
Semantic Analysis with Attribute Grammars
Part 5

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Semantic Analysis

Outline of the Lecture

Introduction (covered in lecture 1)
Attribute grammars (covered in lectures 2 and 3)
Attributed translation grammars (covered in lecture 3)
Semantic analysis with attributed translation grammars

Y.N. Srikant Semantic Analysis

Symbol Table Data Structure

A symbol table (in a compiler) stores names of all kinds
that occur in a program along with information about them

Type of the name (int, float, function, etc.), level at which it
has been declared, whether it is a declared parameter of a
function or an ordinary variable, etc.
In the case of a function, additional information about the
list of parameters and their types, local variables and their
types, result type, etc., are also stored

It is used during semantic analysis, optimization, and code
generation
Symbol table must be organized to enable a search based
on the level of declaration
It can be based on:

Binary search tree, hash table, array, etc.

Y.N. Srikant Semantic Analysis

A Simple Symbol Table - 1

A very simple symbol table (quite restricted and not really
fast) is presented for use in the semantic analysis of
functions
An array, func_name_table stores the function name
records, assuming no nested function definitions
Each function name record has fields: name, result type,
parameter list pointer, and variable list pointer
Parameter and variable names are stored as lists
Each parameter and variable name record has
fields: name, type, parameter-or-variable tag, and level of
declaration (1 for parameters, and 2 or more for variables)

Y.N. Srikant Semantic Analysis

A Simple Symbol Table - 2

Y.N. Srikant Semantic Analysis

A Simple Symbol Table - 3

Two variables in the same function, with the same name
but different declaration levels, are treated as different
variables (in their respective scopes)
If a variable (at level > 2) and a parameter have the same
name, then the variable name overrides the parameter
name (only within the corresponding scope)
However, a declaration of a variable at level 2, with the
same name as a parameter, is flagged as an error
The above two cases must be checked carefully
A search in the symbol table for a given name must always
consider the names with the declaration levels l, l-1, ... , 2,
in that order, where l is the current level

Y.N. Srikant Semantic Analysis

A Simple Symbol Table - 4

Y.N. Srikant Semantic Analysis

A Simple Symbol Table - 5

The global variable, active_func_ptr, stores a pointer to the
function name entry in func_name_table of the function
that is currently being compiled
The global variable, level, stores the current nesting level
of a statement block
The global variable, call_name_ptr, stores a pointer to the
function name entry in func_name_table of the function
whose call is being currently processed
The function search_func(n, found , fnptr) searches the
function name table for the name n and returns found as T
or F; if found, it returns a pointer to that entry in fnptr

Y.N. Srikant Semantic Analysis

A Simple Symbol Table - 6

The function search_param(p, fnptr , found ,pnptr)
searches the parameter list of the function at fnptr for the
name p, and returns found as T or F; if found, it returns a
pointer to that entry in the parameter list, in pnptr
The function search_var(v , fnptr , l , found , vnptr) searches
the variable list of the function at fnptr for the name v at
level l or lower, and returns found as T or F; if found, it
returns a pointer to that entry in the variable list, in vnptr .
Higher levels are preferred
The other symbol table routines will be explained during
semantic analysis

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 1

1 FUNC_DECL→ FUNC_HEAD { VAR_DECL BODY }
2 FUNC_HEAD → RES_ID (DECL_PLIST)

3 RES_ID → RESULT id
4 RESULT → int | float | void
5 DECL_PLIST → DECL_PL | ε
6 DECL_PL→ DECL_PL , DECL_PARAM | DECL_PARAM
7 DECL_PARAM → T id
8 VAR_DECL→ DLIST | ε
9 DLIST → D | DLIST ; D

10 D → T L
11 T → int | float
12 L→ id | L , id

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 2

13 BODY → { VAR_DECL STMT_LIST }
14 STMT_LIST → STMT _LIST ; STMT | STMT
15 STMT → BODY | FUNC_CALL | ASG | /* others */

/* BODY may be regarded as a compound statement */
/* Assignment statement is being singled out */
/* to show how function calls can be handled */

16 ASG→ LHS := E
17 LHS → id /* array expression for exercises */
18 E → LHS | FUNC_CALL |/* other expressions */
19 FUNC_CALL→ id (PARAMLIST)

20 PARAMLIST → PLIST | ε
21 PLIST → PLIST , E | E

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 3

1 FUNC_DECL→ FUNC_HEAD { VAR_DECL BODY }
{delete_var_list(active_func_ptr, level);
active_func_ptr := NULL; level := 0;}

2 FUNC_HEAD → RES_ID (DECL_PLIST) {level := 2}
3 RES_ID → RESULT id

{ search_func(id.name, found, namptr);
if (found) error(‘function already declared’);
else enter_func(id.name, RESULT.type, namptr);

active_func_ptr := namptr; level := 1}
4 RESULT → int {action1} | float {action2}

| void {action3}
{action 1:} {RESULT.type := integer}
{action 2:} {RESULT.type := real}
{action 3:} {RESULT.type := void}

