
Implementing
Object-Oriented Languages - 2

Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  Language requirements (in part 1)
n  Mapping names to methods (in part 1)
n  Variable name visibility
n  Code generation for methods
n  Simple optimizations
n  Parts of this lecture are based on the book,
“Engineering a Compiler”, by Keith Cooper and
Linda Torczon, Morgan Kaufmann, 2004,
sections 6.3.3 and 7.10.

Y.N. Srikant 3

Example of Class Hierarchy with
Complete Method Tables

n: 0
fee
fum

n: 1
fee
fum

n: 2
fee
fum

x: 5

x: 5
y: 3
z:

foe foe
fie

x: 2
y: 0
z:

y: 3

fum
...

fee
...

foe
...

fee
...

fee
...

fie
...

one
two

three
c

a
b

object
class

method

Y.N. Srikant 4

Mapping Names to Methods

n  Method invocations are not always static calls
n  a.fee() invokes one.fee(), a.foe() invokes two.foe(),

and a.fum() invokes three.fum()
n  Conceptually, method lookup behaves as if it

performs a search for each procedure call
q  These are called virtual calls
q  Search for the method in the receiver’s class; if it fails,

move up to the receiver’s superclass, and further
q  To make this search efficient, an implementation places a

complete method table in each class
q  Or, a pointer to the method table is included (virtual tbl ptr)

Y.N. Srikant 5

Rules for Variable Name Visibility

n  Invoking b.fee() allows fee() to access all of
b’s instance variables (x,y,z), (since fee and
b are both declared by class one), and also
all class variables of classes one, two, and
three

n  However, invoking b.foe() allows foe() access
only to instance variables x and y of b (not z),
since foe() is declared by class two, and b by
class one
q  foe() can also access class variables of classes

two and three, but not class variables of class one

Y.N. Srikant 6

Code Generation for Methods

n  Methods can access any data member of any
object that becomes its receiver
q  receiver - every object that can find the method
q  subject to class hierarchy restrictions

n  Compiler must establish an offset for each
data member that applies uniformly to every
receiver

n  The compiler constructs these offsets as it
processes the declarations for a class
q  Objects contain no code, only data

Y.N. Srikant 7

Single Class, No Inheritance

Example:
Class giant {
 int fee() {...}
 int fie() {...}
 int foe() {...}
 int fum() {...}
static n;
int x,y;
}

%giant.new_

%giant.fee_

%giant.fie_

%giant.foe_

%giant.fum_

2

13

14

15

16

giant
class
record

joe
object
layout

fred
object
layout

x

y

y

x

0

4

8

12

16
20

method
pointer
offset

Y.N. Srikant 8

Implementing Single Inheritance

%new_

%fee_

%new_

%fee_

%new_

%fee_

%new_

x: 15
y: 16

%foe_ %fie_

2

x: 13
y: 14

...

giant mc

sc
class

joe

fred

%fum_

1

1

x: 5
jack

x: 5
y: 6

goose

class ptr
superclass ptr

methods
variables

class ptr

variables class object

{
z: 20

z: 30

Y.N. Srikant 9

Single Inheritance Object Layout

n  Now, an instance variable has the same offset in
every class where it exists up in its superclass

n  Method tables also follow a similar sequence as
above

n  When a class redefines a method defined in one of
its superclasses
q  the method pointer for that method implementation must

be stored at the same offset as the previous
implementation of that method in the superclasses

class
pointer

sc data
members

mc data
members

giant data
members

Y.N. Srikant 10

Single Inheritance Object Layout
(Complete Method Tables)

sc data
members

mc data
members

giant data
members

class
pointer

sc data
members (x)

mc data
members (y)

giant data
members (z)

Object layout for
joe/fred (giant)

class
pointer

sc data
members (x)

mc data
members (y)

Object layout
for goose (mc)

class
pointer

sc data
members (x)

Object layout
for jack (sc)

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%fum_
pointer 1 class record

for class sc

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%fum_
pointer 1 class record

for class mc

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%fum_
pointer 2 class record

for class giant

%foe_
pointer

%foe_
pointer

%fie_
pointer

Y.N. Srikant 11

Single Inheritance Object Layout (including
only changed and extra methods)

sc data
members

mc data
members

giant data
members

class
pointer

sc data
members (x)

mc data
members (y)

giant data
members (z)

Object layout for
joe/fred (giant)

class
pointer

sc data
members (x)

mc data
members (y)

Object layout
for goose (mc)

class
pointer

sc data
members (x)

Object layout
for jack (sc)

