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Outline 

n  Issues in Global Register Allocation  
   (in part 1) 
n  The Problem (in part 1) 
n  Register Allocation based in Usage Counts 
   (in part 2) 
n  Linear Scan Register allocation (in part 2) 
n  Chaitin’s graph colouring based algorithm 
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Chaitin’s Formulation of the  
Register Allocation Problem 
n  A graph colouring formulation on the 

interference graph 
n  Nodes in the graph represent either live ranges 

of variables or entities called webs 
n  An edge connects two live ranges that interfere 

or conflict with one another 
n  Usually both adjacency matrix and adjacency 

lists are used to represent the graph. 
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Chaitin’s Formulation of the  
Register Allocation Problem 

n  Assign colours to the nodes such that two 
nodes connected by an edge are not assigned 
the same colour 
q  The number of colours available is the number 

of registers available on the machine 
q  A k-colouring of the interference graph is 

mapped onto an allocation with k registers 
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Example 

n  Two colourable              Three colourable 
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Idea behind Chaitin’s Algorithm 

n  Choose an arbitrary node of degree less than k and 
put it on the stack 

n  Remove that vertex and all its edges from the graph 
q  This may decrease the degree of some other nodes and 

cause some more nodes to have degree less than k 
n  At some point, if all vertices have degree greater 

than or equal to k, some node has to be spilled 
n  If no vertex needs to be spilled, successively pop 

vertices off stack and colour them in a colour not 
used by neighbours (reuse colours as far as 
possible) 
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Simple example – Given Graph 
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Simple Example – Delete Node 1 
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Simple Example – Delete Node 2 
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Simple Example – Delete Node 4 
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Simple Example – Delete Nodes 3 
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Simple Example – Delete Nodes 5 
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Simple Example – Colour Node 5 
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Simple Example – Colour Node 3 

STACK 

COLOURS 

5 

3 

3 REGISTERS 

    1 
    2 
    4 



Y.N. Srikant 15 

Simple Example – Colour Node 4 
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Simple Example – Colour Node 2 
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Simple Example – Colour Node 1 
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Steps in Chaitin’s Algorithm 

n  Identify units for allocation 
q  Renames variables/symbolic registers in the IR such 

that each live range has a unique name (number) 
q  A live range is entitled to get a register 

n  Build the interference graph 
n  Coalesce  by removing unnecessary move or 

copy instructions 
n  Colour the graph, thereby selecting registers 
n  Compute spill costs, simplify and add spill code 

till graph is colourable 
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Chaitin’s Framework 

RENAME BUILD IG COALESCE SIMPLIFY COMPUTE  
SPILL COST 

INSERT 
SPILL CODE 

SELECT 
REGISTERS 



Example of Renaming 
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a =  a =  

= a 
 

a =  

= a  = a  

s1 =  s1 =  

= s1 
 

s2 =  

= s2  = s2  

Renaming 
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An Example 

Original code 
 
1.  x= 2 
2.  y = 4 
3.  w = x+ y 
4.  z = x+1 
5.  u = x*y 
6.  x= z*2 
 
 

Code with symbolic registers 
 
1.  s1=2; (lv of s1: 1-5) 
2.  s2=4; (lv of s2: 2-5) 
3.  s3=s1+s2; (lv of s3: 3-4) 
4.  s4=s1+1; (lv of s4: 4-6) 
5.  s5=s1*s2; (lv of s5: 5-6) 
6.  s6=s4*2; (lv of s6: 6- ...) 
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s5 
s1 s3 r3 

s6 s2 s4 
r1 r2 

INTERFERENCE    GRAPH 
HERE ASSUME VARIABLE Z (s4)  CANNOT OCCUPY r1 
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Example(continued) 
 
Final register allocated code 
 
r1 = 2 
r2= 4 
r3= r1+r2 
r3= r1+1 
r1= r1 *r2 
r2= r3+r2 

Three registers are  
sufficient for no spills 
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More Complex Example 

