
Data-flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Data-flow Analysis



Data-flow analysis

These are techniques that derive information about the
flow of data along program execution paths
An execution path (or path) from point p1 to point pn is a
sequence of points p1,p2, ...,pn such that for each
i = 1,2, ...,n − 1, either

1 pi is the point immediately preceding a statement and pi+1
is the point immediately following that same statement, or

2 pi is the end of some block and pi+1 is the beginning of a
successor block

In general, there is an infinite number of paths through a
program and there is no bound on the length of a path
Program analyses summarize all possible program states
that can occur at a point in the program with a finite set of
facts
No analysis is necessarily a perfect representation of the
state

Y.N. Srikant Data-flow Analysis



Uses of Data-flow Analysis

Program debugging
Which are the definitions (of variables) that may reach a
program point? These are the reaching definitions

Program optimizations
Constant folding
Copy propagation
Common sub-expression elimination etc.

Y.N. Srikant Data-flow Analysis



Data-Flow Analysis Schema

A data-flow value for a program point represents an
abstraction of the set of all possible program states that
can be observed for that point
The set of all possible data-flow values is the domain for
the application under consideration

Example: for the reaching definitions problem, the domain
of data-flow values is the set of all subsets of of definitions
in the program
A particular data-flow value is a set of definitions

IN[s] and OUT [s]: data-flow values before and after each
statement s
The data-flow problem is to find a solution to a set of
constraints on IN[s] and OUT [s], for all statements s

Y.N. Srikant Data-flow Analysis



Data-Flow Analysis Schema (2)

Two kinds of constraints
Those based on the semantics of statements (transfer
functions)
Those based on flow of control

A DFA schema consists of
A control-flow graph
A direction of data-flow (forward or backward)
A set of data-flow values
A confluence operator (normally set union or intersection)
Transfer functions for each block

We always compute safe estimates of data-flow values
A decision or estimate is safe or conservative, if it never
leads to a change in what the program computes (after the
change)
These safe values may be either subsets or supersets of
actual values, based on the application

Y.N. Srikant Data-flow Analysis



The Reaching Definitions Problem

We kill a definition of a variable a, if between two points
along the path, there is an assignment to a
A definition d reaches a point p, if there is a path from the
point immediately following d to p, such that d is not killed
along that path
Unambiguous and ambiguous definitions of a variable

a := b+c
(unambiguous definition of ’a’)

...
*p := d

(ambiguous definition of ’a’, if ’p’ may point to variables
other than ’a’ as well; hence does not kill the above
definition of ’a’)

...
a := k-m

(unambiguous definition of ’a’; kills the above definition of
’a’)

Y.N. Srikant Data-flow Analysis



The Reaching Definitions Problem(2)

We compute supersets of definitions as safe values
It is safe to assume that a definition reaches a point, even
if it does not.
In the following example, we assume that both a=2 and
a=4 reach the point after the complete if-then-else
statement, even though the statement a=4 is not reached
by control flow
if (a==b) a=2; else if (a==b) a=4;

Y.N. Srikant Data-flow Analysis



The Reaching Definitions Problem (3)

The data-flow equations (constraints)

IN[B] =
⋃

P is a predecessor of B

OUT [P]

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B])

IN[B] = φ, for all B (initialization only)

If some definitions reach B1 (entry), then IN[B1] is
initialized to that set
Forward flow DFA problem (since OUT [B] is expressed in
terms of IN[B]), confluence operator is ∪
GEN[B] = set of all definitions inside B that are “visible”
immediately after the block - downwards exposed
definitions
KILL[B] = union of the definitions in all the basic blocks of
the flow graph, that are killed by individual statements in B

Y.N. Srikant Data-flow Analysis



Reaching Definitions Analysis: An Example - Pass 1

Y.N. Srikant Data-flow Analysis



Reaching Definitions Analysis: An Example - Pass 2

Y.N. Srikant Data-flow Analysis



Reaching Definitions Analysis: An Example - Final

Y.N. Srikant Data-flow Analysis



An Iterative Algorithm for Computing Reaching
Definitions

for each block B do { IN[B] = φ; OUT [B] = GEN[B]; }
change = true;
while change do { change = false;

for each block B do {

IN[B] =
⋃

P a predecessor of B

OUT [P];

oldout = OUT [B];

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B]);

if (OUT [B] 6= oldout) change = true;
}

}

GEN, KILL, IN, and OUT are all represented as bit
vectors with one bit for each definition in the flow graph