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%fum_
pointer 1 class record

for class sc

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%foe_
pointer 1 class record

for class mc

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%fie_
pointer 2 class record

for class giant

Y.N. Srikant 12

Fast Type Inclusion Tests – The need

n  If class Y is a subclass of class X
q  X a = new Y(); //a is of type base class of Y, okay
 // other code omitted
 Y b = a; // a holds a value of type Y
q  The above assignment is valid, but stmt 2 below is not
q  1. X a = new X();
 // other code omitted
 2. Y b = a; // a holds a value of type X

n  Runtime type checking to verify the above is
needed

n  Java has an explicit instanceof test that requires a
runtime type checking

Y.N. Srikant 13

Fast Type Inclusion Tests – Searching the
Class Hierarchy Graph
n  Store the class hierarchy graph in memory
n  Search and check if one node is an ancestor

of another
n  Traversal is straight forward to implement

only for single inheritance
n  Cumbersome and slow for multiple

inheritance
n  Execution time increases with depth of class

hierarchy

Y.N. Srikant 14

Class Hierarchy Graph - Example

A

B C

D E

G

F

Single
inheritance A

B C

D E

G

F

H Multiple
inheritance

Y.N. Srikant 15

Fast Type Inclusion Tests – Binary Matrix

0 1 0 0 1

0 0 1 0 1

1 0 0 1 0

1 0 0 0 1

0 0 1 0 0

 C1 C2 C3 C4 C5

C1

C2

C3

C4

C5

Class types

Class types

BM [Ci , Cj] = 1, iff Ci is a subclass of Cj

Tests are
efficient, but
Matrix will be
large in practice.
The matrix can
be compacted,
but this
increases
access time.
This can handle
multiple
inheritance also.

Y.N. Srikant 16

Relative (Schubert’s) Numbering

A

B C

D E

G

F

{3,3}

{1,1}
{5,5}

{3,4}

{3,6} {1,2}

{1,7}

{ la, ra } for a node a :
ra is the ordinal number of the
node a in a postorder traversal of
the tree. Let ◄ denote “subtype
of” relation. All descendants of a
node are subtypes of that node.
◄ is reflexive and transitive.
la = min { rp | p is a descendant of
a }.
Now, a ◄ b, iff lb < ra < rb.

This test is very fast and is O(1).
Works only for single inheritance.
Extensions to handle multiple
inheritance are complex.

Y.N. Srikant 17

Devirtualization – Class Hierarchy Analysis

n  Reduces the overhead of virtual method
invocation

n  Statically determines which virtual method
calls resolve to a single method

n  Such calls are either inlined or replaced by
static calls

n  Builds a class hierarchy and a call graph

Y.N. Srikant 18

Class Hierarchy Analysis
class X extends object {
 void f1() {. . .}
 void f2() {. . .}
}
class Y extends X {
 void f1() {. . .}
}
class Z extends X {
 void f1() {. . .}
 public static void main(...) {
 X a = new X(); Y b = new Y();
 Z c = new Z();
 if (...) a = c;
 // other code
 a.f1(); b.f1(); b.f2();
 }
}

object

X
f1(), f2()

Y
f1()

Z
f1()

Z.main()
a.f1() b.f1() b.f2()

X.f1 Y.f1 Z.f1 X.f2

Global Register Allocation - 1

Y N Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 20

Outline

n  Issues in Global Register Allocation
n  The Problem
n  Register Allocation based on Usage Counts
n  Linear Scan Register allocation
n  Chaitin’s graph colouring based algorithm

Y.N. Srikant 21

Some Issues in Register Allocation

n  Which values in a program reside in registers?
(register allocation)

n  In which register? (register assignment)
q  The two together are usually loosely referred to as register

allocation
n  What is the unit at the level of which register

allocation is done?
q  Typical units are basic blocks, functions and regions.
q  RA within basic blocks is called local RA
q  The other two are known as global RA
q  Global RA requires much more time than local RA

Y.N. Srikant 22

Some Issues in Register Allocation

n  Phase ordering between register allocation and
instruction scheduling
q  Performing RA first restricts movement of code during

scheduling – not recommended
q  Scheduling instructions first cannot handle spill code

introduced during RA
n  Requires another pass of scheduling

n  Tradeoff between speed and quality of allocation
q  In some cases, e.g., in Just-In-Time compilation, cannot

afford to spend too much time in register allocation
q  Only local or both local and global allocation?

Y.N. Srikant 23

The Problem

n  Global Register Allocation assumes that allocation is
done beyond basic blocks and usually at function level

n  Decision problem related to register allocation :
q  Given an intermediate language program represented as a

control flow graph and a number k, is there an assignment
of registers to program variables such that no conflicting
variables are assigned the same register, no extra loads or
stores are introduced, and at most k registers are used?

n  This problem has been shown to be NP-hard (Sethi
1970).

n  Graph colouring is the most popular heuristic used.
n  However, there are simpler algorithms as well