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 4

5 DECL_PLIST → DECL_PL | ε
6 DECL_PL→ DECL_PL , DECL_PARAM | DECL_PARAM
7 DECL_PARAM → T id

{search_param(id.name, active_func_ptr, found, pnptr);
if (found) {error(‘parameter already declared’)}
else {enter_param(id.name, T.type, active_func_ptr)}

8 T → int {T.type := integer} | float {T.type := real}
9 VAR_DECL→ DLIST | ε

10 DLIST → D | DLIST ; D
/* We show the analysis of simple variable declarations.
Arrays can be handled using methods desribed earlier.
Extension of the symbol table and SATG to handle arrays
is left as an exercise. */

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 5

11 D → T L {patch_var_type(T.type, L.list, level)}
/* Patch all names on L.list with declaration level, level ,
with T.type */

12 L→ id
{search_var(id.name, active_func_ptr, level, found, vn);
if (found && vn -> level == level)

{error(‘variable already declared at the same level’);
L.list := makelist(NULL);}

else if (level==2)
{search_param(id.name, active_func_ptr, found, pn);
if (found) {error(‘redeclaration of parameter as variable’);

L.list := makelist(NULL);}
} /* end of if (level == 2) */
else {enter_var(id.name, level, active_func_ptr, vnptr);

L.list := makelist(vnptr);}}

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 6

13 L1 → L2 , id
{search_var(id.name, active_func_ptr, level, found, vn);
if (found && vn -> level == level)

{error(‘variable already declared at the same level’);
L1.list := L2.list;}

else if (level==2)
{search_param(id.name, active_func_ptr, found, pn);
if (found) {error(‘redclaration of parameter as variable’);

L1.list := L2.list;}
} /* end of if (level == 2) */
else {enter_var(id.name, level, active_func_ptr, vnptr);

L1.list := append(L2.list, vnptr);}}
14 BODY → ‘{’{level++;} VAR_DECL STMT_LIST

{delete_var_list(active_func_ptr, level); level- -;}‘}’
15 STMT_LIST → STMT _LIST ; STMT | STMT
16 STMT → BODY | FUNC_CALL | ASG | /* others */

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 7

17 ASG→ LHS := E
{if (LHS.type 6= errortype && E.type 6= errortype)

if (LHS.type 6= E.type) error(‘type mismatch of
operands in assignment statement’)}

18 LHS → id
{search_var(id.name, active_func_ptr, level, found, vn);
if (∼found)
{search_param(id.name, active_func_ptr, found, pn);

if (∼found){ error(‘identifier not declared’);
LHS.type := errortype}

else LHS.type := pn -> type}
else LHS.type := vn -> type}

19 E → LHS {E.type := LHS.type}
20 E → FUNC_CALL {E.type := FUNC_CALL.type}

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 8

21 FUNC_CALL→ id (PARAMLIST)
{ search_func(id.name, found, fnptr);
if (∼found) {error(‘function not declared’);

call_name_ptr := NULL;
FUNC_CALL.type := errortype;}

else {FUNC_CALL.type := get_result_type(fnptr);
call_name_ptr := fnptr;

if (call_name_ptr.numparam 6= PARAMLIST.pno)
error(‘mismatch in mumber of parameters

in declaration and call’);}
22 PARAMLIST → PLIST {PARAMLIST.pno := PLIST.pno }

| ε {PARAMLIST.pno := 0 }

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 9

23 PLIST → E {PLIST.pno := 1;
check_param_type(call_name_ptr, 1, E.type, ok);
if (∼ok) error(‘parameter type mismatch

in declaration and call’);}
24 PLIST1 → PLIST2 , E {PLIST1.pno := PLIST2.pno + 1;

check_param_type(call_name_ptr, PLIST2.pno + 1,
E.type, ok);

if (∼ok) error(‘parameter type mismatch
in declaration and call’);}

Y.N. Srikant Semantic Analysis

Semantic Analysis of Arrays

Multi-dimensional arrays
length of each dimension must be stored in the symbol
table and connected to the array name, while processing
declarations
C allows assignment of array slices. Therefore, size and
type of slices must be checked during semantic analysis of
assignments
int a[10][20], b[20], c[10][10];
a[5] = b; c[7] = a[8];
In the above code fragment, the first assignment is valid,
but the second one is not
The above is called structure equivalence and it is different
from name equivalance

Y.N. Srikant Semantic Analysis

Semantic Analysis of Structs

Names inside structs belong to a higher level
Equivalance of structs is based on name equivalance and
not on structure equivalence
struct {int a,b; float c[10]; char d} x,y;
struct {char d; float c[10]; int a,b} a,b;
x = y; a = x;

In the code fragment above
In the second struct, the fields a, b of the struct are
different from the struct variables a and b
The assignment x = y; is valid but a = x; is not valid,
even though both structs have the same fields (but
permuted)

For a struct variable, an extra pointer pointing to the
fields of the struct variable, along with their levels, can be
maintained in the symbol table

Y.N. Srikant Semantic Analysis

Operator Overloading

Operators such as ‘+’ are usually overloaded in most
languages

For example, the same symbol ‘+’ is used with integers and
reals
Programmers can define new functions for the existing
operators in C++
This is operator overloading
Examples are defining ‘+’ on complex numbers, rational
numbers, or time

