
Syntax Analysis:
Context-free Grammars, Pushdown Automata and Parsing

Part - 6

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing



Outline of the Lecture

What is syntax analysis? (covered in lecture 1)
Specification of programming languages: context-free
grammars (covered in lecture 1)
Parsing context-free languages: push-down automata
(covered in lectures 1 and 2)
Top-down parsing: LL(1) parsing
(covered in lectures 2 and 3)
Recursive-descent parsing (covered in lecture 4)
Bottom-up parsing: LR-parsing (continued)

Y.N. Srikant Parsing



DFA for Viable Prefixes - LR(0) Automaton

Y.N. Srikant Parsing



Construction of Sets of Canonical LR(0) Items

void Set_of_item_sets(G′){ /* G’ is the augmented grammar */
C = {closure({S′ → .S})};/* C is a set of item sets */
while (more item sets can be added to C) {

for each item set I ∈ C and each grammar symbol X
/* X is a grammar symbol, a terminal or a nonterminal */

if ((GOTO(I,X ) 6= ∅) && (GOTO(I,X ) /∈ C))
C = C ∪GOTO(I,X )

}
}

Each set in C (above) corresponds to a state of a DFA
(LR(0) DFA)
This is the DFA that recognizes viable prefixes

Y.N. Srikant Parsing



Construction of an LR(0) Automaton - Example 1

Y.N. Srikant Parsing



Shift and Reduce Actions

If a state contains an item of the form [A→ α.] (“reduce
item”), then a reduction by the production A→ α is the
action in that state
If there are no “reduce items” in a state, then shift is the
appropriate action
There could be shift-reduce conflicts or reduce-reduce
conflicts in a state

Both shift and reduce items are present in the same state
(S-R conflict), or
More than one reduce item is present in a state (R-R
conflict)
It is normal to have more than one shift item in a state (no
shift-shift conflicts are possible)

If there are no S-R or R-R conflicts in any state of an LR(0)
DFA, then the grammar is LR(0), otherwise, it is not LR(0)

Y.N. Srikant Parsing



LR(0) Parser Table - Example 1

Y.N. Srikant Parsing



Construction of an LR(0) Parser Table - Example 1

Y.N. Srikant Parsing



LR(0) Automaton - Example 2

Y.N. Srikant Parsing



Construction of an LR(0) Automaton - Example 2

Y.N. Srikant Parsing



LR(0) Parser Table - Example 2

Y.N. Srikant Parsing



Construction of an LR(0) Parser Table - Example 2

Y.N. Srikant Parsing



A Grammar that is not LR(0) - Example 1

Y.N. Srikant Parsing



SLR(1) Parsers

If the grammar is not LR(0), we try to resolve conflicts in
the states using one look-ahead symbol
Example: The expression grammar that is not LR(0)
The state containing the items [T → F .] and [T → F . ∗ T ]
has S-R conflicts

Consider the reduce item [T → F .] and the symbols in
FOLLOW (T )
FOLLOW (T ) = {+, ),$}, and reduction by T → F can be
performed on seeing one of these symbols in the input
(look-ahead), since shift requires seeing ∗ in the input
Recall from the definition of FOLLOW (T ) that symbols in
FOLLOW (T ) are the only symbols that can legally follow T
in any sentential form, and hence reduction by T → F when
one of these symbols is seen, is correct
If the S-R conflicts can be resolved using the FOLLOW set,
the grammar is said to be SLR(1)

Y.N. Srikant Parsing



A Grammar that is not LR(0) - Example 2

Y.N. Srikant Parsing



Construction of an SLR(1) Parsing Table

Let C = {I0, I1, ..., Ii , ..., In} be the canonical LR(0) collection of items,
with the corresponding states of the parser being 0, 1, ... , i, ... , n
Without loss of generality, let 0 be the initial state of the parser
(containing the item [S′ → .S])
Parsing actions for state i are determined as follows
1. If ([A→ α.aβ] ∈ Ii ) && ([A→ αa.β] ∈ Ij )

set ACTION[i, a] = shift j /* a is a terminal symbol */
2. If ([A→ α.] ∈ Ii )

set ACTION[i, a] = reduce A→ α, for all a ∈ follow(A)
3. If ([S′ → S.] ∈ Ii ) set ACTION[i, $] = accept
S-R or R-R conflicts in the table imply grammar is not SLR(1)
4. If ([A→ α.Aβ] ∈ Ii ) && ([A→ αA.β] ∈ Ij )

set GOTO[i, A] = j /* A is a nonterminal symbol */
All other entries not defined by the rules above are made error

Y.N. Srikant Parsing



A Grammar that is not LR(0) - Example 3

Y.N. Srikant Parsing



A Grammar that is not SLR(1) - Example 1

Y.N. Srikant Parsing



A Grammar that is not SLR(1) - Example 2

Y.N. Srikant Parsing



The Problem with SLR(1) Parsers

SLR(1) parser construction process does not remember
enough left context to resolve conflicts

In the “L = R” grammar (previous slide), the symbol ‘=’ got
into follow(R) because of the following derivation:
S′ ⇒ S ⇒ L = R ⇒ L = L⇒ L = id ⇒ ∗R =id ⇒ ...
The production used is L→ ∗R
The following rightmost derivation in reverse does not exist
(and hence reduction by R → L on ‘=’ in state 2 is illegal)
id = id ⇐ L = id ⇐ R = id ...

