
Control-Flow Graph and
Local Optimizations - Part 2

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Local Optimizations

Outline of the Lecture

What is code optimization and why is it needed? (in part 1)
Types of optimizations (in part 1)
Basic blocks and control flow graphs (in part 1)
Local optimizations (in part 1)
Building a control flow graph (in part 1)
Directed acyclic graphs and value numbering

Y.N. Srikant Local Optimizations

Example of a Directed Acyclic Graph (DAG)

Y.N. Srikant Local Optimizations

Value Numbering in Basic Blocks

A simple way to represent DAGs is via value-numbering
While searching DAGs represented using pointers etc., is
inefficient, value-numbering uses hash tables and hence is
very efficient
Central idea is to assign numbers (called value numbers)
to expressions in such a way that two expressions receive
the same number if the compiler can prove that they are
equal for all possible program inputs
We assume quadruples with binary or unary operators
The algorithm uses three tables indexed by appropriate
hash values:
HashTable, ValnumTable, and NameTable
Can be used to eliminate common sub-expressions, do
constant folding, and constant propagation in basic blocks
Can take advantage of commutativity of operators, addition
of zero, and multiplication by one

Y.N. Srikant Local Optimizations

Data Structures for Value Numbering

In the field Namelist, first name is the defining occurrence and
replaces all other names with the same value number with itself
(or its constant value)

Value number

Expression Value number

(indexed by name hash value)

Constant value

(indexed by expression hash value)

ValnumTable entry

 Name

 Name list Constflag

(indexed by value number)
NameTable entry

HashTable entry

Y.N. Srikant Local Optimizations

Example of Value Numbering

HLL Program Quadruples before Quadruples after
Value-Numbering Value-Numbering

a = 10 1. a = 10 1. a = 10
b = 4∗a 2. b = 4∗a 2. b = 40
c = i∗ j+b 3. t1 = i∗ j 3. t1 = i∗ j
d = 15∗a∗ c 4. c = t1+b 4. c = t1+40
e = i 5. t2 = 15∗a 5. t2 = 150
c = e∗ j+ i∗a 6. d = t2∗ c 6. d = 150∗ c

7. e = i 7. e = i
8. t3 = e∗ j 8. t3 = i∗ j
9. t4 = i∗a 9. t4 = i∗10

10. c = t3+ t4 10. c = t1+ t4
(Instructions 5 and 8
can be deleted)

1

Y.N. Srikant Local Optimizations

Running the algorithm through the example (1)

1 a = 10 :

a is entered into ValnumTable (with a vn of 1, say) and into
NameTable (with a constant value of 10)

2 b = 4 ∗ a :
a is found in ValnumTable, its constant value is 10 in
NameTable

We have performed constant propagation
4 ∗ a is evaluated to 40, and the quad is rewritten
We have now performed constant folding
b is entered into ValnumTable (with a vn of 2) and into
NameTable (with a constant value of 40)

3 t1 = i ∗ j :
i and j are entered into the two tables with new vn (as
above), but with no constant value
i ∗ j is entered into HashTable with a new vn
t1 is entered into ValnumTable with the same vn as i ∗ j

Y.N. Srikant Local Optimizations

Running the algorithm through the example (2)

4 Similar actions continue till e = i
e gets the same vn as i

5 t3 = e ∗ j :
e and i have the same vn
hence, e ∗ j is detected to be the same as i ∗ j
since i ∗ j is already in the HashTable, we have found a
common subexpression
from now on, all uses of t3 can be replaced by t1
quad t3 = e ∗ j can be deleted

6 c = t3 + t4 :

t3 and t4 already exist and have vn
t3 + t4 is entered into HashTable with a new vn
this is a reassignment to c
c gets a different vn, same as that of t3 + t4

7 Quads are renumbered after deletions

Y.N. Srikant Local Optimizations

Example: HashTable and ValNumTable

HashTable
Expression Value-Number
i∗ j 5
t1+40 6
150∗ c 8
i∗10 9
t1+ t4 11

ValNumTable
Name Value-Number
a 1
b 2
i 3
j 4
t1 5
c 6,11
t2 7
d 8
e 3
t3 5
t4 10

1

Y.N. Srikant Local Optimizations

Handling Commutativity etc.

When a search for an expression i + j in HashTable fails,
try for j + i
If there is a quad x = i + 0, replace it with x = i
Any quad of the type, y = j ∗ 1 can be replaced with y = j
After the above two types of replacements, value numbers
of x and y become the same as those of i and j ,
respectively
Quads whose LHS variables are used later can be marked
as useful
All unmarked quads can be deleted at the end

Y.N. Srikant Local Optimizations

Handling Array References

Consider the sequence of quads:
1 X = A[i]
2 A[j] = Y : i and j could be the same
3 Z = A[i]: in which case, A[i] is not a common

subexpression here

The above sequence cannot be replaced
by: X = A[i]; A[j] = Y ; Z = X
When A[j] = Y is processed during value numbering, ALL
references to array A so far are searched in the tables and
are marked KILLED - this kills quad 1 above
When processing Z = A[i], killed quads not used for CSE
Fresh table entries are made for Z = A[i]
However, if we know apriori that i 6= j , then A[i] can be
used for CSE

Y.N. Srikant Local Optimizations

Handling Pointer References

Consider the sequence of quads:
1 X = ∗p
2 ∗q = Y : p and q could be pointing to the same object
3 Z = ∗p: in which case, ∗p is not a common subexpression

here

The above sequence cannot be replaced
by: X = ∗p; ∗q = Y ; Z = X
Suppose no pointer analysis has been carried out

p and q can point to any object in the basic block
Hence, When ∗q = Y is processed during value
numbering, ALL table entries created so far are marked
KILLED - this kills quad 1 above as well
When processing Z = ∗p, killed quads not used for CSE
Fresh table entries are made for Z = ∗p

