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Outline of the Lecture

What is syntax analysis? (covered in lecture 1)
Specification of programming languages: context-free
grammars (covered in lecture 1)
Parsing context-free languages: push-down automata
(covered in lectures 1 and 2)
Top-down parsing: LL(1) parsing
(covered in lectures 2 and 3)
Recursive-descent parsing (covered in lecture 4)
Bottom-up parsing: LR-parsing (continued)
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DFA for Viable Prefixes - LR(0) Automaton
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Construction of Sets of Canonical LR(0) Items

void Set_of_item_sets(G′){ /* G’ is the augmented grammar */
C = {closure({S′ → .S})};/* C is a set of item sets */
while (more item sets can be added to C) {

for each item set I ∈ C and each grammar symbol X
/* X is a grammar symbol, a terminal or a nonterminal */

if ((GOTO(I,X ) 6= ∅) && (GOTO(I,X ) /∈ C))
C = C ∪GOTO(I,X )

}
}

Each set in C (above) corresponds to a state of a DFA
(LR(0) DFA)
This is the DFA that recognizes viable prefixes
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Construction of an LR(0) Automaton - Example 1
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Shift and Reduce Actions

If a state contains an item of the form [A→ α.] (“reduce
item”), then a reduction by the production A→ α is the
action in that state
If there are no “reduce items” in a state, then shift is the
appropriate action
There could be shift-reduce conflicts or reduce-reduce
conflicts in a state

Both shift and reduce items are present in the same state
(S-R conflict), or
More than one reduce item is present in a state (R-R
conflict)
It is normal to have more than one shift item in a state (no
shift-shift conflicts are possible)

If there are no S-R or R-R conflicts in any state of an LR(0)
DFA, then the grammar is LR(0), otherwise, it is not LR(0)
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LR(0) Parser Table - Example 1
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Construction of an LR(0) Parser Table - Example 1
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LR(0) Automaton - Example 2
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Construction of an LR(0) Automaton - Example 2

Y.N. Srikant Parsing



LR(0) Parser Table - Example 2
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Construction of an LR(0) Parser Table - Example 2
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A Grammar that is not LR(0) - Example 1
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SLR(1) Parsers

If the grammar is not LR(0), we try to resolve conflicts in
the states using one look-ahead symbol
Example: The expression grammar that is not LR(0)
The state containing the items [T → F .] and [T → F . ∗ T ]
has S-R conflicts

Consider the reduce item [T → F .] and the symbols in
FOLLOW (T )
FOLLOW (T ) = {+, ),$}, and reduction by T → F can be
performed on seeing one of these symbols in the input
(look-ahead), since shift requires seeing ∗ in the input
Recall from the definition of FOLLOW (T ) that symbols in
FOLLOW (T ) are the only symbols that can legally follow T
in any sentential form, and hence reduction by T → F when
one of these symbols is seen, is correct
If the S-R conflicts can be resolved using the FOLLOW set,
the grammar is said to be SLR(1)
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A Grammar that is not LR(0) - Example 2
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Construction of an SLR(1) Parsing Table

Let C = {I0, I1, ..., Ii , ..., In} be the canonical LR(0) collection of items,
with the corresponding states of the parser being 0, 1, ... , i, ... , n
Without loss of generality, let 0 be the initial state of the parser
(containing the item [S′ → .S])
Parsing actions for state i are determined as follows
1. If ([A→ α.aβ] ∈ Ii ) && ([A→ αa.β] ∈ Ij )

set ACTION[i, a] = shift j /* a is a terminal symbol */
2. If ([A→ α.] ∈ Ii )

set ACTION[i, a] = reduce A→ α, for all a ∈ follow(A)
3. If ([S′ → S.] ∈ Ii ) set ACTION[i, $] = accept
S-R or R-R conflicts in the table imply grammar is not SLR(1)
4. If ([A→ α.Aβ] ∈ Ii ) && ([A→ αA.β] ∈ Ij )

set GOTO[i, A] = j /* A is a nonterminal symbol */
All other entries not defined by the rules above are made error
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A Grammar that is not LR(0) - Example 3
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A Grammar that is not SLR(1) - Example 1
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A Grammar that is not SLR(1) - Example 2
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The Problem with SLR(1) Parsers

SLR(1) parser construction process does not remember
enough left context to resolve conflicts

In the “L = R” grammar (previous slide), the symbol ‘=’ got
into follow(R) because of the following derivation:
S′ ⇒ S ⇒ L = R ⇒ L = L⇒ L = id ⇒ ∗R =id ⇒ ...
The production used is L→ ∗R
The following rightmost derivation in reverse does not exist
(and hence reduction by R → L on ‘=’ in state 2 is illegal)
id = id ⇐ L = id ⇐ R = id ...

