
Global Register Allocation - 2

Y N Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline

n  Issues in Global Register Allocation
 (in part 1)
n  The Problem (in part 1)
n  Register Allocation based in Usage Counts
n  Linear Scan Register allocation
n  Chaitin’s graph colouring based algorithm

Y.N. Srikant 3

The Problem

n  Global Register Allocation assumes that allocation is
done beyond basic blocks and usually at function level

n  Decision problem related to register allocation :
q  Given an intermediate language program represented as a

control flow graph and a number k, is there an assignment
of registers to program variables such that no conflicting
variables are assigned the same register, no extra loads or
stores are introduced, and at most k registers are used.

n  This problem has been shown to be NP-hard (Sethi
1970).

n  Graph colouring is the most popular heuristic used.
n  However, there are simpler algorithms as well

Y.N. Srikant 4

Conflicting variables

n  Two variables interfere or conflict if their live
ranges intersect
q  A variable is live at a point p in the flow graph, if

there is a use of that variable in the path from p to
the end of the flow graph

q  The live range of a variable is the smallest set of
program points at which it is live.

q  Typically, instruction no. in the basic block along
with the basic block no. is the representation for a
point.

Y.N. Srikant 5

Example

 If (cond) A not live
 then A =
 else B =
X: if (cond) B not live
 then = A
 else = B

 A and B both live

If (cond)

A= B=

If (cond)

=A =B

T F

F

B1

B2 B3

B4

B6
B5

Live range of A: B2, B4 B5
Live range of B: B3, B4, B6

Y.N. Srikant 6

Global Register Allocation via
Usage Counts (for Single Loops)
n  Allocate registers for variables used within loops
n  Requires information about liveness of variables

at the entry and exit of each basic block (BB) of
a loop

n  Once a variable is computed into a register, it
stays in that register until the end of of the BB
(subject to existence of next-uses)

n  Load/Store instructions cost 2 units (because
they occupy two words)

Y.N. Srikant 7

Global Register Allocation via
Usage Counts (for Single Loops)
1.  For every usage of a variable v in a BB,

until it is first defined, do:
Ø  savings(v) = savings(v) + 1
Ø  after v is defined, it stays in the register any way,

and all further references are to that register
2.  For every variable v computed in a BB, if it

is live on exit from the BB,
Ø  count a savings of 2, since it is not necessary to

store it at the end of the BB

Y.N. Srikant 8

Global Register Allocation via
Usage Counts (for Single Loops)
n  Total savings per variable v are

q  liveandcomputed(v,B) in the second term is 1 or 0
n  On entry to (exit from) the loop, we load (store) a

variable live on entry (exit), and lose 2 units for each
q  But, these are “one time” costs and are neglected

n  Variables, whose savings are the highest will reside
in registers

((,) 2* (,))
B Loop

savings v B liveandcomputed v B
∈

+∑

Y.N. Srikant 9

Global Register Allocation via
Usage Counts (for Single Loops)

Savings for the variables
 B1 B2 B3 B4
a: (0+2)+(1+0)+(1+0)+(0+0) = 4
b: (3+0)+(0+0)+(0+0)+(0+2) = 5
c: (1+0)+(1+0)+(0+0)+(1+0) = 3
d: (0+2)+(1+0)+(0+0)+(1+0) = 4
e: (0+2)+(0+0)+(1+0)+(0+0) = 3
f: (1+0)+(1+0)+(0+2)+(0+0) = 4

If there are 3 registers, they will
be allocated to the variables, a, b,
and d

a = b*c
d = b-a
e = b/f

b = a-f
e = d+c f = e * a

b = c - d

bcf

B1

B2

B3

B4

acde acdf

cdf

bcf abcdef

aef

Y.N. Srikant 10

Global Register Allocation via
Usage Counts (for Nested Loops)
n  We first assign registers for inner loops and then

consider outer loops. Let L1 nest L2
n  For variables assigned registers in L2, but not in L1

q  load these variables on entry to L2 and store them on exit
from L2

n  For variables assigned registers in L1, but not in L2
q  store these variables on entry to L2 and load them on exit

from L2
n  All costs are calculated keeping the above rules

Y.N. Srikant 11

Global Register Allocation via
Usage Counts (for Nested Loops)

n  case 1: variables x,y,z
assigned registers in L2, but
not in L1
q  Load x,y,z on entry to L2
q  Store x,y,z on exit from L2

n  case 2: variables a,b,c
assigned registers in L1, but
not in L2
q  Store a,b,c on entry to L2
q  Load a,b,c on exit from L2

n  case 3: variables p,q assigned
registers in both L1 and L2
q  No special action

Body
of L2

L2 L1

Y.N. Srikant 12

A Fast Register Allocation Scheme

n  Linear scan register allocation(Poletto and
Sarkar 1999) uses the notion of a live interval
rather than a live range.

n  Is relevant for applications where compile
time is important, such as in dynamic
compilation and in just-in-time compilers.

n  Other register allocation schemes based on
graph colouring are slow and are not suitable
for JIT and dynamic compilers

Y.N. Srikant 13

Linear Scan Register Allocation

n  Assume that there is some numbering of the
instructions in the intermediate form

n  An interval [i,j] is a live interval for variable v
if there is no instruction with number j’> j
such that v is live at j’ and no instruction with
number i’< i such that v is live at i

n  This is a conservative approximation of live
ranges: there may be subranges of [i,j] in
which v is not live but these are ignored

