
Introduction to
Machine-Independent Optimizations - 6

Machine-Independent Optimization Algorithms

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Optimization Algorithms



Outline of the Lecture

What is code optimization? (in part 1)
Illustrations of code optimizations (in part 1)
Examples of data-flow analysis (in parts 2,3, and 4)
Fundamentals of control-flow analysis (in parts 4 and 5)
Algorithms for machine-independent optimizations
SSA form and optimizations

Y.N. Srikant Optimization Algorithms



Detection of Loop-invariant Computations

Mark as “invariant”, those statements whose operands are all
either constant or have all their reaching definitions outside L

Repeat {
Mark as “invariant” all those statements not previously
so marked all of whose operands are constants, or have all
their reaching definitions outside L, or have exactly
one reaching definition, and that definition is a statement
in L marked “invariant”

} until no new statements are marked “invariant”

Y.N. Srikant Optimization Algorithms



Loop Invariant Code motion Example

Y.N. Srikant Optimization Algorithms



Loop-Invariant Code Motion Algorithm

1 Find loop-invariant statements
2 For each statement s defining x found in step (1), check

that
(a) it is in a block that dominates all exits of L
(b) x is not defined elsewhere in L
(c) all uses in L of x can only be reached by the definition of x

in s
3 Move each statement s found in step (1) and satisfying

conditions of step (2) to a newly created preheader
provided any operands of s that are defined in loop L have
previously had their definition statements moved to the
preheader

Y.N. Srikant Optimization Algorithms



Code Motion - Violation of condition 2(a)-1

Y.N. Srikant Optimization Algorithms



Code Motion - Violation of condition 2(a)-2

Y.N. Srikant Optimization Algorithms



Violation of condition 2(a) - Running Example

Y.N. Srikant Optimization Algorithms



Code Motion - Violation of condition 2(b)

Y.N. Srikant Optimization Algorithms



Violation of condition 2(b) - Running Example

Y.N. Srikant Optimization Algorithms



Code Motion - Violation of condition 2(c)

Y.N. Srikant Optimization Algorithms



Violation of condition 2(c) - Running Example

Y.N. Srikant Optimization Algorithms



The Static Single Assignment Form:
Application to Program Optimizations

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Program Optimizations and the SSA Form



Outline of the Lecture

SSA form - definition and examples
Optimizations with SSA forms

Dead-code elimination
Simple constant propagation
Copy propagation
Conditional constant propagation and constant folding

Y.N. Srikant Program Optimizations and the SSA Form



The SSA Form: Introduction

A new intermediate representation
Incorporates def-use information
Every variable has exactly one definition in the program
text

This does not mean that there are no loops
This is a static single assignment form, and not a dynamic
single assignment form

Some compiler optimizations perform better on SSA forms
Conditional constant propagation and global value
numbering are faster and more effective on SSA forms

A sparse intermediate representation
If a variable has N uses and M definitions, then def-use
chains need space and time proportional to N.M
But, the corresponding instructions of uses and definitions
are only N + M in number
SSA form, for most realistic programs, is linear in the size of
the original program

Y.N. Srikant Program Optimizations and the SSA Form



A Program in non-SSA Form and its SSA Form

Y.N. Srikant Program Optimizations and the SSA Form



SSA Form: A Definition

A program is in SSA form, if each use of a variable is
reached by exactly one definition
Flow of control remains the same as in the non-SSA form
A special merge operator, φ, is used for selection of values
in join nodes
Not every join node needs a φ operator for every variable
No need for a φ operator, if the same definition of the
variable reaches the join node along all incoming edges
Often, an SSA form is augmented with u-d and d-u chains
to facilitate design of faster algorithms
Translation from SSA to machine code introduces copy
operations, which may introduce some inefficiency

Y.N. Srikant Program Optimizations and the SSA Form



Program 2 in non-SSA and SSA Form

Y.N. Srikant Program Optimizations and the SSA Form



Program 3 in non-SSA and SSA Form

Y.N. Srikant Program Optimizations and the SSA Form



Optimization Algorithms with SSA Forms

Dead-code elimination
Very simple, since there is exactly one definition reaching
each use
Examine the du-chain of each variable to see if its use list is
empty
Remove such variables and their definition statements
If a statement such as x = y + z (or x = φ(y1, y2)) is
deleted, care must be taken to remove the deleted
statement from the du-chains of y and z (or y1 and y2)

Simple constant propagation
Copy propagation
Conditional constant propagation and constant folding
Global value numbering

Y.N. Srikant Program Optimizations and the SSA Form



Simple Constant Propagation

{ Stmtpile = {S|S is a statement in the program}
while Stmtpile is not empty {

S = remove(Stmtpile);
if S is of the form x = φ(c, c, ..., c) for some constant c

replace S by x = c
if S is of the form x = c for some constant c

delete S from the program
for all statements T in the du-chain of x do

substitute c for x in T; simplify T
Stmtpile = Stmtpile ∪ {T}

}

Copy propagation is similar to constant propagation
A single-argument φ-function, x = φ(y), or a copy
statement, x = y can be deleted and y substituted for
every use of x

Y.N. Srikant Program Optimizations and the SSA Form



Conditional Constant Propagation - 1

SSA forms along with extra edges corresponding to d-u
information are used here

Edge from every definition to each of its uses in the SSA
form (called henceforth as SSA edges)

Uses both flow graph and SSA edges and maintains two
different work-lists, one for each (Flowpile and SSApile ,
resp.)
Flow graph edges are used to keep track of reachable
code and SSA edges help in propagation of values
Flow graph edges are added to Flowpile, whenever a
branch node is symbolically executed or whenever an
assignment node has a single successor

Y.N. Srikant Program Optimizations and the SSA Form



Conditional Constant Propagation - 2

SSA edges coming out of a node are added to the SSA
work-list whenever there is a change in the value of the
assigned variable at the node
This ensures that all uses of a definition are processed
whenever a definition changes its lattice value.
This algorithm needs much lesser storage compared to its
non-SSA counterpart
Conditional expressions at branch nodes are evaluated
and depending on the value, either one of outgoing edges
(corresponding to true or false) or both edges
(corresponding to ⊥) are added to the worklist
However, at any join node, the meet operation considers
only those predecessors which are marked executable.

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example - 1

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 1

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 2

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 1 - Trace 3

Y.N. Srikant Program Optimizations and the SSA Form



CCP Algorithm - Example 2

Y.N. Srikant Program Optimizations and the SSA Form


