
Global Register Allocation - 3

Y N Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline

n  Issues in Global Register Allocation
 (in part 1)
n  The Problem (in part 1)
n  Register Allocation based in Usage Counts
 (in part 2)
n  Linear Scan Register allocation (in part 2)
n  Chaitin’s graph colouring based algorithm

Y.N. Srikant 3

Chaitin’s Formulation of the
Register Allocation Problem
n  A graph colouring formulation on the

interference graph
n  Nodes in the graph represent either live ranges

of variables or entities called webs
n  An edge connects two live ranges that interfere

or conflict with one another
n  Usually both adjacency matrix and adjacency

lists are used to represent the graph.

Y.N. Srikant 4

Chaitin’s Formulation of the
Register Allocation Problem

n  Assign colours to the nodes such that two
nodes connected by an edge are not assigned
the same colour
q  The number of colours available is the number

of registers available on the machine
q  A k-colouring of the interference graph is

mapped onto an allocation with k registers

Y.N. Srikant 5

Example

n  Two colourable Three colourable

Y.N. Srikant 6

Idea behind Chaitin’s Algorithm

n  Choose an arbitrary node of degree less than k and
put it on the stack

n  Remove that vertex and all its edges from the graph
q  This may decrease the degree of some other nodes and

cause some more nodes to have degree less than k
n  At some point, if all vertices have degree greater

than or equal to k, some node has to be spilled
n  If no vertex needs to be spilled, successively pop

vertices off stack and colour them in a colour not
used by neighbours (reuse colours as far as
possible)

Y.N. Srikant 7

Simple example – Given Graph

2

3

4 5 1

STACK

3 REGISTERS

Y.N. Srikant 8

Simple Example – Delete Node 1

STACK
3 REGISTERS

2

3

4 5 1

2

 1

Y.N. Srikant 9

Simple Example – Delete Node 2

STACK
3 REGISTERS

2

3

4 5 1

 1
 2

Y.N. Srikant 10

Simple Example – Delete Node 4

STACK

3 REGISTERS

2

3

4 5 1

 1
 2
 4

Y.N. Srikant 11

Simple Example – Delete Nodes 3

STACK
3 REGISTERS

2

3

4 5 1

 1
 2
 4
 3

Y.N. Srikant 12

Simple Example – Delete Nodes 5

STACK
3 REGISTERS

2

3

4 5 1

 1
 2
 4
 3
 5

Y.N. Srikant 13

Simple Example – Colour Node 5

STACK

COLOURS

5

3 REGISTERS

 1
 2
 4
 3

Y.N. Srikant 14

Simple Example – Colour Node 3

STACK

COLOURS

5

3

3 REGISTERS

 1
 2
 4

Y.N. Srikant 15

Simple Example – Colour Node 4

STACK

COLOURS

5

3

4

3 REGISTERS

 1
 2

Y.N. Srikant 16

Simple Example – Colour Node 2

STACK

COLOURS

5

3

4

2

3 REGISTERS

 1

Y.N. Srikant 17

Simple Example – Colour Node 1

STACK

COLOURS

5

3

2

1 4

3 REGISTERS

Y.N. Srikant 18

Steps in Chaitin’s Algorithm

n  Identify units for allocation
q  Renames variables/symbolic registers in the IR such

that each live range has a unique name (number)
q  A live range is entitled to get a register

n  Build the interference graph
n  Coalesce by removing unnecessary move or

copy instructions
n  Colour the graph, thereby selecting registers
n  Compute spill costs, simplify and add spill code

till graph is colourable

Y.N. Srikant 19

Chaitin’s Framework

RENAME BUILD IG COALESCE SIMPLIFY COMPUTE
SPILL COST

INSERT
SPILL CODE

SELECT
REGISTERS

Example of Renaming

Y.N. Srikant 20

a = a =

= a

a =

= a = a

s1 = s1 =

= s1

s2 =

= s2 = s2

Renaming

Y.N. Srikant 21

An Example

Original code

1. x= 2
2. y = 4
3. w = x+ y
4. z = x+1
5. u = x*y
6. x= z*2

Code with symbolic registers

1.  s1=2; (lv of s1: 1-5)
2.  s2=4; (lv of s2: 2-5)
3.  s3=s1+s2; (lv of s3: 3-4)
4.  s4=s1+1; (lv of s4: 4-6)
5.  s5=s1*s2; (lv of s5: 5-6)
6.  s6=s4*2; (lv of s6: 6- ...)