Def y 

Use x 

Def x 

Def y 

Use x 

Use y 
Use x 
Def x 

Def x 
Use y 

B2 
B1 

B3 

B4 B5 

B6 

W1: def x in B2, def x in B3, use x in 
B4, Use x in B5 
W2: def x in B5, use x in B6 
W3: def y in B2, use y in B4 
W4: def y in B1, use y in B3 

w3 w1 

w2 w4 
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Build Interference Graph 

n  Create a node for each LV and for each 
physical register in the interference graph 

n  If two distinct LVs interfere, that is, a variable 
associated with one LV is live at a definition 
point of another add an edge between the 
two LVs 

n  If a  particular variable cannot reside in a 
register, add an edge between all LVs 
associated with that variable and the register 
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Copy Subsumption or Coalescing 

n  Consider a copy instruction: b := e in the program 
n  If the live ranges of b and e do  not overlap, then b 

and e can be given the same register (colour) 
q  Implied by lack of any edges between b and e in the 

interference graph 
n  The copy instruction can then be removed from the 

final program 
n  Coalesce by merging b and e into one node that 

contains the edges of both nodes 
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Example of coalescing 

c 

b 

d 

e 

a 

f 

c 

be 

d 

a 

f 

BEFORE AFTER 

Copy inst: b:=e 
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Copy Subsumption or Coalescing 

b = e b = e 

l.r of  
old b 

l.r of  
new b 

l.r of e 

l.r of  
old b 

l.r of  
new b 

l.r of e 

copy subsumption 
is not possible; lr(e) 
and lr(new b) interfere 

copy subsumption is  
possible; lr(e) and lr(new b)  
do not interfere 



Y.N. Srikant 29 

Copy Subsumption Repeatedly 

b = e 

l.r of  x 

l.r of  b 

l.r of e 

copy subsumption happens  
twice - once between b and e,  
and second time between 
a and b. e, b, and a are all  
given the same register. a = b 

l.r of  a 
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Coalescing 
 
n  Coalesce all possible copy instructions  

q  Rebuild the graph  
n  may offer further opportunities for coalescing 
n  build-coalesce phase is repeated till no further 

coalescing is possible. 
n  Coalescing reduces the size of the 

graph and possibly reduces spilling 
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Simple fact 
 
n  Suppose the no. of registers available is R.  
n  If a graph G contains a node n with fewer 

than R neighbors then removing n and its 
edges from G will not affect its R-colourability  

n  If G’ = G-{n} can be coloured with R colours, 
then so can G.   
q  After colouring G’,  just assign to n, a colour 

different from its R-1 neighbours.  
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Simplification 

n  If a node n in the interference graph has 
degree less than R, remove n and all its 
edges from the graph and place n on a 
colouring stack. 

n  When no more such nodes are removable 
then we need to spill a node. 

n  Spilling a variable x implies 
q  loading x into a register at every use of x 
q  storing x from register into memory at every 

definition of x 
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Spilling Cost 

n  The node to be spilled is decided on the basis of a 
spill cost for the live range represented by the node. 

n  Chaitin’s estimate of spill cost of a live range v 
 

q  cost(v) =  

q  where c is the cost of the op and d, the loop nesting depth. 
q  10 in the eqn above approximates the no. of iterations of 

any loop 
q  The node to be spilled is the one with MIN(cost(v)/deg(v)) 

all load or store 
operations in 
a live range v

*10dc∑
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Here R = 3 and the graph is 3-colourable 
No spilling is necessary 

Example 
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1 2 

3 

4 
5 

A 3-colourable graph which is not  
3-coloured by colouring heuristic 

Example 
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Spilling a Node 
n  To spill a node we remove it from the graph and 

represent the effect of spilling as follows (It cannot 
be simply removed from the graph). 
q  Reload the spilled object at each use and store it in 

memory at each definition point  
q  This creates new small live ranges which will also need 

registers. 
n  After all spill decisions are made, insert spill code, 

rebuild the interference graph and then repeat the 
attempt to colour. 

n  When simplification yields an empty graph then 
select colours, that is, registers 
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Effect of Spilling 

Def y 

Use x 

Def x 

Def y 

Use x 

Use y 
Use x 
Def x 

Def x 
Use y 

B2 
B1 

B3 

B4 B5 

B6 

W1: def x in B2, def x in B3, use x in 
B4, Use x in B5 
W2: def x in B5, use x in B6 
W3: def y in B2, use y in B4 
W4: def y in B1, use y in B3 

w3 w1 

w2 w4 

x is spilled in 
LV W1 
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Effect of Spilling 
 

