
Global Register Allocation - 2 
 

Y N Srikant 
Computer Science and Automation 
Indian Institute of Science 
Bangalore 560012 

NPTEL Course on Principles of Compiler Design 



Y.N. Srikant 2 

Outline 

n  Issues in Global Register Allocation  
   (in part 1) 
n  The Problem (in part 1) 
n  Register Allocation based in Usage Counts 
n  Linear Scan Register allocation 
n  Chaitin’s graph colouring based algorithm 
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The Problem 

n  Global Register Allocation assumes that allocation is 
done beyond basic blocks and usually at function level 

n  Decision problem related to register allocation : 
q  Given an intermediate language program represented as a 

control flow graph and a number k, is there an assignment 
of registers to program variables such that no conflicting 
variables are assigned the same register, no extra loads or 
stores are introduced, and at most k registers are used. 

n  This problem has been shown to be NP-hard (Sethi 
1970). 

n  Graph colouring is the most popular heuristic used. 
n  However, there are simpler algorithms as well 
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Conflicting variables 

n  Two variables interfere or conflict if their live 
ranges intersect 
q  A variable is live at a point p in the flow graph, if 

there is a use of that variable in the path from p to 
the end of the flow graph 

q  The live range of a variable is the smallest set of 
program points at which it is live. 

q  Typically, instruction no. in the basic block along 
with the basic block no. is the representation for a 
point. 
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Example 

   If (cond)          A not live 
       then A = 
       else B = 
X: if (cond)         B not live 
        then = A 
        else = B 
----------------------------- 
   A and B both live 

If (cond) 

A= B= 

If (cond) 

=A =B 

T F 

F 

B1 

B2 B3 

B4 

B6 
B5 

Live range of A: B2, B4 B5 
Live range of B: B3, B4, B6 
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Global Register Allocation via 
Usage Counts (for Single Loops) 
n  Allocate registers for variables used within loops 
n  Requires information about liveness of variables 

at the entry and exit of each basic block (BB) of 
a loop 

n  Once a variable is computed into a register, it 
stays in that register until the end of of the BB 
(subject to existence of next-uses) 

n  Load/Store instructions cost 2 units (because 
they occupy two words) 
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Global Register Allocation via 
Usage Counts (for Single Loops) 
1.  For every usage of a variable v in a BB, 

until it is first defined, do:  
Ø  savings(v) = savings(v) + 1 
Ø  after v is defined, it stays in the register any way, 

and all further references are to that register 
2.  For every variable v computed in a BB, if it 

is live on exit from the BB,  
Ø  count a savings of 2, since it is not necessary to 

store it at the end of the BB 
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Global Register Allocation via 
Usage Counts (for Single Loops) 
n  Total savings per variable v are 

q  liveandcomputed(v,B) in the second term is 1 or 0 
n  On entry to (exit from) the loop, we load (store) a 

variable live on entry (exit), and lose 2 units for each 
q  But, these are “one time” costs and are neglected 

n  Variables, whose savings are the highest will reside 
in registers 

  

( ( , ) 2* ( , ))
B Loop

savings v B liveandcomputed v B
∈

+∑
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Global Register Allocation via 
Usage Counts (for Single Loops) 

Savings  for the variables 
       B1      B2      B3     B4 
a: (0+2)+(1+0)+(1+0)+(0+0) = 4 
b: (3+0)+(0+0)+(0+0)+(0+2) = 5 
c: (1+0)+(1+0)+(0+0)+(1+0) = 3 
d: (0+2)+(1+0)+(0+0)+(1+0) = 4 
e: (0+2)+(0+0)+(1+0)+(0+0) = 3 
f:  (1+0)+(1+0)+(0+2)+(0+0) = 4 
 
If there are 3 registers, they will 
be allocated to the variables, a, b,  
and d 

a = b*c 
d = b-a 
e = b/f 

b = a-f 
e = d+c f = e * a 

b = c - d 

bcf 

B1 

B2 

B3 

B4 

acde acdf 

cdf 

bcf abcdef 

aef 
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Global Register Allocation via 
Usage Counts (for Nested Loops) 
n  We first assign registers for inner loops and then 

consider outer loops. Let L1 nest L2 
n  For variables assigned registers in L2, but not in L1 

q  load these variables on entry to L2 and store them on exit 
from L2 

n  For variables assigned registers in L1, but not in L2 
q  store these variables on entry to L2 and load them on exit 

from L2 
n  All costs are calculated keeping the above rules 
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Global Register Allocation via 
Usage Counts (for Nested Loops) 

n  case 1: variables x,y,z 
assigned registers in L2, but 
not in L1 
q  Load x,y,z on entry to L2 
q  Store x,y,z on exit from L2 

n  case 2: variables a,b,c 
assigned registers in L1, but 
not in L2 
q  Store a,b,c on entry to L2 
q  Load a,b,c on exit from L2 

n  case 3: variables p,q assigned 
registers in both L1 and L2 
q  No special action 

Body 
of L2 

L2 L1 
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A Fast Register Allocation Scheme 

n  Linear scan register allocation(Poletto and 
Sarkar 1999) uses the notion of a live interval 
rather than a live range. 

n  Is relevant for applications where compile 
time is important, such as in dynamic 
compilation and in just-in-time compilers. 