Y.N. Srikant 22

s5
s1 s3 r3

s6 s2 s4
r1 r2

INTERFERENCE GRAPH
HERE ASSUME VARIABLE Z (s4) CANNOT OCCUPY r1

Y.N. Srikant 23

Example(continued)

Final register allocated code

r1 = 2
r2= 4
r3= r1+r2
r3= r1+1
r1= r1 *r2
r2= r3+r2

Three registers are
sufficient for no spills

Y.N. Srikant 24

More Complex Example

Def y

Use x

Def x

Def y

Use x

Use y
Use x
Def x

Def x
Use y

B2
B1

B3

B4 B5

B6

W1: def x in B2, def x in B3, use x in
B4, Use x in B5
W2: def x in B5, use x in B6
W3: def y in B2, use y in B4
W4: def y in B1, use y in B3

w3 w1

w2 w4

Y.N. Srikant 25

Build Interference Graph

n  Create a node for each LV and for each
physical register in the interference graph

n  If two distinct LVs interfere, that is, a variable
associated with one LV is live at a definition
point of another add an edge between the
two LVs

n  If a particular variable cannot reside in a
register, add an edge between all LVs
associated with that variable and the register

Y.N. Srikant 26

Copy Subsumption or Coalescing

n  Consider a copy instruction: b := e in the program
n  If the live ranges of b and e do not overlap, then b

and e can be given the same register (colour)
q  Implied by lack of any edges between b and e in the

interference graph
n  The copy instruction can then be removed from the

final program
n  Coalesce by merging b and e into one node that

contains the edges of both nodes

Y.N. Srikant 27

Example of coalescing

c

b

d

e

a

f

c

be

d

a

f

BEFORE AFTER

Copy inst: b:=e

Y.N. Srikant 28

Copy Subsumption or Coalescing

b = e b = e

l.r of
old b

l.r of
new b

l.r of e

l.r of
old b

l.r of
new b

l.r of e

copy subsumption
is not possible; lr(e)
and lr(new b) interfere

copy subsumption is
possible; lr(e) and lr(new b)
do not interfere

Y.N. Srikant 29

Copy Subsumption Repeatedly

b = e

l.r of x

l.r of b

l.r of e

copy subsumption happens
twice - once between b and e,
and second time between
a and b. e, b, and a are all
given the same register. a = b

l.r of a

Y.N. Srikant 30

Coalescing

n  Coalesce all possible copy instructions

q  Rebuild the graph
n  may offer further opportunities for coalescing
n  build-coalesce phase is repeated till no further

coalescing is possible.
n  Coalescing reduces the size of the

graph and possibly reduces spilling

Y.N. Srikant 31

Simple fact

n  Suppose the no. of registers available is R.
n  If a graph G contains a node n with fewer

than R neighbors then removing n and its
edges from G will not affect its R-colourability

n  If G’ = G-{n} can be coloured with R colours,
then so can G.
q  After colouring G’, just assign to n, a colour

different from its R-1 neighbours.

Y.N. Srikant 32

Simplification

n  If a node n in the interference graph has
degree less than R, remove n and all its
edges from the graph and place n on a
colouring stack.

n  When no more such nodes are removable
then we need to spill a node.

n  Spilling a variable x implies
q  loading x into a register at every use of x
q  storing x from register into memory at every

definition of x

Y.N. Srikant 33

Spilling Cost

n  The node to be spilled is decided on the basis of a
spill cost for the live range represented by the node.

n  Chaitin’s estimate of spill cost of a live range v

q  cost(v) =

q  where c is the cost of the op and d, the loop nesting depth.
q  10 in the eqn above approximates the no. of iterations of

any loop
q  The node to be spilled is the one with MIN(cost(v)/deg(v))

all load or store
operations in
a live range v

*10dc∑

Y.N. Srikant 34

Here R = 3 and the graph is 3-colourable
No spilling is necessary

Example

Y.N. Srikant 35

1 2

3

4
5

A 3-colourable graph which is not
3-coloured by colouring heuristic

Example

Y.N. Srikant 36

Spilling a Node
n  To spill a node we remove it from the graph and

represent the effect of spilling as follows (It cannot
be simply removed from the graph).
q  Reload the spilled object at each use and store it in

memory at each definition point
q  This creates new small live ranges which will also need

registers.
n  After all spill decisions are made, insert spill code,

rebuild the interference graph and then repeat the
attempt to colour.

n  When simplification yields an empty graph then
select colours, that is, registers