Generalization of the above example
In some situations, when a state i appears on top of the
stack, a viable prefix βα may be on the stack such that βA
cannot be followed by ‘a’ in any right sentential form
Thus, the reduction by A→ α would be invalid on ‘a’
In the above example, β = ε, α = L, and A = R; L cannot be
reduced to R on ‘=’, since it would lead to the above illegal
derivation sequence

Y.N. Srikant Parsing



LR(1) Parsers

LR(1) items are of the form [A→ α.β, a], a being the
“lookahead” symbol
Lookahead symbols have no part to play in shift items, but
in reduce items of the form [A→ α., a], reduction by
A→ α is valid only if the next input symbol is ‘a’
An LR(1) item [A→ α.β, a] is valid for a viable prefix γ, if
there is a derivation S ⇒∗rm δAw ⇒rm δαβw , where,
γ = δα, a = first(w) or w = ε and a = $

Consider the grammar: S′ → S, S → aSb | ε
[S → a.Sb, $] is valid for the VP a, S′ ⇒ S ⇒ aSb
[S → a.Sb, b] is valid for the VP aa,
S′ ⇒ S ⇒ aSb ⇒ aaSbb
[S → ., $] is valid for the VP ε, S′ ⇒ S ⇒ ε
[S → aSb., b] is valid for the VP aaSb,
S′ ⇒ S ⇒ aSb ⇒ aaSbb

Y.N. Srikant Parsing



LR(1) Grammar - Example 1

Y.N. Srikant Parsing



Closure of a Set of LR(1) Items

Itemset closure(I){ /* I is a set of LR(1) items */
while (more items can be added to I) {

for each item [A→ α.Bβ, a] ∈ I {
for each production B → γ ∈ G

for each symbol b ∈ first(βa)
if (item [B → .γ, b] /∈ I) add item [B → .γ, b] to I

}
return I

}

Y.N. Srikant Parsing



GOTO set computation

Itemset GOTO(I, X ){ /* I is a set of LR(1) items
X is a grammar symbol, a terminal or a nonterminal */
Let I′ = {[A→ αX .β, a] | [A→ α.Xβ, a] ∈ I};
return (closure(I′))

}

Y.N. Srikant Parsing



Construction of Sets of Canonical of LR(1) Items

void Set_of_item_sets(G′){ /* G’ is the augmented grammar */
C = {closure({S′ → .S, $})};/* C is a set of LR(1) item sets */
while (more item sets can be added to C) {

for each item set I ∈ C and each grammar symbol X
/* X is a grammar symbol, a terminal or a nonterminal */

if ((GOTO(I,X ) 6= ∅) && (GOTO(I,X ) /∈ C))
C = C ∪GOTO(I,X )

}
}

Each set in C (above) corresponds to a state of a DFA
(LR(1) DFA)
This is the DFA that recognizes viable prefixes

Y.N. Srikant Parsing



LR(1) DFA Construction - Example 1

Y.N. Srikant Parsing



Construction of an LR(1) Parsing Table

Let C = {I0, I1, ..., Ii , ..., In} be the canonical LR(1) collection of items,
with the corresponding states of the parser being 0, 1, ... , i, ... , n
Without loss of generality, let 0 be the initial state of the parser
(containing the item [S′ → .S, $])
Parsing actions for state i are determined as follows
1. If ([A→ α.aβ, b] ∈ Ii ) && ([A→ αa.β, b] ∈ Ij )

set ACTION[i, a] = shift j /* a is a terminal symbol */
2. If ([A→ α., a] ∈ Ii )

set ACTION[i, a] = reduce A→ α
3. If ([S′ → S., $] ∈ Ii ) set ACTION[i, $] = accept
S-R or R-R conflicts in the table imply grammar is not LR(1)
4. If ([A→ α.Aβ, a] ∈ Ii ) && ([A→ αA.β, a] ∈ Ij )

set GOTO[i, A] = j /* A is a nonterminal symbol */
All other entries not defined by the rules above are made error

Y.N. Srikant Parsing


