all predecessors P of the header of
R2in R1

Machine-Independent Optimizations

Region Building by T1 Trans. - Reaching Def

V-

R1

For reaching definitions problem

Y.N. Srikant

Region building by T1

geng g = geng, g U (G —Killy, g)
Kill, 5 = Killp, 5

where, G = U gen, ., for all
predecessors P of the header of
R1inR

It is not necessary to compute
kill, 5 -as in the previous case
(T2).

A definition gets killed going from
the header to B iff it is killed along
all acyclic paths, and hence back
edges incorporated into R will not
cause more definitions to be killed

Machine-Independent Optimizations

Region Based RD Analysis - An Example (1)

Block gen kill
A 100 010
B 010 101
C 000 010
D 001 000

AWV 1986

Adapted from “The Dragon Book™,

Y.N. Srikant

Machine-Independent Optimizations

Region Based RD Analysis - An Example (2)

Block gen kill

A 100 010

010 101

B
C 000 010
D 001 000

Adapted from “The Dragon Book”,
A-W 1986

@ Building region R from regions C and D by T2 transf.

@ geng ¢ = genc ¢ = 000; Killg ¢ = Killc.c = 010

@ Headerof Dis D and pred. of Din Cis C

@ G = gencc =000and K = killc c = 010

@ gengp = genp pU (G — killp p) = 001 + (000 — 000) = 001
Killp,p = killp,p U (K — genp,p) = 000 + (010 — 001) = 010

Y.N. Srikant Machine-Independent Optimizations

Region Based RD Analysis - An Example (3)

Block gen kill

100 010

000 010

A
B 010 101
C
D

001 000

Adapted from “The Dragon Book”,
A-W 1986

@ Building region S from region R by T1 transformation
@ The only predecessor of the header C, within Sis D
@ Therefore, G = geng p = 001

@ Kills ¢ = Killg ¢ = 010; Kills p = killp p = 010

® gensc = genp,cU(G— Killg c) = 000+ (001 —010) = 001
gengp = gengpU (G — killg p) = 001 + (001 — 010) = 001

Y.N. Srikant Machine-Independent Optimizations

Region Based RD Analysis - An Example (4)

Block gen kill

A 100 010

010 101

B
C 000 010
D 001 000

Adapted from “The Dragon Book”,
A-W 1986

@ Building region T from regions A and B by T2 transf.

@ genr.a=genaa= 100; kI'//T’A = ki//A,A =010

@ Header of Bis B and pred. of Bin Ais A

@ G=genya=100and K = Killy 4, = 010

(] genr g = gengp U (G— ki”B,B) =010+ (100 — 101) =010
killr g = killg g U (K — geng g) = 101 4+ (010 — 010) = 101

Y.N. Srikant Machine-Independent Optimizations

Region Based RD Analysis - An Example (5)

Block gen kill

100 010

000 010

A
B 010 101
C
D

001 000

Adapted from “The Dragon Book”,
A-W 1986

@ Building region U from regions T and S by T2 transf.
@ geny a = gent a = 100; killy o = killr 4 = 010
@ geny g = genrt g = 010; Killy g = killr g = 101

Y.N. Srikant Machine-Independent Optimizations

Region Based RD Analy3|s An Example (6)

Block gen

kill

100

010

010

101

000

010

o O W »

001

000

A-W 1986

Adapted from “The Dragon Book”,

@ Building region U from regions T and S by T2 transf.
@ Header of Sis C and pred. of Cin T are A and B

@ G=genrpUgenrg=110and
K = killr 4N killr g = 000

@ genyc = genscU(G—kills¢c) = 0014 (110 - 010
killy ¢ = kills,c U (K — gens ¢) = 010 + (000 — 001
geny p = gens pU (G — kills p) = 001 4 (110 — 010
killy p = kills p U (K — gens p) = 010 + (000 — 001

=101
=010
=101
=010

_~—

Y.N. Srikant Machine-Independent Optimizations

Region Based RD Analysis - An Example (7)

Block gen kill

A 100 010

010 101

B
C 000 010
D 001 000

Adapted from “The Dragon Book”,
A-W 1986

@ Building region V from region V by T1 transf.

