Syntax Analysis:

Context-free Grammars, Pushdown Automata and Parsing
Part - 4

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

@ What is syntax analysis? (covered in lecture 1)

@ Specification of programming languages: context-free
grammars (covered in lecture 1)

@ Parsing context-free languages: push-down automata
(covered in lectures 1 and 2)

@ Top-down parsing: LL(1) parsing
(covered in lectures 2 and 3)

@ Recursive-descent parsing

@ Bottom-up parsing: LR-parsing

Y.N. Srikant Parsing

Elimination of Left Recursion

@ A left-recursive grammar has a non-terminal A such that
A=T Aa

@ Top-down parsing methods (LL(1) and RD) cannot handle
reft-recursive grammars

@ Left-recursion in grammars can be eliminated by
transformations
@ A simpler case is that of grammars with immediate left
recursion, where there is a production of the form A — A«
e Two productions A — Aa | 3 can be transformed to
A= BAA — oA | e
e In general, a group of productions:
A*)Aoq |AO[2 | ...|A0zm|,31 |[‘32 ‘ |Bn
can be transformed to
A= BIA | BA | | BoA LA — A | apA | | apA | €

Y.N. Srikant Parsing

Left Recursion Elimination - An Example

A= Aa|B=A— A, A —aA |e

@ The following grammar for regular expressions is
ambiguous:
E—-E+E|EE|Ex|(E)|alb

@ Equivalent left-recursive but unambiguous grammar is:
E-E+T|T, TTF|F,F—>F«|P,P—(E)|alb

@ Equivalent non-left-recursive grammar is:
E-TE,E +TE |, T>FT, T - FT |eg
F—-PF,F —xF'|¢,P—(E)|al|b

Y.N. Srikant Parsing

Left Factoring

o If two alternatives of a production begin with the same
string, then the grammar is not LL(1)
@ Example: S — 051 | 01 is not LL(1)
o After left factoring: S — 0S8, S’ — S1 | 1isLL(1)

@ General method: A — af1 | aflo = A— @A, A — (1| B2

@ Another example: a grammar for logical expressions is
given below
E—-TorE|T, T—FandT|F,
F — not F | (E) | true | false
e This grammar is not LL(1) but becomes LL(1) after left
factoring
e ESTE E worE|e, T—FT, T - and T |e,
F — not F | (E) | true | false

Y.N. Srikant Parsing

Grammar Transformations may not help!

Original Grammar LL{1) Parsing Table for medified grammar
T I T P
S=>ifid S| s s > s s >s8

if id Selse S | s s>ifid ss1 sda
a s15e
o s1->elses Hoe
dirsymb(SS) _ {if, a}; dirsymb (a) _ {a} Left-Factored Grammar
dirsymb(if id S S1) = {if} S’ >SS
dirsymb(else S) = {else} S>ifid SS1 | a
dirsymbl(e) = {else, 5} S1>¢e|elses

tokens: if, id, else, a
dirsymb(if id S S1)(\dirsymb(a) =&
dirsymb(£)(\ dirsymb(else S) =

Choose S1 — else S instead of S1 — ¢ on lookahead else.
This resolves the conflict. Associates else with the innermost if

Y.N. Srikant Parsing

Recursive-Descent Parsing

@ Top-down parsing strategy
@ One function/procedure for each nonterminal

@ Functions call each other recursively, based on the
grammar

@ Recursion stack handles the tasks of LL(1) parser stack
@ LL(1) conditions to be satisfied for the grammar

@ Can be automatically generated from the grammar

@ Hand-coding is also easy

@ Error recovery is superior

Y.N. Srikant Parsing

An Example

Grammar: S’ — S$, S— aAS|c,A—ba|SB, B—~bA| S

/+ function for nonterminal S’ x/
void main () {/* S’ ——> SS$S x/

£fS(); if (token == eof) accept();

else error();

}
/+ function for nonterminal S */
void f£S(){/* S ——> aAS | c =/

switch token {

case a : get_token(); fA(); £S();

break;
case ¢ : get_token(); break;
others : error();

Y.N. Srikant Parsing

An Example (contd.)

void fA(){/* A ——> ba | SB */
switch token {

case b : get_token();
if (token == a) get_token();
else error(); break;

case a,c : f£S(); fB(); break;

others : error();

}
void fB(){/* B ——> bA | S x/
switch token {
case b : get_token(); fA(); break;
case a,c : f£S(); break;
others : error();

Y.N. Srikant Parsing

Automatic Generation of RD Parsers

@ Scheme is based on structure of productions
@ Grammar must satisfy LL(1) conditions

@ function get token() obtains the next token from the lexical
analyzer and places it in the global variable token

@ function error() prints out a suitable error message

@ In the next slide, for each grammar component, the code
that must be generated is shown

Y.N. Srikant Parsing

Automatic Generation of RD Parsers (contd.)