Y.N. Srikant Local Optimizations

Handling Pointer References and Procedure Calls

However, if we know apriori which objects p and q point to,
then table entries corresponding to only those objects
need to killed
Procedure calls are similar
With no dataflow analysis, we need to assume that a
procedure call can modify any object in the basic block

changing call-by-reference parameters and global variables
within procedures will affect other variables of the basic
block as well

Hence, while processing a procedure call, ALL table
entries created so far are marked KILLED
Sometimes, this problem is avoided by making a procedure
call a separate basic block

Y.N. Srikant Local Optimizations

Extended Basic Blocks

A sequence of basic blocks B1,B2, ...,Bk , such that Bi is
the unique predecessor of Bi+1(i ≤ i < k), and B1 is either
the start block or has no unique predecessor
Extended basic blocks with shared blocks can be
represented as a tree
Shared blocks in extended basic blocks require scoped
versions of tables
The new entries must be purged and changed entries must
be replaced by old entries
Preorder traversal of extended basic block trees is used

Y.N. Srikant Local Optimizations

Extended Basic Blocks and their Trees

Start

B2

B1

B4B3

B5 B6

B7

Stop

Start

B1

B2

B3 B4

B5 B6

B7

Stop

T1

T2

T3

Extended basic blocks

Start, B1
B2, B3, B5
B2, B3, B6
B2, B4
B7, Stop

Y.N. Srikant Local Optimizations

Value Numbering with Extended Basic Blocksfun
tion visit-ebb-tree(e) // e is a node in the treebegin// From now on, the new names will be entered with a new s
ope into the tables.// When sear
hing the tables, we always sear
h beginning with the
urrent s
ope// and move to en
losing s
opes. This is similar to the pro
essing involved with// symbol tables for lexi
ally s
oped languagesvalue-number(e:B);// Pro
ess the blo
k e:B using the basi
 blo
k version of the algorithmif (e:left 6= null) then visit-ebb-tree(e:left);if (e:right 6= null) then visit-ebb-tree(e:right);remove entries for the new s
ope from all the tablesand undo the
hanges in the tables of en
losing s
opes;endbegin // main
alling loopfor ea
h tree t do visit-ebb-tree(t);// t is a tree representing an extended basi
 blo
kend

1

Y.N. Srikant Local Optimizations

Machine Code Generation - 1

Y. N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  Machine code generation – main issues
n  Samples of generated code
n  Two Simple code generators
n  Optimal code generation

q  Sethi-Ullman algorithm
q  Dynamic programming based algorithm
q  Tree pattern matching based algorithm

n  Code generation from DAGs
n  Peephole optimizations

Y.N. Srikant 3

Code Generation – Main Issues (1)

n  Transformation:
q  Intermediate code à m/c code (binary or assembly)
q  We assume quadruples and CFG to be available

n  Which instructions to generate?
q  For the quadruple A = A+1, we may generate

n  Inc A or
n  Load A, R1
 Add #1, R1
 Store R1, A

q  One sequence is faster than the other (cost
implication)

Y.N. Srikant 4

Code Generation – Main Issues (2)

n  In which order?
q  Some orders may use fewer registers and/or may be faster

n  Which registers to use?
q  Optimal assignment of registers to variables is difficult to

achieve
n  Optimize for memory, time or power?
n  Is the code generator easily retargetable to other

machines?
q  Can the code generator be produced automatically from

specifications of the machine?

Y.N. Srikant 5

Samples of Generated Code

n  B = A[i]
 Load i, R1 // R1 = i
 Mult R1,4,R1// R1 = R1*4
 // each element of array
 // A is 4 bytes long
 Load A(R1), R2// R2=(A+R1)
 Store R2, B// B = R2
n  X[j] = Y
 Load Y, R1// R1 = Y
 Load j, R2// R2 = j
 Mult R2, 4, R2// R2=R2*4
 Store R1, X(R2)// X(R2)=R1

n  X = *p
 Load p, R1
 Load 0(R1), R2
 Store R2, X
n  *q = Y
 Load Y, R1
 Load q, R2
 Store R1, 0(R2)
n  if X < Y goto L
 Load X, R1
 Load Y, R2
 Cmp R1, R2
 Bltz L

Y.N. Srikant 6

Samples of Generated Code –
Static Allocation (no JSR instruction)

// Code for function F1
action code seg 1

call F2
action code seg 2

Halt

// Code for function F2
action code seg 3

return

return address

data array
A

variable x
variable y

return address

data array
B

variable m

0
4

72

0
4

40
44

Three Adress Code
Activation Record
for F1 (48 bytes)

Activation Record
for F2 (76 bytes)

parameter 1

Y.N. Srikant 7

Samples of Generated Code –
Static Allocation (no JSR instruction)
// Code for function F1
200: Action code seg 1
// Now store return address
240: Move #264, 648
252: Move val1, 652
256: Jump 400 // Call F2
264: Action code seg 2
280: Halt

 ...
// Code for function F2
400: Action code seg 3
// Now return to F1
440: Jump @648

 ...

//Activation record for F1
//from 600-647
600: //return address
604: //space for array A
640: //space for variable x
644: //space for variable y
//Activation record for F2
//from 648-723
648: //return address
652: // parameter 1
656: //space for array B

 ...
720: //space for variable m

