
Syntax Analysis:
Context-free Grammars, Pushdown Automata and Parsing

Part - 7

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

What is syntax analysis? (covered in lecture 1)
Specification of programming languages: context-free
grammars (covered in lecture 1)
Parsing context-free languages: push-down automata
(covered in lectures 1 and 2)
Top-down parsing: LL(1) parsing
(covered in lectures 2 and 3)
Recursive-descent parsing (covered in lecture 4)
Bottom-up parsing: LR-parsing (continued)
YACC Parser generator

Y.N. Srikant Parsing

Closure of a Set of LR(1) Items

Itemset closure(I){ /* I is a set of LR(1) items */
while (more items can be added to I) {

for each item [A→ α.Bβ, a] ∈ I {
for each production B → γ ∈ G

for each symbol b ∈ first(βa)
if (item [B → .γ, b] /∈ I) add item [B → .γ, b] to I

}
return I

}

Y.N. Srikant Parsing

GOTO set computation

Itemset GOTO(I, X){ /* I is a set of LR(1) items
X is a grammar symbol, a terminal or a nonterminal */
Let I′ = {[A→ αX .β, a] | [A→ α.Xβ, a] ∈ I};
return (closure(I′))

}

Y.N. Srikant Parsing

Construction of Sets of Canonical of LR(1) Items

void Set_of_item_sets(G′){ /* G’ is the augmented grammar */
C = {closure({S′ → .S, $})};/* C is a set of LR(1) item sets */
while (more item sets can be added to C) {

for each item set I ∈ C and each grammar symbol X
/* X is a grammar symbol, a terminal or a nonterminal */

if ((GOTO(I,X) 6= ∅) && (GOTO(I,X) /∈ C))
C = C ∪GOTO(I,X)

}
}

Each set in C (above) corresponds to a state of a DFA
(LR(1) DFA)
This is the DFA that recognizes viable prefixes

Y.N. Srikant Parsing

Construction of an LR(1) Parsing Table

Let C = {I0, I1, ..., Ii , ..., In} be the canonical LR(1) collection of items,
with the corresponding states of the parser being 0, 1, ... , i, ... , n
Without loss of generality, let 0 be the initial state of the parser
(containing the item [S′ → .S, $])
Parsing actions for state i are determined as follows
1. If ([A→ α.aβ, b] ∈ Ii) && ([A→ αa.β, b] ∈ Ij)

set ACTION[i, a] = shift j /* a is a terminal symbol */
2. If ([A→ α., a] ∈ Ii)

set ACTION[i, a] = reduce A→ α
3. If ([S′ → S., $] ∈ Ii) set ACTION[i, $] = accept
S-R or R-R conflicts in the table imply grammar is not LR(1)
4. If ([A→ α.Aβ, a] ∈ Ii) && ([A→ αA.β, a] ∈ Ij)

set GOTO[i, A] = j /* A is a nonterminal symbol */
All other entries not defined by the rules above are made error

Y.N. Srikant Parsing

LR(1) Grammar - Example 2

Y.N. Srikant Parsing

A non-LR(1) Grammar

Y.N. Srikant Parsing

LALR(1) Parsers

LR(1) parsers have a large number of states
For C, many thousand states
An SLR(1) parser (or LR(0) DFA) for C will have a few
hundred states (with many conflicts)

LALR(1) parsers have exactly the same number of states
as SLR(1) parsers for the same grammar, and are derived
from LR(1) parsers

SLR(1) parsers may have many conflicts, but LALR(1)
parsers may have very few conflicts
If the LR(1) parser had no S-R conflicts, then the
corresponding derived LALR(1) parser will also have none
However, this is not true regarding R-R conflicts

LALR(1) parsers are as compact as SLR(1) parsers and
are almost as powerful as LR(1) parsers
Most programming language grammars are also LALR(1),
if they are LR(1)

Y.N. Srikant Parsing

Construction of LALR(1) parsers

The core part of LR(1) items (the part after leaving out the
lookahead symbol) is the same for several LR(1) states
(the loohahead symbols will be different)

Merge the states with the same core, along with the
lookahead symbols, and rename them

The ACTION and GOTO parts of the parser table will be
modified

Merge the rows of the parser table corresponding to the
merged states, replacing the old names of states by the
corresponding new names for the merged states
For example, if states 2 and 4 are merged into a new state
24, and states 3 and 6 are merged into a new state 36, all
references to states 2,4,3, and 6 will be replaced by
24,24,36, and 36, respectively

LALR(1) parsers may perform a few more reductions (but
not shifts) than an LR(1) parser before detecting an error

Y.N. Srikant Parsing

LALR(1) Parser Construction - Example 1

Y.N. Srikant Parsing

LALR(1) Parser Construction - Example 1 (contd.)

