Introduction to
Machine-Independent Optimizations - 2
Data-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Data-Flow Analysis

Outline of the Lecture

@ What is code optimization? (in part 1)

@ lllustrations of code optimizations (in part 1)

@ Examples of data-flow analysis

@ Fundamentals of control-flow analysis

@ Algorithms for two machine-independent optimizations
@ SSA form and optimizations

Y.N. Srikant Data-Flow Analysis

Data-Flow Analysis Schema

@ A data-flow value for a program point represents an
abstraction of the set of all possible program states that
can be observed for that point

@ The set of all possible data-flow values is the domain for
the application under consideration

e Example: for the reaching definitions problem, the domain
of data-flow values is the set of all subsets of of definitions
in the program

e A particular data-flow value is a set of definitions

@ IN[s] and OUTs|: data-flow values before and after each
statement s

@ The data-flow problem is to find a solution to a set of
constraints on IN[s] and OUT |s], for all statements s

Y.N. Srikant Data-Flow Analysis

Data-Flow Analysis Schema (2)

@ Two kinds of constraints
e Those based on the semantics of statements (transfer
functions)
e Those based on flow of control
@ A DFA schema consists of

e A control-flow graph

@ A direction of data-flow (forward or backward)

o A set of data-flow values

e A confluence operator (usually set union or intersection)
e Transfer functions for each block

@ We always compute safe estimates of data-flow values

@ A decision or estimate is safe or conservative, if it never
leads to a change in what the program computes (after the
change)

@ These safe values may be either subsets or supersets of
actual values, based on the application

Y.N. Srikant Data-Flow Analysis

The Reaching Definitions Problem

@ We kill a definition of a variable a, if between two points
along the path, there is an assignment to a

@ A definition d reaches a point p, if there is a path from the
point immediately following d to p, such that d is not killed
along that path

@ Unambiguous and ambiguous definitions of a variable

a:=b+c

(unambiguous definition of ’a’)

*p:=d
(ambiguous definition of ’a’, if 'p’ may point to variables
other than 'a’ as well; hence does not kill the above
definition of ’a’)

a:=k-m
(unambiguous definition of ’a’; kills the above definition of
la!)
Y.N. Srikant Data-Flow Analysis

The Reaching Definitions Problem(2)

@ We compute supersets of definitions as safe values

@ |t is safe to assume that a definition reaches a point, even
if it does not.

@ In the following example, we assume that both a=2 and

a=4 reach the point after the complete if-then-else
statement, even though the statement a=4 is not reached

by control flow
if (a==b) a=2; else if (a==b) a=4;

Y.N. Srikant Data-Flow Analysis

The Reaching Definitions Problem (3)

@ The data-flow equations (constraints)

INB] = U OUT]IP]
P is a predecessor of B
OUT[B] = GENIB] U (IN[B] — KILL[B])
IN[B] = ¢,for all B (initialization only)

@ If some definitions reach B; (entry), then IN[B;] is
initialized to that set

@ Forward flow DFA problem (since OUT|[B] is expressed in
terms of IN[B]), confluence operator is U

e Direction of flow does not imply traversing the basic blocks
in a particular order

e The final result does not depend on the order of traversal of
the basic blocks

Y.N. Srikant Data-Flow Analysis

The Reaching Definitions Problem (4)

@ GENIB] = set of all definitions inside B that are “visible”
immediately after the block - downwards exposed
definitions

e If a variable x has two or more defintions in a basic block,
then only the last definition of x is downwards exposed; all
others are not visible outside the block

@ KILL[B] = union of the definitions in all the basic blocks of
the flow graph, that are killed by individual statements in B
e If a variable x has a definition d; in a basic block, then d;
kills all the definitions of the variable x in the program,
except d;

Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: GEN and KILL

In other blocks:

dl:a=f+1
d5:b =a+4 d2b=a+7
dé:f=erc d3:c=b+d B
dr: e =b+d d4a=d+c
d8:d =a+b
d9: a =c+f
d10: c = e+a

Set of all definitions = {d1,d2,d3,d4,d5,d6,d7,d8,d9,10}

GEN[B] = {d2,d3,d4}
KILL[B] = {d4,d9,d5,d10,d1}

Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: DF Equations

B1 B2 B3

OUT[BZ]

OUT[B1] OUT[B3] IN[B4] {p.q.z}
B4 gen[B4] B4 Kil[B4]
{a.b} z

IN[B4] = ouT[B1] U ouT[B2] U OUT[B3]
OUT[B4] {a,b.p.q}

IN[B] = U OUT[P]
P is a predecessor of B

ouTIB] = GENB|J (INIB) - KILL(B) OUT[B4] = gen[B4] U (IN[B4] - kill[B4])

Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: An Example - Pass 1

Pass 1

GEN[B1]={d1,d2,d3}
KILL[B1]={d4,d5,d6,d7}
IN[B1]=0, OUT[B1]={d1,d2,d3}

GEN[B2]={d4,d5}
KILL[B2]={d1,d2,d7} dd:i:=i
IN[B2]=0 dsij:=j
OUT[B2]={d4,d5}

+1(B2

Adapted from the
“Dragon Book”,

GEN[B3]={d6} | 46: a := u2 | B3 AW, 1986
KILL[B3]={d3}
IN[B3]=0
OUT[B3]={d6} 5
GEN[B4j={a7} LAT:1:=a
KILL[B4]={d1,d4} B - U OUT(F]
IN[B4]=0 ot P is a predecessar of B
OUT[B4]={d7} oUT[B] = GEN[B]|J (IN[B] - KILL(B))

Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: An Example - Pass 2.1

Pass 2

GEN[B1]={d1,d2,d3}
KILL[B1]={d4,d5,d6,d7}
IN[B1]=®, OUT[B1]={d1,d2,d3}

GEN[B1]={d1,d2,d3}
KILL[B1]={d4,d5,d6,d7}
IN[B1]=0, OUT[B1]={d1,d2,d3}

B2
d4:i:=i+1
d5:j:=j1
d6:a:=u2| B3
d7:i:=a+j | B4
IN[B] = U OUT(P]
N P is a predecessor of B
exit

OUT[B] = GEN[B]|J (IN[B] - KILL[B])

Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: An Example - Pass 2.2

Pass 2

B1

GEN[B2]={d4,d5}

GEN[B1]={d1,d2,d3}
KILL[B1]={d4,d5,d6,d7}
IN[B1]=0, OUT[B1]={d1,d2,d3}

GEN[B2]={d4,d5}

KILL[B2]={d1,d2.47} [4a: 1= 1+1] gy KILL[B2]={d1,d2,d7}
IN[B2]=9 ds5: j =1 IN[B2]={d1,d2,d3,d7}
OUT[B2]={d4,d5} - OUT[B2]={d3,d4,d5}
d6:a:=u2| B3
GEN[B4]={d7} o
KILL[B4]={d1,da) [7:1:=a%| B4
IN[B4]=D IN[B] = U ouT(P]
OUT[B4]={d7} it P is a predecessor of B
(from pass 1) ext OUT[B] = GEN[B]|J (IN[B] - KILL[B])
Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: An Example - Pass 2.3

Pass 2

g1 1:=ma] GEN[B1I={d1,d2,d3}
B1 d2:j:=n KILL[B1]={d4,d5,d6,d7}
d3: a:=u1 | IN[B1]=0, OUT[B1]={d1,d2,d3}

GEN[B3]={d6} GEN[B2]={d4,d5}
KILL[B3]={d3} dd:i:=i+1| B2 KILL[B2]={d1,d2,d7}
IN[B3]=0 ds:j:=j-1 IN[B2]={d1,d2,d3,d7}
OUT[B3]={d6} OUT[B2]={d3,d4,d5}

GENI[B3]={d6} | gg; a:=u2| B3
KILL[B3]={d3}
IN[B3]={d3,d4,d5}
OUT[B3]={d4,d5,d6}
d7:i:=a+j | B4

INIB) = U OUTIF]
P is a predecessor of B
ouT8] = GEN[B]|_ (IN[B] - KILL[8])

exit

Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: An Example - Pass 2.4

Pass 2

B1

GEN[B2]={d4,d5}
KILL[B2]={d1,d2,d7}
IN[B2]={d1,d2,d3,d7}
QUT[B2]={d3,d4,d5}

GEN[B3]={d6} |g6:a:=u2| B3
KILL[B3]={d3}
IN[B3]={d3,d4,d5}
OUT[B3]={d4,d5,d6}

GEN[B4]={d7}

d1:i:=m-1| GEN[B1]={d1,d2,d3}

d2:j:=n KILL[B1]={d4,d5,d6,d7}
d3:a:=u1 | IN[B1]=®, OUT[B1]={d1,d2,d3}
dd:i:=i+1| B2

d5:j:=j1

GEN[B4]={d7}
KILL[B4]={d1,d4)

IN[B4]={d3,d4,d5,d6}

d7:i:=a+j | B4 /OUT[B4]={d3,d5,d6,d7)

KILL[B4]={d1,d4} IN[B] = U OUTIP]

