Global Register Allocation - 3

Y N Srikant Computer Science and Automation Indian Institute of Science Bangalore 560012

NPTEL Course on Principles of Compiler Design

Outline

- Issues in Global Register Allocation (in part 1)
- The Problem (in part 1)
- Register Allocation based in Usage Counts (in part 2)
- Linear Scan Register allocation (in part 2)
- Chaitin's graph colouring based algorithm

Chaitin's Formulation of the Register Allocation Problem

- A graph colouring formulation on the interference graph
- Nodes in the graph represent either live ranges of variables or entities called webs
- An edge connects two live ranges that interfere or conflict with one another
- Usually both adjacency matrix and adjacency lists are used to represent the graph.

Chaitin's Formulation of the Register Allocation Problem

- Assign colours to the nodes such that two nodes connected by an edge are not assigned the same colour
 - The number of colours available is the number of registers available on the machine
 - A k-colouring of the interference graph is mapped onto an allocation with k registers

Example

Two colourable

Three colourable

Idea behind Chaitin's Algorithm

- Choose an arbitrary node of degree less than k and put it on the stack
- Remove that vertex and all its edges from the graph
 - This may decrease the degree of some other nodes and cause some more nodes to have degree less than k
- At some point, if all vertices have degree greater than or equal to k, some node has to be spilled
- If no vertex needs to be spilled, successively pop vertices off stack and colour them in a colour not used by neighbours (reuse colours as far as possible)

Simple example – Given Graph

Simple Example – Delete Node 1

3 REGISTERS

Simple Example – Delete Node 2

STACK

3 REGISTERS

Simple Example – Delete Node 4

3 REGISTERS

Simple Example – Delete Nodes 3

3 REGISTERS

Simple Example – Delete Nodes 5

3 REGISTERS

3 REGISTERS

16

Steps in Chaitin's Algorithm

- Identify units for allocation
 - Renames variables/symbolic registers in the IR such that each live range has a unique name (number)
 - A live range is entitled to get a register
- Build the interference graph
- Coalesce by removing unnecessary move or copy instructions
- Colour the graph, thereby selecting registers
- Compute spill costs, simplify and add spill code till graph is colourable

Chaitin's Framework

Example of Renaming

An Example

Original code

1.
$$x=2$$

2.
$$y = 4$$

3.
$$w = x + y$$

4.
$$z = x+1$$

5.
$$u = x^*y$$

6.
$$x = z^2$$

Code with symbolic registers

3.
$$s3=s1+s2$$
; (Iv of $s3: 3-4$)

INTERFERENCE GRAPH HERE ASSUME VARIABLE Z (s4) CANNOT OCCUPY r1

Example(continued)

Final register allocated code

$$r1 = 2$$

$$r2 = 4$$

$$r3 = r1 + r2$$

$$r3 = r1 + 1$$

$$r2 = r3 + r2$$

Three registers are sufficient for no spills

More Complex Example

Build Interference Graph

- Create a node for each LV and for each physical register in the interference graph
- If two distinct LVs interfere, that is, a variable associated with one LV is live at a definition point of another add an edge between the two LVs
- If a particular variable cannot reside in a register, add an edge between all LVs associated with that variable and the register

Copy Subsumption or Coalescing

- Consider a copy instruction: b := e in the program
- If the live ranges of b and e do not overlap, then b and e can be given the same register (colour)
 - Implied by lack of any edges between b and e in the interference graph
- The copy instruction can then be removed from the final program
- Coalesce by merging b and e into one node that contains the edges of both nodes

Example of coalescing

Copy Subsumption or Coalescing

copy subsumption is not possible; lr(e) and lr(new b) interfere

copy subsumption is possible; lr(e) and lr(new b) do not interfere

Copy Subsumption Repeatedly

I.r of b

a = b

l.r of a

copy subsumption happens twice - once between b and e, and second time between a and b. e, b, and a are all given the same register.

Coalescing

- Coalesce all possible copy instructions
 - Rebuild the graph
 - may offer further opportunities for coalescing
 - build-coalesce phase is repeated till no further coalescing is possible.
- Coalescing reduces the size of the graph and possibly reduces spilling

Simple fact

- Suppose the no. of registers available is R.
- If a graph G contains a node n with fewer than R neighbors then removing n and its edges from G will not affect its R-colourability
- If G' = G-{n} can be coloured with R colours, then so can G.
 - After colouring G', just assign to n, a colour different from its R-1 neighbours.