Y.N. Srikant Parsing

LALR(1) Parser Error Detection

Y.N. Srikant Parsing

Characteristics of LALR(1) Parsers

If an LR(1) parser has no S-R conflicts, then the
corresponding derived LALR(1) parser will also have none

LR(1) and LALR(1) parser states have the same core items
(lookaheads may not be the same)
If an LALR(1) parser state s1 has an S-R conflict, it must
have two items [A→ α.,a] and [B → β.aγ,b]
One of the states s1′, from which s1 is generated, must
have the same core items as s1
If the item [A→ α.,a] is in s1′, then s1′ must also have the
item [B → β.aγ, c] (the lookahead need not be b in s1′ - it
may be b in some other state, but that is not of interest to
us)
These two items in s1′ still create an S-R conflict in the
LR(1) parser
Thus, merging of states with common core can never
introduce a new S-R conflict, because shift depends only
on core, not on lookahead

Y.N. Srikant Parsing

Characteristics of LALR(1) Parsers (contd.)

However, merger of states may introduce a new R-R
conflict in the LALR(1) parser even though the original
LR(1) parser had none
Such grammars are rare in practice
Here is one from ALSU’s book. Please construct the
complete sets of LR(1) items as home work:
S′ → S$, S → aAd | bBd | aBe | bAe
A→ c, B → c
Two states contain the items:
{[A→ c., d], [B → c., e]} and
{[A→ c., e], [B → c., d]}
Merging these two states produces the LALR(1) state:
{[A→ c., d/e], [B → c., d/e]}
This LALR(1) state has a reduce-reduce conflict

Y.N. Srikant Parsing

Error Recovery in LR Parsers - Parser Construction

Compiler writer identifies major non-terminals such as
those for program, statement, block, expression, etc.
Adds to the grammar, error productions of the form
A→ error α, where A is a major non-terminal and α is a
suitable string of grammar symbols (usually terminal
symbols), possibly empty
Associates an error message routine with each error
production
Builds an LALR(1) parser for the new grammar with error
productions

Y.N. Srikant Parsing

Error Recovery in LR Parsers - Parser Operation

When the parser encounters an error, it scans the stack to
find the topmost state containing an error item of the form
A→ .error α
The parser then shifts a token error as though it occurred
in the input
If α = ε, reduces by A→ ε and invokes the error message
routine associated with it
If α 6= ε, discards input symbols until it finds a symbol with
which the parser can proceed
Reduction by A→ .error α happens at the appropriate time
Example: If the error production is A→ .error ;, then the
parser skips input symbols until ’;’ is found, performs
reduction by A→ .error ;, and proceeds as above
Error recovery is not perfect and parser may abort on end
of input

Y.N. Srikant Parsing

LR(1) Parser Error Recovery

Y.N. Srikant Parsing

YACC:
Yet Another Compiler Compiler
A Tool for generating Parsers

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant YACC

YACC Example

%token DING DONG DELL
%start rhyme
%%
rhyme : sound place ’\n’

{printf("string valid\n"); exit(0);};
sound : DING DONG ;
place : DELL ;
%%
#include "lex.yy.c"

int yywrap(){return 1;}
yyerror(char* s)
{ printf("%s\n",s);}
main() {yyparse(); }

Y.N. Srikant YACC

LEX Specification for the YACC Example
%%
ding return DING;
dong return DONG;
dell return DELL;
[]* ;
\n|. return yytext[0];

Compiling and running the parser
lex ding-dong.l
yacc ding-dong.y
gcc -o ding-dong.o y.tab.c
ding-dong.o
Sample inputs | | Sample outputs
ding dong dell || string valid
ding dell || syntax error
ding dong dell$ || syntax error

Y.N. Srikant YACC

Form of a YACC file

YACC has a language for describing context-free
grammars
It generates an LALR(1) parser for the CFG described
Form of a YACC program
%{ declarations – optional
%}
%%
rules – compulsory
%%

programs – optional
YACC uses the lexical analyzer generated by LEX to match
the terminal symbols of the CFG
YACC generates a file named y.tab.c

Y.N. Srikant YACC

Declarations and Rules

Tokens: %token name1 name2 name3, · · ·
Start Symbol: %start name
names in rules: letter(letter | digit | . | _)∗
letter is either a lower case or an upper case character
Values of symbols and actions: Example
A : B

{$$ = 1;}
C
{x = $2; y = $3; $$ = x+y;}
;

Now, value of A is stored in $$ (second one), that of B in
$1, that of action 1 in $2, and that of C in $3.

Y.N. Srikant YACC

Declarations and Rules (contd.)