Y.N. Srikant Data-flow Analysis



Reaching Definitions: Bit Vector Representation

Y.N. Srikant Data-flow Analysis



Use-Definition Chains (u-d chains)

Reaching definitions may be stored as u-d chains for
convenience
A u-d chain is a list of a use of a variable and all the
definitions that reach that use
u-d chains may be constructed once reaching definitions
are computed
case 1: If use u1 of a variable b in block B is preceded by
no unambiguous definition of b, then attach all definitions
of b in IN[B] to the u-d chain of that use u1 of b
case 2: If any unambiguous definition of b preceeds a use
of b, then only that definition is on the u-d chain of that use
of b
case 3: If any ambiguous definitions of b precede a use of
b, then each such definition for which no unambiguous
definition of b lies between it and the use of b, are on the
u-d chain for this use of b

Y.N. Srikant Data-flow Analysis



Use-Definition Chain Construction

Y.N. Srikant Data-flow Analysis



Use-Definition Chain Example

Y.N. Srikant Data-flow Analysis



Available Expression Computation

Sets of expressions constitute the domain of data-flow
values
Forward flow problem
Confluence operator is ∩
An expression x + y is available at a point p, if every path
(not necessarily cycle-free) from the initial node to p
evaluates x + y , and after the last such evaluation, prior to
reaching p, there are no subsequent assignments to x or y
A block kills x + y , if it assigns (or may assign) to x or y
and does not subsequently recompute x + y .
A block generates x + y , if it definitely evaluates x + y , and
does not subsequently redefine x or y

Y.N. Srikant Data-flow Analysis



Available Expression Computation(2)

Useful for global common sub-expression elimination
4 ∗ i is a CSE in B3, if it is available at the entry point of B3
i.e., if i is not assigned a new value in B2 or 4 ∗ i is
recomputed after i is assigned a new value in B2 (as
shown in the dotted box)

Y.N. Srikant Data-flow Analysis



Available Expression Computation (3)

The data-flow equations

IN[B] =
⋂

P is a predecessor of B

OUT [P], B not initial

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B])

IN[B1] = φ

IN[B] = U, for all B 6= B1 (initialization only)

B1 is the intial or entry block and is special because
nothing is available when the program begins execution
IN[B1] is always φ
U is the universal set of all expressions
Initializing IN[B] to φ for all B 6= B1, is restrictive

Y.N. Srikant Data-flow Analysis



Computing e_gen and e_kill

For statements of the form x = a, step 1 below does not
apply
The set of all expressions appearing as the RHS of
assignments in the flow graph is assumed to be available
and is represented using a hash table and a bit vector

Y.N. Srikant Data-flow Analysis



Available Expression Computation - An Example

Y.N. Srikant Data-flow Analysis



Available Expression Computation - An Example (2)

Y.N. Srikant Data-flow Analysis



An Iterative Algorithm for Computing Available
Expressions

for each block B 6= B1 do {OUT [B] = U − e_kill[B]; }
/* You could also do IN[B] = U;*/
/* In such a case, you must also interchange the order of */
/* IN[B] and OUT [B] equations below */
change = true;
while change do { change = false;

for each block B 6= B1 do {

IN[B] =
⋂

P a predecessor of B

OUT [P];

oldout = OUT [B];

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B]);

if (OUT [B] 6= oldout) change = true;
}

}
Y.N. Srikant Data-flow Analysis



Initializing IN[B] to φ for all B can be restrictive

Y.N. Srikant Data-flow Analysis



Live Variable Analysis

The variable x is live at the point p, if the value of x at p
could be used along some path in the flow graph, starting
at p; otherwise, x is dead at p
Sets of variables constitute the domain of data-flow values
Backward flow problem, with confluence operator

⋃
IN[B] is the set of variables live at the beginning of B
OUT [B] is the set of variables live just after B
DEF [B] is the set of variables definitely assigned values in
B, prior to any use of that variable in B
USE [B] is the set of variables whose values may be used
in B prior to any definition of the variable

OUT [B] =
⋃

S is a successor of B

IN[S]

IN[B] = USE [B]
⋃

(OUT [B]− DEF [B])

IN[B] = φ, for all B (initialization only)

Y.N. Srikant Data-flow Analysis



Live Variable Analysis: An Example

Y.N. Srikant Data-flow Analysis



Definition-Use Chains (d-u chains)