Def x 
store x 
Def y 

load x 
Use x  
Use y 

load x 
Use x 
Def x 

Def x 
store x  
Use y  

Use x 

Def y 

B2 

B4 B5 

B6 

B1 

B3 

w4 

w6 

w5 

w1 w2 

w3 

w7 

Interference Graph 

W2 

W3 

W4 

W5 

W6 W7 

W1 
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Colouring the Graph(selection) 

Repeat 
v= pop(stack). 
Colours_used(v) = colours used by neighbours of v. 
Colours_free(v) = all colours - Colours_used(v). 
Colour (v) = choose any colour in Colours_free(v). 
Until stack is empty 
 
n  Convert the colour assigned to a symbolic register to 

the corresponding real register’s name in the code. 
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A Complete Example 

1.          t1 = 202 
2.         i = 1  
3.  L1:  t2 = i>100 
4.         if t2 goto L2 
5.         t1 = t1-2 
6.         t3 = addr(a) 
7.         t4 = t3 - 4 
8.         t5 = 4*i 
9.         t6 = t4 + t5 
10.      *t6 = t1 
11.       i = i+1 
12.       goto L1 
13. L2: 

variable live range 
t1 1-10 
i 2-11 

t2 3-4 
t3 6-7 
t4 7-9 
t5 8-9 
t6 9-10 
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A Complete Example 

variable live range 
t1 1-10 
i 2-11 

t2 3-4 
t3 6-7 
t4 7-9 
t5 8-9 
t6 9-10 

t1 i 

t2 t3 

t4 

t5 t6 



Y.N. Srikant 42 

A Complete Example 

t1 i 

t2 t3 

t4 

t5 t6 
Assume 3 registers. Nodes t6,t2, 
and t3 are first pushed onto a 
stack during reduction. 

t1 i 

t4 

t5 

This graph cannot be reduced  
further. Spilling is necessary. 
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A Complete Example 

t1 i 

t4 

t5 

Node V Cost(v) deg(v) h0(v) 
t1 31 3 10 
i 41 3 14 

t4 20 3 7 
t5 20 3 7 

t1: 1+(1+1+1)*10 = 31 
i  : 1+(1+1+1+1)*10 = 41 
t4: (1+1)*10 = 20 
t5: (1+1)*10 = 20 
t5 will be spilled. Then the 
graph can be coloured. 

1.          t1 = 202 
2.         i = 1  
3.  L1:  t2 = i>100 
4.         if t2 goto L2 
5.         t1 = t1-2 
6.         t3 = addr(a) 
7.         t4 = t3 - 4 
8.         t5 = 4*i 
9.         t6 = t4 + t5 
10.      *t6 = t1 
11.       i = i+1 
12.       goto L1 
13. L2: 
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A Complete Example 

t1 i 

t4 

i 
t1 
t4 
t3 
t2 
t6 

t1 i 

t2 t3 

t4 

t5 t6 

spilled 

R1 

R3 

R3 

R3 

R3 

R2 

1.          R1 = 202 
2.         R2 = 1  
3.  L1:  R3 = i>100 
4.         if R3 goto L2 
5.         R1 = R1 - 2 
6.         R3 = addr(a) 
7.         R3 = R3 - 4 
8.         t5 = 4*R2 
9.         R3 = R3 + t5 
10.      *R3 = R1 
11.       R2 = R2+1 
12.       goto L1 
13. L2: 

t5: spilled node, will be provided with a temporary register during code generation 
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Drawbacks of the Algorithm 

n  Constructing and modifying interference 
graphs is very costly as interference graphs 
are typically huge. 

n  For example, the combined interference 
graphs of procedures and functions of gcc in 
mid-90’s have approximately 4.6 million 
edges. 
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Some modifications 

n  Careful coalescing: Do not coalesce if 
coalescing increases the degree of a node to 
more than the number of registers 

n  Optimistic colouring: When a node needs to 
be spilled, push it onto the colouring stack 
instead of spilling it right away 
q  spill it only when it is popped and if there is no 

colour available for it 
q  this could result in colouring graphs that need 

spills using Chaitin’s technique. 
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1 2 

3 

4 
5 

A 3-colourable graph which is not  
3-coloured by colouring heuristic, 
but coloured by optimistic colouring Example 

Say, 1 is chosen for spilling.  
Push it onto the stack, and 
remove it from the graph. The 
remaining graph (2,3,4,5) is 
3-colourable. Now, when 1 is 
popped from the colouring 
stack, there is a colour with 
which 1 can be coloured. It 
need not be spilled. 