Intermediate action in the above example is translated into
an ε-production as follows:
$ACT1 : /* empty */

{$$ =1;}
;

A : B $ACT1 C
{x = $2; y = $3; $$ = x+y;}

;

Intermediate actions can return values
For example, the first $$ in the previous example is
available as $2
However, intermediate actions cannot refer to values of
symbols to the left of the action
Actions are translated into C-code which are executed just
before a reduction is performed by the parser

Y.N. Srikant YACC

Lexical Analysis

LA returns integers as token numbers
Token numbers are assigned automatically by YACC,
starting from 257, for all the tokens declared using %token
declaration
Tokens can return not only token numbers but also other
information (e.g., value of a number, character string of a
name, pointer to symbol table, etc.)
Extra values are returned in the variable, yylval, known to
YACC generated parsers

Y.N. Srikant YACC

Ambiguity, Conflicts, and Disambiguation

E → E + E | E − E | E ∗ E | E/E | (E) | id
Ambiguity with left or right associativity of ‘-’ and ‘/’
This causes shift-reduce conflicts in YACC: (E-E-E) – shift
or reduce on -?
Disambiguating rule in YACC:

Default is shift action in S-R conflicts
Reduce by earlier rule in R-R conflicts
Associativity can be specified explicitely

Similarly, precedence of operators causes S-R conflicts.
Precedence can also be specified
Example
%right ’=’
%left ’+’ ’-’ --- same precedence for +, -
%left ’*’ ’/’ --- same precedence for *, /
%right ^ --- highest precedence

Y.N. Srikant YACC

Symbol Values

Tokens and nonterminals are both stack symbols
Stack symbols can be associated with values whose types
are declared in a %union declaration in the YACC
specification file
YACC turns this into a union type called YYSTYPE
With %token and %type declarations, we inform YACC
about the types of values the tokens and nonterminals take
Automatically, references to $1,$2,yylval, etc., refer to
the appropriate member of the union (see example below)

Y.N. Srikant YACC

YACC Example : YACC Specification (desk-3.y)

%{
#define NSYMS 20
struct symtab {

char *name; double value;
}symboltab[NSYMS];

struct symtab *symlook();
#include <string.h>
#include <ctype.h>
#include <stdio.h>
%}

Y.N. Srikant YACC

YACC Example : YACC Specification (contd.)

%union {
double dval;
struct symtab *symp;
}

%token <symp> NAME
%token <dval> NUMBER
%token POSTPLUS
%token POSTMINUS
%left ’=’
%left ’+’ ’-’
%left ’*’ ’/’
%left POSTPLUS
%left POSTMINUS
%right UMINUS
%type <dval> expr

Y.N. Srikant YACC

YACC Example : YACC Specification (contd.)
%%
lines: lines expr ’\n’ {printf("%g\n",$2);}

| lines ’\n’ | /* empty */
| error ’\n’

{yyerror("reenter last line:"); yyerrok; }
;

expr : NAME ’=’ expr {$1 -> value = $3; $$ = $3;}
| NAME {$$ = $1 -> value;}
| expr ’+’ expr {$$ = $1 + $3;}
| expr ’-’ expr {$$ = $1 - $3;}
| expr ’*’ expr {$$ = $1 * $3;}
| expr ’/’ expr {$$ = $1 / $3;}
| ’(’ expr ’)’ {$$ = $2;}
| ’-’ expr %prec UMINUS {$$ = - $2;}
| expr POSTPLUS {$$ = $1 + 1;}
| expr POSTMINUS {$$ = $1 - 1;}
| NUMBER

Y.N. Srikant YACC

YACC Example : LEX Specification (desk-3.l)

number [0-9]+\.?|[0-9]*\.[0-9]+
name [A-Za-z][A-Za-z0-9]*
%%
[] {/* skip blanks */}
{number} {sscanf(yytext,"%lf",&yylval.dval);

return NUMBER;}
{name} {struct symtab *sp =symlook(yytext);

yylval.symp = sp; return NAME;}
"++" {return POSTPLUS;}
"--" {return POSTMINUS;}
"$" {return 0;}
\n|. {return yytext[0];}

Y.N. Srikant YACC

YACC Example : Support Routines

%%
void initsymtab()
{int i = 0;
for(i=0; i<NSYMS; i++) symboltab[i].name = NULL;

}
int yywrap(){return 1;}
yyerror(char* s) { printf("%s\n",s);}
main() {initsymtab(); yyparse(); }

#include "lex.yy.c"

Y.N. Srikant YACC

YACC Example : Support Routines (contd.)

struct symtab* symlook(char* s)
{struct symtab* sp = symboltab; int i = 0;
while ((i < NSYMS) && (sp -> name != NULL))
{ if(strcmp(s,sp -> name) == 0) return sp;
sp++; i++;

}
if(i == NSYMS) {
yyerror("too many symbols"); exit(1);

}
else { sp -> name = strdup(s);

return sp;
}

}

Y.N. Srikant YACC

Error Recovery in YACC

In order to prevent a cascade of error messages, the
parser remains in error state (after entering it) until three
tokens have been successfully shifted onto the stack
In case an error happens before this, no further messages
are given and the input symbol (causing the error) is
quietly deleted
The user may identify major nonterminals such as those
for program, statement, or block, and add error
productions for these to the grammar
Examples
statement → error {action1}
statement → error ‘;’ {action2}

Y.N. Srikant YACC

YACC Error Recovery Example

%token DING DONG DELL
%start S
%%
S : rhyme{printf("string valid\n"); exit(0);}
rhyme : sound place
rhyme : error DELL{yyerror("msg1:token skipped");}
sound : DING DONG ;
place : DELL ;
place : error DELL{yyerror("msg2:token skipped");}
%%

Y.N. Srikant YACC