Simplification

- If a node *n* in the interference graph has degree less than R, remove *n* and all its edges from the graph and place *n* on a colouring stack.
- When no more such nodes are removable then we need to spill a node.
- Spilling a variable x implies
 - loading x into a register at every use of x
 - storing x from register into memory at every definition of x

Spilling Cost

- The node to be spilled is decided on the basis of a spill cost for the live range represented by the node.
- Chaitin's estimate of spill cost of a live range v

$$cost(v) = \sum_{\substack{\text{all load or store operations in a live range } v}} c*10^d$$

- where c is the cost of the op and d, the loop nesting depth.
- 10 in the eqn above approximates the no. of iterations of any loop
- The node to be spilled is the one with MIN(cost(v)/deg(v))

Here R = 3 and the graph is 3-colourable No spilling is necessary

A 3-colourable graph which is not 3-coloured by colouring heuristic

Example

Spilling a Node

- To spill a node we remove it from the graph and represent the effect of spilling as follows (It cannot be simply removed from the graph).
 - Reload the spilled object at each use and store it in memory at each definition point
 - This creates new small live ranges which will also need registers.
- After all spill decisions are made, insert spill code, rebuild the interference graph and then repeat the attempt to colour.
- When simplification yields an empty graph then select colours, that is, registers

Effect of Spilling

Colouring the Graph(selection)

Repeat

```
v= pop(stack).
Colours_used(v) = colours used by neighbours of v.
Colours_free(v) = all colours - Colours_used(v).
Colour (v) = choose any colour in Colours_free(v).
Until stack is empty
```

 Convert the colour assigned to a symbolic register to the corresponding real register's name in the code.


```
t1 = 202
      i = 1
3. L1: t2 = i>100
4.
      if t2 goto L2
5.
   t1 = t1-2
  t3 = addr(a)
7.
   t4 = t3 - 4
  t5 = 4*i
8.
   t6 = t4 + t5
9.
10. *t6 = t1
11. i = i+1
12. goto L1
13. L2:
```

variable	live range	
t1	1-10	
i	2-11	
t2	3-4	
t3	6-7	
t4	7-9	
t5	8-9	
t6	9-10	

variable	live range		
t1	1-10		
i	2-11		
t2	3-4		
t3	6-7		
t4	7-9		
t5	8-9		
t6	9-10		

Assume 3 registers. Nodes t6,t2, and t3 are first pushed onto a stack during reduction.

This graph cannot be reduced further. Spilling is necessary.

Node V	Cost(v)	deg(v)	h ₀ (v)
t1	31	3	10
i	41	3	14
t4	20	3	7
t5	20	3	7

t1: 1+(1+1+1)*10 = 31

i : 1+(1+1+1+1)*10 = 41

t4: (1+1)*10 = 20

t5: (1+1)*10 = 20

t5 will be spilled. Then the graph can be coloured.

1.
$$t1 = 202$$

5.
$$t1 = t1-2$$

6.
$$t3 = addr(a)$$

7.
$$t4 = t3 - 4$$

8.
$$t5 = 4*i$$

9.
$$t6 = t4 + t5$$

11.
$$i = i+1$$

t5: spilled node, will be provided with a temporary register during code generation

Drawbacks of the Algorithm

- Constructing and modifying interference graphs is very costly as interference graphs are typically huge.
- For example, the combined interference graphs of procedures and functions of gcc in mid-90's have approximately 4.6 million edges.

Some modifications

- Careful coalescing: Do not coalesce if coalescing increases the degree of a node to more than the number of registers
- Optimistic colouring: When a node needs to be spilled, push it onto the colouring stack instead of spilling it right away
 - spill it only when it is popped and if there is no colour available for it
 - this could result in colouring graphs that need spills using Chaitin's technique.

A 3-colourable graph which is not 3-coloured by colouring heuristic, but coloured by optimistic colouring

Example

Say, 1 is chosen for spilling. Push it onto the stack, and remove it from the graph. The remaining graph (2,3,4,5) is 3-colourable. Now, when 1 is popped from the colouring stack, there is a colour with which 1 can be coloured. It need not be spilled.