Y.N. Srikant 37

Effect of Spilling

Def y

Use x

Def x

Def y

Use x

Use y
Use x
Def x

Def x
Use y

B2
B1

B3

B4 B5

B6

W1: def x in B2, def x in B3, use x in
B4, Use x in B5
W2: def x in B5, use x in B6
W3: def y in B2, use y in B4
W4: def y in B1, use y in B3

w3 w1

w2 w4

x is spilled in
LV W1

Y.N. Srikant 38

Effect of Spilling

Def x
store x
Def y

load x
Use x
Use y

load x
Use x
Def x

Def x
store x
Use y

Use x

Def y

B2

B4 B5

B6

B1

B3

w4

w6

w5

w1 w2

w3

w7

Interference Graph

W2

W3

W4

W5

W6 W7

W1

Y.N. Srikant 39

Colouring the Graph(selection)

Repeat
v= pop(stack).
Colours_used(v) = colours used by neighbours of v.
Colours_free(v) = all colours - Colours_used(v).
Colour (v) = choose any colour in Colours_free(v).
Until stack is empty

n  Convert the colour assigned to a symbolic register to

the corresponding real register’s name in the code.

Y.N. Srikant 40

A Complete Example

1. t1 = 202
2. i = 1
3. L1: t2 = i>100
4. if t2 goto L2
5. t1 = t1-2
6. t3 = addr(a)
7. t4 = t3 - 4
8. t5 = 4*i
9. t6 = t4 + t5
10. *t6 = t1
11. i = i+1
12. goto L1
13. L2:

variable live range
t1 1-10
i 2-11

t2 3-4
t3 6-7
t4 7-9
t5 8-9
t6 9-10

Y.N. Srikant 41

A Complete Example

variable live range
t1 1-10
i 2-11

t2 3-4
t3 6-7
t4 7-9
t5 8-9
t6 9-10

t1 i

t2 t3

t4

t5 t6

Y.N. Srikant 42

A Complete Example

t1 i

t2 t3

t4

t5 t6
Assume 3 registers. Nodes t6,t2,
and t3 are first pushed onto a
stack during reduction.

t1 i

t4

t5

This graph cannot be reduced
further. Spilling is necessary.

Y.N. Srikant 43

A Complete Example

t1 i

t4

t5

Node V Cost(v) deg(v) h0(v)
t1 31 3 10
i 41 3 14

t4 20 3 7
t5 20 3 7

t1: 1+(1+1+1)*10 = 31
i : 1+(1+1+1+1)*10 = 41
t4: (1+1)*10 = 20
t5: (1+1)*10 = 20
t5 will be spilled. Then the
graph can be coloured.

1. t1 = 202
2. i = 1
3. L1: t2 = i>100
4. if t2 goto L2
5. t1 = t1-2
6. t3 = addr(a)
7. t4 = t3 - 4
8. t5 = 4*i
9. t6 = t4 + t5
10. *t6 = t1
11. i = i+1
12. goto L1
13. L2:

Y.N. Srikant 44

A Complete Example

t1 i

t4

i
t1
t4
t3
t2
t6

t1 i

t2 t3

t4

t5 t6

spilled

R1

R3

R3

R3

R3

R2

1. R1 = 202
2. R2 = 1
3. L1: R3 = i>100
4. if R3 goto L2
5. R1 = R1 - 2
6. R3 = addr(a)
7. R3 = R3 - 4
8. t5 = 4*R2
9. R3 = R3 + t5
10. *R3 = R1
11. R2 = R2+1
12. goto L1
13. L2:

t5: spilled node, will be provided with a temporary register during code generation

Y.N. Srikant 45

Drawbacks of the Algorithm

n  Constructing and modifying interference
graphs is very costly as interference graphs
are typically huge.

n  For example, the combined interference
graphs of procedures and functions of gcc in
mid-90’s have approximately 4.6 million
edges.

Y.N. Srikant 46

Some modifications

n  Careful coalescing: Do not coalesce if
coalescing increases the degree of a node to
more than the number of registers

n  Optimistic colouring: When a node needs to
be spilled, push it onto the colouring stack
instead of spilling it right away
q  spill it only when it is popped and if there is no

colour available for it
q  this could result in colouring graphs that need

spills using Chaitin’s technique.

Y.N. Srikant 47

1 2

3

4
5

A 3-colourable graph which is not
3-coloured by colouring heuristic,
but coloured by optimistic colouring Example

Say, 1 is chosen for spilling.
Push it onto the stack, and
remove it from the graph. The
remaining graph (2,3,4,5) is
3-colourable. Now, when 1 is
popped from the colouring
stack, there is a colour with
which 1 can be coloured. It
need not be spilled.

