
Introduction to
Machine-Independent Optimizations - 2

Data-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Data-Flow Analysis



Outline of the Lecture

What is code optimization? (in part 1)
Illustrations of code optimizations (in part 1)
Examples of data-flow analysis
Fundamentals of control-flow analysis
Algorithms for two machine-independent optimizations
SSA form and optimizations

Y.N. Srikant Data-Flow Analysis



Data-Flow Analysis Schema

A data-flow value for a program point represents an
abstraction of the set of all possible program states that
can be observed for that point
The set of all possible data-flow values is the domain for
the application under consideration

Example: for the reaching definitions problem, the domain
of data-flow values is the set of all subsets of of definitions
in the program
A particular data-flow value is a set of definitions

IN[s] and OUT [s]: data-flow values before and after each
statement s
The data-flow problem is to find a solution to a set of
constraints on IN[s] and OUT [s], for all statements s

Y.N. Srikant Data-Flow Analysis



Data-Flow Analysis Schema (2)

Two kinds of constraints
Those based on the semantics of statements (transfer
functions)
Those based on flow of control

A DFA schema consists of
A control-flow graph
A direction of data-flow (forward or backward)
A set of data-flow values
A confluence operator (usually set union or intersection)
Transfer functions for each block

We always compute safe estimates of data-flow values
A decision or estimate is safe or conservative, if it never
leads to a change in what the program computes (after the
change)
These safe values may be either subsets or supersets of
actual values, based on the application

Y.N. Srikant Data-Flow Analysis



The Reaching Definitions Problem

We kill a definition of a variable a, if between two points
along the path, there is an assignment to a
A definition d reaches a point p, if there is a path from the
point immediately following d to p, such that d is not killed
along that path
Unambiguous and ambiguous definitions of a variable

a := b+c
(unambiguous definition of ’a’)

...
*p := d

(ambiguous definition of ’a’, if ’p’ may point to variables
other than ’a’ as well; hence does not kill the above
definition of ’a’)

...
a := k-m

(unambiguous definition of ’a’; kills the above definition of
’a’)

Y.N. Srikant Data-Flow Analysis



The Reaching Definitions Problem(2)

We compute supersets of definitions as safe values
It is safe to assume that a definition reaches a point, even
if it does not.
In the following example, we assume that both a=2 and
a=4 reach the point after the complete if-then-else
statement, even though the statement a=4 is not reached
by control flow
if (a==b) a=2; else if (a==b) a=4;

Y.N. Srikant Data-Flow Analysis



The Reaching Definitions Problem (3)

The data-flow equations (constraints)

IN[B] =
⋃

P is a predecessor of B

OUT [P]

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B])

IN[B] = φ, for all B (initialization only)

If some definitions reach B1 (entry), then IN[B1] is
initialized to that set
Forward flow DFA problem (since OUT [B] is expressed in
terms of IN[B]), confluence operator is ∪

Direction of flow does not imply traversing the basic blocks
in a particular order
The final result does not depend on the order of traversal of
the basic blocks

Y.N. Srikant Data-Flow Analysis



The Reaching Definitions Problem (4)

GEN[B] = set of all definitions inside B that are “visible”
immediately after the block - downwards exposed
definitions

If a variable x has two or more defintions in a basic block,
then only the last definition of x is downwards exposed; all
others are not visible outside the block

KILL[B] = union of the definitions in all the basic blocks of
the flow graph, that are killed by individual statements in B

If a variable x has a definition di in a basic block, then di
kills all the definitions of the variable x in the program,
except di

Y.N. Srikant Data-Flow Analysis



Reaching Definitions Analysis: GEN and KILL

Y.N. Srikant Data-Flow Analysis



Reaching Definitions Analysis: DF Equations

Y.N. Srikant Data-Flow Analysis



Reaching Definitions Analysis: An Example - Pass 1

Y.N. Srikant Data-Flow Analysis



Reaching Definitions Analysis: An Example - Pass 2.1

Y.N. Srikant Data-Flow Analysis



Reaching Definitions Analysis: An Example - Pass 2.2

Y.N. Srikant Data-Flow Analysis



Reaching Definitions Analysis: An Example - Pass 2.3

Y.N. Srikant Data-Flow Analysis



Reaching Definitions Analysis: An Example - Pass 2.4

Y.N. Srikant Data-Flow Analysis



Reaching Definitions Analysis: An Example - Final

Y.N. Srikant Data-Flow Analysis



An Iterative Algorithm for Computing Reaching Def.

for each block B do { IN[B] = φ; OUT [B] = GEN[B]; }
change = true;
while change do { change = false;

for each block B do {

IN[B] =
⋃

P a predecessor of B

OUT [P];

oldout = OUT [B];

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B]);

if (OUT [B] 6= oldout) change = true;
}

}

GEN, KILL, IN, and OUT are all represented as bit
vectors with one bit for each definition in the flow graph

Y.N. Srikant Data-Flow Analysis



Reaching Definitions: Bit Vector Representation

Y.N. Srikant Data-Flow Analysis



Available Expression Computation

Sets of expressions constitute the domain of data-flow
values
Forward flow problem
Confluence operator is ∩
An expression x + y is available at a point p, if every path
(not necessarily cycle-free) from the initial node to p
evaluates x + y , and after the last such evaluation, prior to
reaching p, there are no subsequent assignments to x or y
A block kills x + y , if it assigns (or may assign) to x or y
and does not subsequently recompute x + y .
A block generates x + y , if it definitely evaluates x + y , and
does not subsequently redefine x or y

Y.N. Srikant Data-Flow Analysis



Available Expression Computation(2)

Useful for global common sub-expression elimination
4 ∗ i is a CSE in B3, if it is available at the entry point of B3
i.e., if i is not assigned a new value in B2 or 4 ∗ i is
recomputed after i is assigned a new value in B2 (as
shown in the dotted box)

Y.N. Srikant Data-Flow Analysis



Computing e_gen and e_kill

For statements of the form x = a, step 1 below does not
apply
The set of all expressions appearing as the RHS of
assignments in the flow graph is assumed to be available
and is represented using a hash table and a bit vector

Y.N. Srikant Data-Flow Analysis