Generalization of the above example
In some situations, when a state i appears on top of the
stack, a viable prefix βα may be on the stack such that βA
cannot be followed by ‘a’ in any right sentential form
Thus, the reduction by A→ α would be invalid on ‘a’
In the above example, β = ε, α = L, and A = R; L cannot be
reduced to R on ‘=’, since it would lead to the above illegal
derivation sequence
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LR(1) Parsers

LR(1) items are of the form [A→ α.β, a], a being the
“lookahead” symbol
Lookahead symbols have no part to play in shift items, but
in reduce items of the form [A→ α., a], reduction by
A→ α is valid only if the next input symbol is ‘a’
An LR(1) item [A→ α.β, a] is valid for a viable prefix γ, if
there is a derivation S ⇒∗rm δAw ⇒rm δαβw , where,
γ = δα, a = first(w) or w = ε and a = $

Consider the grammar: S′ → S, S → aSb | ε
[S → a.Sb, $] is valid for the VP a, S′ ⇒ S ⇒ aSb
[S → a.Sb, b] is valid for the VP aa,
S′ ⇒ S ⇒ aSb ⇒ aaSbb
[S → ., $] is valid for the VP ε, S′ ⇒ S ⇒ ε
[S → aSb., b] is valid for the VP aaSb,
S′ ⇒ S ⇒ aSb ⇒ aaSbb
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LR(1) Grammar - Example 1

Y.N. Srikant Parsing



Closure of a Set of LR(1) Items

Itemset closure(I){ /* I is a set of LR(1) items */
while (more items can be added to I) {

for each item [A→ α.Bβ, a] ∈ I {
for each production B → γ ∈ G

for each symbol b ∈ first(βa)
if (item [B → .γ, b] /∈ I) add item [B → .γ, b] to I

}
return I

}
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GOTO set computation

Itemset GOTO(I, X ){ /* I is a set of LR(1) items
X is a grammar symbol, a terminal or a nonterminal */
Let I′ = {[A→ αX .β, a] | [A→ α.Xβ, a] ∈ I};
return (closure(I′))

}
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Construction of Sets of Canonical of LR(1) Items

void Set_of_item_sets(G′){ /* G’ is the augmented grammar */
C = {closure({S′ → .S, $})};/* C is a set of LR(1) item sets */
while (more item sets can be added to C) {

for each item set I ∈ C and each grammar symbol X
/* X is a grammar symbol, a terminal or a nonterminal */

if ((GOTO(I,X ) 6= ∅) && (GOTO(I,X ) /∈ C))
C = C ∪GOTO(I,X )

}
}

Each set in C (above) corresponds to a state of a DFA
(LR(1) DFA)
This is the DFA that recognizes viable prefixes
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LR(1) DFA Construction - Example 1
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Construction of an LR(1) Parsing Table

Let C = {I0, I1, ..., Ii , ..., In} be the canonical LR(1) collection of items,
with the corresponding states of the parser being 0, 1, ... , i, ... , n
Without loss of generality, let 0 be the initial state of the parser
(containing the item [S′ → .S, $])
Parsing actions for state i are determined as follows
1. If ([A→ α.aβ, b] ∈ Ii ) && ([A→ αa.β, b] ∈ Ij )

set ACTION[i, a] = shift j /* a is a terminal symbol */
2. If ([A→ α., a] ∈ Ii )

set ACTION[i, a] = reduce A→ α
3. If ([S′ → S., $] ∈ Ii ) set ACTION[i, $] = accept
S-R or R-R conflicts in the table imply grammar is not LR(1)
4. If ([A→ α.Aβ, a] ∈ Ii ) && ([A→ αA.β, a] ∈ Ij )

set GOTO[i, A] = j /* A is a nonterminal symbol */
All other entries not defined by the rules above are made error
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