IN[B4]=¢ exit P is a predecessor of B

OUT[B4]={d7} ouT[B] = GEN[H]U (IN[B] - KILL[B])
Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: An Example - Final

Final

d1: i:=m-1| GEN[B1]={d1,d2,d3}
B1 |g2:j:=n KILL[B1]={d4,d5,d6,d7}
d3: a:=u1 | IN[B1]=®, OUT[B1]={d1,d2,d3}

GEN[B2]={d4,d5}
KILL[B2]={d1,d2,d7}
IN[B2]={d1,d2,d3,d5,d6,d7}
QUT[B2]={d3,d4,d5,d6}

i+1| B2

Adapted from the
“Dragon Book”,
GEN[B3]={d6} [gg: a:=uz | B3 AW, 1986
KILL[B3]={d3}
IN[B3]={d3,d4,d5,d6}
OUT[B3]={d4,d5,d6}

GEN[B4J=(a7} LI7:1:= 2% | B4
KILL[B4]={d1,d4} IN[B] = U ouTIP]
IN[B4]={d3,d4,d5,d6} [or P ie predicnseo of 8
OUT[B4]={d3,d5,d6,dT} oUT[B] = GEN[B]|J (IN[B] - KILL(B))

Y.N. Srikant Data-Flow Analysis

An lterative Algorithm for Computing Reaching Def.

for each block B do { IN[B] = ¢; OUT[B] = GENIB]J; }
change = true;
while change do { change = false;

for each block B do {

IN[B] = U OUTIPY;
P a predecessor of B

oldout = OUT[B];
OUT[B] = GEN[B]| J (IN[B] - KILL[B]);

if (OUT|B] # oldout) change = true;
}
}

@ GEN, KILL, IN, and OUT are all represented as bit
vectors with one bit for each definition in the flow graph

Y.N. Srikant Data-Flow Analysis

Reaching Definitions: Bit Vector Representation

Final dataflow value sets

shown in bit vector format
GEN[B1]= [1[1T1T0T0T0[0]

B1 g;f!f M- qLLe1)= (O[O0 T[1][1]
i7", | NmB1= [o[olofolol0l0

ouTB1]= [1[1[1]0[0]0[0]

GEN[B2]={d4,d5} a1ld2]d3ladlas]deld7
KILL[B2]={d1,d2,d7} |d4:i:=i+1| B2

IN[B2]={d1,d2,d3,d5,d6,d7} | d5:] :=j-1

OUT[B2]={d3,d4,d5,d6}

—

GEN[B3]={d6} | 46:a:=uz| B3
KILL[B3]={d3}

IN[B3]={d3,d4,d5,d6} Adapted from the
OUT[B3]={d4,d5,d6} = g4 “Dragon Book”,
GEN[B4]={d7} | d7:i:= atj AW, 1986
KILL[BA4]={d1,d4}

IN[B4]={d3,d4,d5,d6}
OUT[B4]={d3,d5,d6,d7} exit

Y.N. Srikant Data-Flow Analysis

Available Expression Computation

@ Sets of expressions constitute the domain of data-flow
values

@ Forward flow problem
@ Confluence operator is N

@ An expression x + y is available at a point p, if every path
(not necessarily cycle-free) from the initial node to p
evaluates x + y, and after the last such evaluation, prior to
reaching p, there are no subsequent assignments to x or y

@ A block kills x + y, if it assigns (or may assign) to x or y
and does not subsequently recompute x + .

@ A block generates x + y, if it definitely evaluates x + y, and
does not subsequently redefine x or y

Y.N. Srikant Data-Flow Analysis

Available Expression Computation(2)

@ Useful for global common sub-expression elimination
@ 4xjisa CSE in B3, if it is available at the entry point of B3

i.e., if i is not assigned a new value in B2 or 4 x i is

recomputed after i is assigned a new value in B2 (as

shown in the dotted box)

t1 = 4%

i=.. il no asgmnt.
to=4% tol B2

\"‘*—»« t2 = 4%

Y.N. Srikant Data-Flow Analysis

B1

B3

Computing e_gen and e_Kkill

@ For statements of the form x = a, step 1 below does not
apply

@ The set of all expressions appearing as the RHS of
assignments in the flow graph is assumed to be available
and is represented using a hash table and a bit vector

Computing e_gen|[p]

1. A=A U {y+z}
e_gen[q] =A _q .+ 2. A = A — {all expressions
X=y+z involving x}
p- 3. e_genp]=A

Computing e_Kkill[p]

e killqg=A g 1 A=A-{y2)
S X=y+z 2. A=AU {all expressions
involving x}
P 3. e kil[p] = A

Y.N. Srikant Data-Flow Analysis