Y.N. Srikant 14

Live Interval Example

 ...
i’:
 ...
i:
 ...
j:
 ...
j’:
 ...

sequentially
numbered
instructions } i – j : live interval for variable v

i’ does not exist

j’ does not exist

v live

v live

v live

Y.N. Srikant 15

Example

 If (cond)
 then A=
 else B=
X: if (cond)
 then =A
 else = B

If (cond)

A= B=

If (cond)

=A =B

T F

F

LIVE INTERVAL FOR A

A NOT LIVE HERE

Y.N. Srikant 16

Live Intervals

n  Given an order for pseudo-instructions and
live variable information, live intervals can be
computed easily with one pass through the
intermediate representation.

n  Interference among live intervals is assumed
if they overlap.

n  Number of overlapping intervals changes
only at start and end points of an interval.

Y.N. Srikant 17

The Data Structures

n  Live intervals are stored in the sorted order of
increasing start point.

n  At each point of the program, the algorithm
maintains a list (active list) of live intervals
that overlap the current point and that have
been placed in registers.

n  active list is kept in the sorted order of
increasing end point.

Y.N. Srikant 18

i1 i2 i3 i4

i5 i6 i7

i8 i9 i10 i11
A B

Active lists (in order
of increasing end pt)

Active(A)= {i1}
Active(B)={i1,i5}
Active(C)={i8,i5}
Active(D)= {i7,i4,i11}

C

Example

Three registers are enough for computation without spills

D

Sorted order of intervals
(according to start point):
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11

Y.N. Srikant 19

The Algorithm (1)

{ active := [];
 for each live interval i, in order of increasing
 start point do
 { ExpireOldIntervals (i);
 if length(active) == R then SpillAtInterval(i);
 else { register[i] := a register removed from the
 pool of free registers;
 add i to active, sorted by increasing end point
 }
 }
}

Y.N. Srikant 20

The Algorithm (2)

ExpireOldIntervals (i)
{ for each interval j in active, in order of
 increasing end point do
 { if endpoint[j] > startpoint[i] then continue
 else { remove j from active;
 add register[j] to pool of free registers;
 }
 }
}

Y.N. Srikant 21

The Algorithm (3)

SpillAtInterval (i)
{ spill := last interval in active; /* last ending interval */
 if endpoint [spill] > endpoint [i] then
 { register [i] := register [spill];
 location [spill] := new stack location;
 remove spill from active;
 add i to active, sorted by increasing end point;
 } else location [i] := new stack location;
}

Y.N. Srikant 22

i1 i2 i3 i4

i5 i6 i7

i8 i9 i10 i11
A B

Active lists (in order
of increasing end pt)

Active(A)= {i1}
Active(B)={i1,i5}
Active(C)={i8,i5}
Active(D)= {i7,i4,i11}

C

Three registers are enough for computation without spills

D

Sorted order of intervals
(according to start point):
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11

Example 1

Y.N. Srikant 23

Example 2
A

B

C

D

E

1 2 3 4 5

1,2 : give A,B register
3: Spill C since endpoint[C] > endpoint [B]

4: A expires, give D register
5: B expires, E gets register

2 registers
available

Y.N. Srikant 24

Example 3
A

B

C

D

E

1 2 3 4 5

1,2 : give A,B register
3: Spill B since endpoint[B] > endpoint [C]
 give register to C

4: A expires, give D register
5: C expires, E gets register

2 registers
available

Y.N. Srikant 25

Complexity of the Linear Scan
Algorithm
n  If V is the number of live intervals and R the number of

available physical registers, then if a balanced binary
tree is used for storing the active intervals, complexity is
O(V log R).
q  Active list can be at most ‘R’ long
q  Insertion and deletion are the important operations

n  Empirical results reported in literature indicate that linear
scan is significantly faster than graph colouring
algorithms and code emitted is at most 10% slower than
that generated by an aggressive graph colouring
algorithm.

Y.N. Srikant 26

Chaitin’s Formulation of the
Register Allocation Problem
n  A graph colouring formulation on the

interference graph
n  Nodes in the graph represent either live ranges

of variables or entities called webs
n  An edge connects two live ranges that interfere

or conflict with one another
n  Usually both adjacency matrix and adjacency

lists are used to represent the graph.

Y.N. Srikant 27

Chaitin’s Formulation of the
Register Allocation Problem

n  Assign colours to the nodes such that two
nodes connected by an edge are not assigned
the same colour
q  The number of colours available is the number

of registers available on the machine
q  A k-colouring of the interference graph is

mapped onto an allocation with k registers

Y.N. Srikant 28

Example

n  Two colourable Three colourable

Y.N. Srikant 29

Idea behind Chaitin’s Algorithm

n  Choose an arbitrary node of degree less than k and
put it on the stack

n  Remove that vertex and all its edges from the graph
q  This may decrease the degree of some other nodes and

cause some more nodes to have degree less than k
n  At some point, if all vertices have degree greater

than or equal to k, some node has to be spilled
n  If no vertex needs to be spilled, successively pop

vertices off stack and colour them in a colour not
used by neighbours (reuse colours as far as
possible)