n  Other register allocation schemes based on 
graph colouring are slow and are not suitable 
for JIT and dynamic compilers  
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Linear Scan Register Allocation 

n  Assume that there is some numbering of the 
instructions in the intermediate form 

n  An interval [i,j] is a live interval for variable v 
if there is no instruction with number j’> j 
such that v is live at j’ and no instruction with 
number i’< i such that v is live at i 

n  This is a conservative approximation of live 
ranges: there may be subranges of [i,j] in 
which v is not live but these are ignored 
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Live Interval Example 

     ... 
i’:  
     ... 
i:  
     ... 
j: 
     ... 
j’: 
     ... 

sequentially 
numbered 
instructions } i – j : live interval for variable v 

i’ does not exist 

j’ does not exist 

v live 

v live 

v live 
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Example 

     If (cond) 
        then A= 
        else B= 
X: if (cond)  
    then =A 
    else = B 
 

If (cond) 

A= B= 

If (cond) 

=A =B 

T F 

F 

LIVE INTERVAL FOR A 

A NOT LIVE HERE 
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Live Intervals 

n  Given an order for pseudo-instructions and 
live variable information, live intervals can be 
computed easily with one pass through the 
intermediate representation. 

n  Interference among live intervals is assumed 
if they overlap. 

n  Number of overlapping intervals changes 
only at start and end points of an interval. 
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The Data Structures 

n  Live intervals are stored in the sorted order of 
increasing start point. 

n  At each point of the program, the algorithm 
maintains a list (active list) of live intervals 
that overlap the current point and that have 
been placed in registers. 

n  active list is kept in the sorted order of 
increasing end point. 
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i1 i2 i3 i4 

i5 i6 i7 

i8 i9 i10 i11 
A B 

Active lists (in order 
of increasing end pt) 
 
Active(A)= {i1} 
Active(B)={i1,i5} 
Active(C)={i8,i5} 
Active(D)= {i7,i4,i11} 

C 

Example 

Three registers are enough for computation without spills 

D 

Sorted order of intervals 
(according to start point): 
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11 
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The Algorithm (1) 

{ active :=  [ ]; 
  for each live interval i, in order of increasing  
       start point do 
  { ExpireOldIntervals (i); 
    if length(active) == R then SpillAtInterval(i); 
    else { register[i] := a register removed from the  
                                  pool of free registers; 
              add i to active, sorted by increasing end point 
            } 
   } 
} 
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The Algorithm (2) 

ExpireOldIntervals (i) 
{ for each interval j in active, in order of   
     increasing end point do 
   { if endpoint[j] > startpoint[i] then continue 
     else { remove j from active; 
               add register[j] to pool of free registers; 
             } 
    } 
} 
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The Algorithm (3) 

SpillAtInterval (i) 
{ spill := last interval in active; /* last ending interval */ 
  if endpoint [spill] > endpoint [i] then 
    { register [i] := register [spill]; 
      location [spill] := new stack location; 
      remove spill from active; 
      add i to active, sorted by increasing end point; 
     } else location [i] := new stack location; 
} 
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i1 i2 i3 i4 

i5 i6 i7 

i8 i9 i10 i11 
A B 

Active lists (in order 
of increasing end pt) 
 
Active(A)= {i1} 
Active(B)={i1,i5} 
Active(C)={i8,i5} 
Active(D)= {i7,i4,i11} 

C 

Three registers are enough for computation without spills 

D 

Sorted order of intervals 
(according to start point): 
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11 

Example 1 
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Example 2 
A 

B 

C 

D 

E 

1           2       3               4        5 

1,2 : give A,B register 
3: Spill C since endpoint[C] > endpoint [B] 

4: A expires, give D register 
5: B expires, E gets register 

2 registers 
available 
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Example 3 
A 

B 

C 

D 

E 

1           2       3               4        5 

1,2 : give A,B register 
3: Spill B since endpoint[B] > endpoint [C] 
    give register to C 

4: A expires, give D register 
5: C expires, E gets register 

2 registers 
available 
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Complexity of the Linear Scan 
Algorithm 
n  If V is the number of live intervals and R the number of 

available physical registers, then if a balanced binary 
tree is used for storing the active intervals, complexity is 
O(V log R). 
q  Active list can be at most ‘R’ long 
q  Insertion and deletion are the important operations 

n  Empirical results reported in literature indicate that linear 
scan is significantly faster than graph colouring 
algorithms and code emitted is at most 10% slower than 
that generated by an aggressive graph colouring 
algorithm. 
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Chaitin’s Formulation of the  
Register Allocation Problem 
n  A graph colouring formulation on the 

interference graph 
n  Nodes in the graph represent either live ranges 

of variables or entities called webs 
n  An edge connects two live ranges that interfere 

or conflict with one another 
n  Usually both adjacency matrix and adjacency 

lists are used to represent the graph. 
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Chaitin’s Formulation of the  
Register Allocation Problem 

n  Assign colours to the nodes such that two 
nodes connected by an edge are not assigned 
the same colour 
q  The number of colours available is the number 

of registers available on the machine 
q  A k-colouring of the interference graph is 

mapped onto an allocation with k registers 
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Example 

n  Two colourable              Three colourable 
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Idea behind Chaitin’s Algorithm 

n  Choose an arbitrary node of degree less than k and 
put it on the stack 

n  Remove that vertex and all its edges from the graph 
q  This may decrease the degree of some other nodes and 

cause some more nodes to have degree less than k 
n  At some point, if all vertices have degree greater 

than or equal to k, some node has to be spilled 
n  If no vertex needs to be spilled, successively pop 

vertices off stack and colour them in a colour not 
used by neighbours (reuse colours as far as 
possible) 


