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Outline of the Lecture 

n  Language requirements (in part 1) 
n  Mapping names to methods (in part 1) 
n  Variable name visibility 
n  Code generation for methods 
n  Simple optimizations 
n  Parts of this lecture are based on the book, 
“Engineering a Compiler”, by Keith Cooper and 
Linda Torczon, Morgan Kaufmann, 2004, 
sections 6.3.3 and 7.10. 
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Example of Class Hierarchy with 
Complete Method Tables 
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Mapping Names to Methods 

n  Method invocations are not always static calls 
n  a.fee() invokes one.fee(), a.foe() invokes two.foe(), 

and a.fum() invokes three.fum() 
n  Conceptually, method lookup behaves as if it 

performs a search for each procedure call 
q  These are called virtual calls 
q  Search for the method in the receiver’s class; if it fails, 

move up to the receiver’s superclass, and further 
q  To make this search efficient, an implementation places a 

complete method table in each class 
q  Or, a pointer to the method table is included (virtual tbl ptr) 
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Rules for Variable Name Visibility 

n  Invoking b.fee() allows fee() to access all of 
b’s instance variables (x,y,z), (since fee and 
b are both declared by class one), and also 
all class variables of classes one, two, and 
three 

n  However, invoking b.foe() allows foe() access 
only to instance variables x and y of b (not z), 
since foe() is declared by class two, and b by 
class one 
q  foe() can also access class variables of classes 

two and three, but not class variables of class one 
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Code Generation for Methods 

n  Methods can access any data member of any 
object that becomes its receiver  
q  receiver - every object that can find the method 
q  subject to class hierarchy restrictions 

n  Compiler must establish an offset for each 
data member that applies uniformly to every 
receiver 

n  The compiler constructs these offsets as it 
processes the declarations for a class 
q  Objects contain no code, only data 
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Single Class, No Inheritance 

Example: 
Class giant { 
     int fee() {...} 
     int fie() {...} 
     int foe() {...} 
     int fum() {...} 
static n; 
int x,y; 
} 

%giant.new_ 

%giant.fee_ 

%giant.fie_ 

%giant.foe_ 

%giant.fum_ 
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Implementing Single Inheritance 

%new_ 

%fee_ 

%new_ 
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Single Inheritance Object Layout 

n  Now, an instance variable has the same offset in  
every  class where it exists up in its superclass 

n  Method tables also follow a similar sequence as 
above 

n  When a class redefines a method defined in one of 
its superclasses 
q  the method pointer for that method  implementation must 

be stored at the same offset as the previous 
implementation of that method in the superclasses 

class 
pointer 

sc data 
members 

mc data 
members 

giant data 
members 
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Single Inheritance Object Layout  
(Complete Method Tables) 
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Single Inheritance Object Layout (including 
only changed and extra methods) 
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Fast Type Inclusion Tests – The need 

n  If class Y is a subclass of class X 
q  X a = new Y(); //a is of type base class of Y, okay 
        // other code omitted 
      Y b = a; // a holds a value of type Y 
q  The above assignment is valid, but stmt 2 below is not 
q  1.  X a = new X(); 
         // other code omitted 
       2.   Y b = a; // a holds a value of type X 

n  Runtime type checking to verify the above is 
needed 

n  Java has an explicit instanceof test that requires a 
runtime type checking 
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Fast Type Inclusion Tests – Searching the 
Class Hierarchy Graph 
n  Store the class hierarchy graph in memory 
n  Search and check if one node is an ancestor 

of another 
n  Traversal is straight forward to implement 

only for single inheritance 
n  Cumbersome and slow for multiple 

inheritance 
n  Execution time increases with depth of class 

hierarchy 
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Class Hierarchy Graph - Example 
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Fast Type Inclusion Tests – Binary Matrix 

0 1 0 0 1 

0 0 1 0 1 

1 0 0 1 0 

1 0 0 0 1 

0 0 1 0 0 

   C1         C2         C3          C4         C5 

C1 

C2 

C3 

C4 

C5 

Class types 

Class types 

BM [Ci  , Cj] = 1, iff Ci is a subclass of Cj 

Tests are 
efficient, but 
Matrix will be 
large in practice. 
The matrix can 
be compacted, 
but this 
increases 
access time. 
This can handle 
multiple 
inheritance also. 
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Relative (Schubert’s) Numbering 

A 

B C 

D E 

G 

F 

{3,3} 

{1,1} 
{5,5} 

{3,4} 

{3,6} {1,2} 

{1,7} 

{ la, ra } for a node a : 
ra is the ordinal number of the 
node a in a postorder traversal of 
the tree. Let ◄ denote “subtype 
of” relation. All descendants of a 
node are subtypes of that node.  
◄ is reflexive and transitive. 
la = min { rp | p is a descendant of 
a }.  
Now, a ◄ b, iff lb < ra < rb.  
 
This test is very fast and is O(1). 
Works only for single inheritance. 
Extensions to handle multiple 
inheritance are complex. 
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Devirtualization – Class Hierarchy Analysis 

n  Reduces the overhead of virtual method 
invocation 

n  Statically determines which virtual method 
calls resolve to a single method 

n  Such calls are either inlined or replaced by 
static calls 

n  Builds a class hierarchy and a call graph 
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Class Hierarchy Analysis 
class X extends object { 
         void f1() {. . .} 
         void f2() {. . .} 
} 
class Y extends X { 
         void f1() {. . .} 
} 
class Z extends X { 
         void f1() {. . .} 
         public static void main(...) { 
                 X a = new X(); Y b = new Y();  
                 Z c = new Z(); 
                  if (...) a = c; 
                 // other code 
                 a.f1();   b.f1();   b.f2(); 
         } 
} 

object 

X 
f1(), f2() 

Y 
f1() 

Z 
f1() 

Z.main() 
a.f1()               b.f1()                b.f2() 

X.f1 Y.f1 Z.f1 X.f2 
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Outline 

n  Issues in Global Register Allocation 
n  The Problem 
n  Register Allocation based on Usage Counts 
n  Linear Scan Register allocation 
n  Chaitin’s graph colouring based algorithm 
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Some Issues in Register Allocation 

n  Which values in a program reside in registers? 
(register allocation)  

n  In which register? (register assignment)   
q  The two together are usually loosely referred to as register 

allocation 
n  What is the unit at the level of which register 

allocation is done?  
q  Typical units are basic blocks, functions and regions. 
q  RA within basic blocks is called local RA 
q  The other two are known as global RA 
q  Global RA requires much more time than local RA 
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Some Issues in Register Allocation 

n  Phase ordering between register allocation  and 
instruction scheduling 
q  Performing RA first restricts movement of code during 

scheduling – not recommended 
q  Scheduling instructions first cannot handle spill code 

introduced during RA 
n  Requires another pass of scheduling 

n  Tradeoff between speed and quality of allocation 
q  In some cases, e.g., in Just-In-Time compilation, cannot 

afford to spend too much time in register allocation 
q  Only local or both local and global allocation? 
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The Problem 

n  Global Register Allocation assumes that allocation is 
done beyond basic blocks and usually at function level 

n  Decision problem related to register allocation : 
q  Given an intermediate language program represented as a 

control flow graph and a number k, is there an assignment 
of registers to program variables such that no conflicting 
variables are assigned the same register, no extra loads or 
stores are introduced, and at most k registers are used? 

n  This problem has been shown to be NP-hard (Sethi 
1970). 

n  Graph colouring is the most popular heuristic used. 
n  However, there are simpler algorithms as well 