For each definition, we wish to attach the statement
numbers of the uses of that definition
Such information is very useful in implementing register
allocation, loop invariant code motion, etc.
This problem can be transformed to the data-flow analysis
problem of computing for a point p, the set of uses of a
variable (say x), such that there is a path from p to the use
of x , that does not redefine x .
This information is represented as sets of (x , s) pairs,
where x is the variable used in statement s
In live variable analysis, we need information on whether a
variable is used later, but in (x , s) computation, we also
need the statment numbers of the uses
The data-flow equations are similar to that of LV analysis
Once IN[B] and OUT [B] are computed, d-u chains can be
computed using a method similar to that of u-d chains

Y.N. Srikant Data-flow Analysis



Data-flow Analysis for (x,s) pairs

Sets of pairs (x,s) constitute the domain of data-flow values
Backward flow problem, with confluence operator

⋃
USE [B] is the set of pairs (x , s), such that s is a statement
in B which uses variable x and such that no prior definition
of x occurs in B
DEF [B] is the set of pairs (x , s), such that s is a statement
which uses x , s is not in B, and B contains a definition of x
IN[B] (OUT [B], resp.) is the set of pairs (x , s), such that
statement s uses variable x and the value of x at IN[B]
(OUT [B], resp.) has not been modified along the path from
IN[B] (OUT [B], resp.) to s

OUT [B] =
⋃

S is a successor of B

IN[S]

IN[B] = USE [B]
⋃

(OUT [B]− DEF [B])

IN[B] = φ, for all B (initialization only)

Y.N. Srikant Data-flow Analysis



Definition-Use Chain Example

Y.N. Srikant Data-flow Analysis



Definition-Use Chain Construction

Y.N. Srikant Data-flow Analysis



Very Busy Expressions or Anticipated Expressions

An expression B op C is very busy or anticipated at a point
p, if along every path from p, we come to a computation of
B op C before any computation of B or C
Useful in code hoisting and partial redundancy elimination
Code hoisting does not reduce time, but reduces space
We must make sure that no use of B op C (from X,Y, or Z
below) has any definition of B or C reaching it without
passing through p

Y.N. Srikant Data-flow Analysis



Very Busy Expressions or Anticipated Expressions (2)

Sets of expressions constitute the domain of data-flow
values
Backward flow analysis with

⋂
as confluence operator

V_USE [n] is the set of expressions B op C computed in n
with no prior definition of B or C in n
V_DEF [n] is the set of expressions B op C in U (the
universal set of expressions) for which either B or C is
defined in n, prior to any computation of B op C

OUT [n] =
⋂

S is a successor of n

IN[S]

IN[n] = V_USE [n]
⋃

(OUT [n]− V_DEF [n])

IN[n] = U, for all n (initialization only)

Y.N. Srikant Data-flow Analysis



Anticipated Expressions - An Example

Y.N. Srikant Data-flow Analysis



Data-Flow Problems: A Summary - 1

The Reaching Definitions Problem
Domain of data-flow values: sets of definitions
Direction: Forwards
Confluence operator: ∪
Initialization: IN[B] = φ

Equations:

IN[B] =
⋃

P is a predecessor of B

OUT [P]

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B])

Y.N. Srikant Data-flow Analysis



Data-Flow Problems: A Summary - 2

The Available Expressions Problem
Domain of data-flow values: sets of expressions
Direction: Forwards
Confluence operator: ∩
Initialization: IN[B] = U
Equations:

IN[B] =
⋂

P is a predecessor of B

OUT [P]

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B])

IN[B1] = φ

Y.N. Srikant Data-flow Analysis



Data-Flow Problems: A Summary - 3

The Live Variable Analysis Problem
Domain of data-flow values: sets of variables
Direction: backwards
Confluence operator: ∪
Initialization: IN[B] = φ

Equations:

OUT [B] =
⋃

S is a successor of B

IN[S]

IN[B] = USE [B]
⋃

(OUT [B]− DEF [B])

Y.N. Srikant Data-flow Analysis



Data-Flow Problems: A Summary - 4

The Anticipated Expressions (Very Busy Expressions) Problem
Domain of data-flow values: sets of expressions
Direction: backwards
Confluence operator: ∩
Initialization: IN[B] = U
Equations:

OUT [B] =
⋂

S is a successor of B

IN[S]

IN[B] = V_USE [B]
⋃

(OUT [B]− V_DEF [B])

Y.N. Srikant Data-flow Analysis