@ Header of U is A and pred. of Ain U are Cand D

@ G=genycUgenyp =101

@ geny ¢ = geny cU(G—killy c) =101+ (101 —010) = 101

geny.p = geny pU (G — Killy p) = 101 + (101 — 010) = 101
Killy ¢ = killy,c = 010; killy p = killyp = 010

Y.N. Srikant Machine-Independent Optimizations

Region Based RD Analysis - An Example (8)

Block gen kill
A 100 010
B 010 101
C 000 010
D 001 000

Adapted from “The Dragon Book”,
A-W 1986

@ Building region V from region V by T1 transf.

@ Header of Uis A and pred. of AinU are Cand D

@ G=genycuUgenyp =101

@ geny o= genyaU(G—Killya) =100+ (101 —010) = 101

geny g = genygU(G—Killyg) =010+ (101 —101) = 010
killy 4 = Killy 4 = 010; killy g = Killy g = 101

Y.N. Srikant Machine-Independent Optimizations

Results from Iterative RD DFA for the same example

gen | kil [ouT,| IN, [ouT,| IN, [OUT,| IN, |OUT,| IN, | RA

A 100 | 010 | 100 | o001 | 101 | 101 | 101 | 101 | 401 | 101 | 101

B 010 | 101 | 010 | 100 | 011 | 101 | 010 | 101 | o140 | 191 | 010

(o 000 | 010 | 000 | 111 | 101 | 111 | 101 | 111 | 4094 | 111 101

D 001 | 000 | 001 | QOO | 001 | 101 | 101 | 101 | 401 | 101 | 101

OUT|B] = gen|B] | J(IN[B] - kill[B])
IN|B]= U QUT|P]

P, a predecessor of B

IN[B] =@ (initialization)

| Reaching Definitions Problem |

Y.N. Srikant Machine-Independent Optimizations

Region Building by T2 Trans. - Available Exp

For available expressions problem

Y.N. Srikant

Basic regions
geng g = gen[B]
killg g = kill[B]

Region building by T2

For basic blocks B within R1,
g€Ngg = 9€CNg 5
kill & = Killg, 5

Edges from R2 to header of R1 are
not part of R

For basic blocks B within R2,

gen.g = geng, ¢ U (G —Kill,,)

Kill g = Killg, g U (K —geng; g)

where, G = geng, ., and
K=Ukillg, -

for all predecessors P of the header of
R2in R1

Machine-Independent Optimizations

Region Building by T1 Trans. - Available Exp

V-

R1

For available expressions problem

Y.N. Srikant

Region building by T1

gen s = geng, g
Killp 5 = Killp, g U (K - geng,)

where, K= U Kill,, ., for all
predecessors P of the header of R1
inR

It is not necessary to compute gen, ¢
-as in the previous case (T2).

An expression gets generated going
from the headerto B iff it is
generated along all acyclic paths,
and hence back edges incorporated
into R will not cause more
expressions to be generated

Machine-Independent Optimizations

Results from Iterative AE DFA for the same example

gen | kil [ouT,| IN, [ouT,| IN, [OUT,| IN, |OUT,| IN, | RA

A 100 | 010 | 100 | 101 | 101 | 000 | 100 | 000 | 400 | 000 | 100

B 010 | 101 | 010 | 100 | 010 | 101 | 010 | 100 | 940 | 190 | 010

(o 000 (010 | 101 | 00O | 101 | 000 | 00O | 00O | ppgQ | OO0 000

D 001 | 000 | 111 | 101 | 101 | 101 | 101 | 000 | Q1 | 200 | 0O

OUT|B] = gen|B] | J(IN[B] - kill[B])
IN|B]= N OUT|P]

P, a predecessor of B

IN[B]=U (initialization)

| Available Expressions Problem ‘

Y.N. Srikant Machine-Independent Optimizations

Handling Irreducible Flow-Graphs

@ At some point of reduction in Ty — T, analysis, no further
reduction is possible if the graph is irreducible

@ At this point, we split nodes (regions are now nodes) and
duplicate them as explained earlier

@ We then continue our analysis

@ If we wish to retain the original graph with no splitting, then
after analyzing the split graph, we compute
IN[B] = IN[B{] A IN[Bo] A ... A IN[Bg], where, Bj, 1 <i <k
are the siblings of the split node B

@ Splitting regions may be some times beneficial to
optimizations since data-flow information may become
more precise after splitting

e For example, fewer definitions may reach each of the
duplicated blocks than that reach the original block

Y.N. Srikant Machine-Independent Optimizations