Complex operator+(const Complex& lhs,
const Complex& rhs)

{ Complex temp = lhs;
temp.real += rhs.real;
temp.imaginary += rhs.imaginary;
return temp;

}

Y.N. Srikant Semantic Analysis

Function Overloading

C++ also allows function overloading
Overloaded functions with the same name (or same
operator)

return results with different types, or
have different number of parameters, or
differ in parameter types

The meaning of overloaded operators (in C++) with built-in
types as parameters cannot be redefined

E.g., ‘+’ on integers cannot be overloaded
Further, overloaded ‘+’ must have exactly two operands

Both operator and function overloading are resolved at
compile time
Either of them is different from virtual functions or function
overriding

Y.N. Srikant Semantic Analysis

Function Overloading Example

// area of a square
int area(int s) { return s*s; }

// area of a rectangle
int area(int l, int b) { return l*b; }

// area of a circle
float area(float radius)
{ return 3.1416*radius*radius; }

int main()
{ std::cout << area(10);

std::cout << area(12, 8);
std::cout << area(2.5);

}

Y.N. Srikant Semantic Analysis

Implementing Operator Overloading

A list of operator functions along with their parameter types
is needed
This list may be stored in a hash table, with the hash
function designed to take the operator and its parameter
types into account
While handling a production such as E → E1 + E2, the
above hash table is searched with the signature
+(E1.type,E2.type)
If there is only one exact match (with the same operand
types), then the overloading is resolved in favor of the
match
In case there is more than one exact match, an error is
flagged
The situation gets rather complicated in C++, due to
possible conversions of operand types (char to int, int to
float, etc.)

Y.N. Srikant Semantic Analysis

Implementing Function Overloading

The symbol table should store multiple instances of the
same function name along with their parameter types (and
other information)
While resolving a function call such as, test(a,b, c), all the
overloaded functions with the name test are collected and
the closest possible match is chosen

Suppose the parameters a,b, c are all of int type
And the available overloaded functions are:
int test(int a, int b, float c) and
int test(float a, int b, float c)
In this case, we may choose the first one because it entails
only one conversion from int to float (faster)

If there is no match (or more than one match) even after
conversions, an error is flagged

Y.N. Srikant Semantic Analysis

SATG for 2-pass Sem. Analysis of Func. and Calls

FUNC_DECL→ FUNC_HEAD { VAR_DECL BODY}
BODY → { VAR_DECL STMT_LIST }

Variable declarations appear stricty before their use

FUNC_DECL→
FUNC_HEAD { VAR_DECL BODY VAR_DECL }

BODY → { VAR_DECL STMT_LIST VAR_DECL }
permits variable declarations before and after their use

Semantic analysis in this case requires two passes
Symbol table is constructed in the 1st pass
Declarations are all processed in the 1st pass
1st pass can be integrated with LR-parsing during which a
parse tree is built
Statements are analyzed in the 2nd pass
Sem. errors in statements are reported only in the 2nd pass
This effectively presents all the variable declarations before
their use
2nd pass can be made over the parse tree

Y.N. Srikant Semantic Analysis

Symbol Table for a 2-pass Semantic Analyzer

The symbol table has to be persistent
Cannot be destroyed after the block/function is processed
in pass 1
Should be stored in a form that can be accessed according
to levels in pass 2

Y.N. Srikant Semantic Analysis

Symbol Table for a 2-pass Semantic Analyzer(contd.)

The symbol table(ST) is indexed by block number
In the previous version of the ST, there were no separate
entries for blocks
The surrounder block number (surr.blk.num) is the block
number of the enclosing block
All the blocks below a function entry f in the ST, upto the
next function entry, belong to the function f
To get the name of the parent function for a given block b,
we go up table using surrounder block numbers until the
surrounder block number becomes zero

Y.N. Srikant Semantic Analysis

Symbol Table for a 2-pass Semantic Analyzer(contd.)

Y.N. Srikant Semantic Analysis

Symbol Table for a 2-pass Semantic Analyzer(contd.)

Block numbers begin from 1, and a counter last_blk_num
generates new block numbers by incrementing itself
curr_blk_num is the currently open block
While opening a new block, curr_blk_num becomes its
surrounder block number
Similarly, while closing a block, its surr.blk.num is copied
into curr_blk_num

Y.N. Srikant Semantic Analysis

Symbol Table for a 2-pass Semantic Analyzer(contd.)

Apart from active_func_ptr, and call_name_ptr, we also
need an active_blk_ptr
level remains the same (nesting level of the current block)
search_func(n, found , fnptr) remains the same, except that
it searches entries corresponding to functions only (with
surr .blk .num = 0)
search_param(p, fnptr , found ,pnptr) remains the same
search_var(v , fnptr , l , found , vnptr) is similar to the old
one, but the method of searching is now different

The variables of each block are stored separately under
different block numbers
The parameter level is now replaced by active_blk_ptr
The search starts from active_blk_ptr and proceeds
upwards using surrounder block numbers until the
enclosing function is reached (with surr .blk .num = 0)

Y.N. Srikant Semantic Analysis