Q«c:;
©Q ac T :if (token == a) get_token(); else error();
© A e N :fA(); /* function call for nonterminal A */
Q aj|az|...|an:
switch token {
case dirsym(ay): program_segment(«a4); break;
case dirsym(ap): program_segment(ay); break;

others: error();

}

Q {02 ... Qp ©
program_segment(a4); program_segment(ay); ... ;
program_segment(ap);

Q A — «:void fA() { program_segment(a); }

Y.N. Srikant Parsing

Bottom-Up Parsing

@ Begin at the leaves, build the parse tree in small segments,
combine the small trees to make bigger trees, until the root
is reached

@ This process is called reduction of the sentence to the start
symbol of the grammar

@ One of the ways of “reducing” a sentence is to follow the
rightmost derivation of the sentence in reverse
e Shift-Reduce parsing implements such a strategy
e It uses the concept of a handle to detect when to perform
reductions

Y.N. Srikant Parsing

Shift-Reduce Parsing

Handle: A handle of a right sentential form ~, is a
production A — 8 and a position in v, where the string
may be found and replaced by A, to produce the previous
right sentential form in a rightmost derivation of

Thatis, if S =7,, cAW =, aSw, then A — 5 in the
position following « is a handle of agw

A handle will always eventually appear on the top of the
stack, never submerged inside the stack

In S-R parsing, we locate the handle and reduce it by the
LHS of the production repeatedly, to reach the start symbol

These reductions, in fact, trace out a rightmost derivation
of the sentence in reverse. This process is called handle
pruning

LR-Parsing is a method of shift-reduce parsing

Y.N. Srikant Parsing

Examples

Q@ S— aAcBe,A— Ab|b,B—d
For the string = abbcde, the rightmost derivation marked
with handles is shown below

S = aAcBe (aAcBe, S — aAcBe)
= aAcde (d, B — d)
= aAbcde (Ab, A — Ab)
= abbcde (b, A— b)

The handle is unique if the grammar is unambiguous!

Y.N. Srikant Parsing

Examples (contd.)

Q@ S—~aAS|c,A—~ba|SB, B—bA|S
For the string = acbbac, the rightmost derivation marked
with handles is shown below

S = aAS (aAS, S — aAS)
= aAc (¢, S— ¢
= aSBc (SB, A— SB)
= aSbAc (bA, B — bA)
= aSbbac (ba, A — ba)
= acbbac (¢, S — ¢)

Y.N. Srikant Parsing

Examples (contd.)

QE-E+E,E—-ExE E—(E),E—id
For the string = id + id * id, two rightmost derivation
marked with handles are shown below

E =E+E (E+E, E->E+E)
=E+ExE (ExE, E— ExE)
= E+ Exid (id, E — id)
= E+idx*id (id, E — id)
= id+idx*id (id, E — id)

E =ExE (ExE, E— ExE)
= Exid (id, E — id)
=E+Exid (E+E, E—~E+E)
= E+idxid (id, E — id)
= id+id*id (id, E — id)

Y.N. Srikant Parsing

Rightmost Derivation and Bottom-UP Parsing

S=2aAs |c Rightmost derivation of the string acbbac
A = ba|SB 5 = aAS = aAc => aSBc => aSbAc > aSbbac => achbac
B>bA|S 4 6 7

Feeee iy

BN

Y.N. Srikant Parsing

Rightmost Derivation and Bottom-UP Parsing (contd.)

S>aAs | c Rightmost derivation of the string acbbac in reverse
A->ba|SB S <= aAS <= aAc <= aSBc <= aSbAc <= aSbbac <= acbbac
B=>bA|S

" ed Totess .Iz}.

i

Y.N. Srikant Parsing

Shift-Reduce Parsing Algorithm

@ How do we locate a handle in a right sentential form?

e An LR parser uses a DFA to detect the condition that a
handle is now on the stack

@ Which production to use, in case there is more than one
with the same RHS?
@ An LR parser uses a parsing table similar to an LL parsing
table, to choose the production

@ A stack is used to implement an S-R parser, The parser
has four actions

@ shift: the next input symbol is shifted to the top of stack

@ reduce: the right end of the handle is the top of stack;
locates the left end of the handle inside the stack and
replaces the handle by the LHS of an appropriate
production

© accept: announces successful completion of parsing

© error: syntax error, error recovery routine is called

Y.N. Srikant Parsing

S-R Parsing Example 1

$ marks the bottom of stack and the right end of the input

Stack Input Action

$ acbbacs$ shift

$a cbbac$ shift

$ ac bbacs reduceby S — ¢
$ aS bbacs shift

$ aSb bac$ shift

$ aSbb acs shift

$ aSbba c$ reduce by A — ba
$ aSbA c$ reduce by B — bA
$ aSB c$ reduce by A— SB
$ aA c$ shift

$ aAc $ reduceby S— ¢
$ aAS $ reduce by S — aAS
$S $ accept

Y.N. Srikant Parsing

S-R Parsing Example 2

$ marks the bottom of stack and the right end of the input

Stack Input Action

$ idy + idb x id3$ shift

$ idy +idb x id3$ reduce by E — id

S E +idp x id3$ shift

$ E+ id> * idzs shift

S E+ido xidz$ reduce by E — id
SE+E xid3$ shift

$ E+ Ex idzs shift

$ E+ Exids $ reduce by E — id
SE+ExE $ reduceby E— ExE
SE+E $ reduceby E —~ E+E
$ E $ accept

Y.N. Srikant Parsing

LR Parsing

@ LR(k) - Left to right scanning with Rightmost derivation in
reverse, k being the number of lookahead tokens

e k= 0,1 are of practical interest

@ LR parsers are also automatically generated using parser
generators

@ LR grammars are a subset of CFGs for which LR parsers
can be constructed

@ LR(1) grammars can be written quite easily for practically
all programming language constructs for which CFGs can
be written

@ LR parsing is the most general non-backtracking
shift-reduce parsing method (known today)

@ LL grammars are a strict subset of LR grammars - an LL(k)
grammar is also LR(k), but not vice-versa

Y.N. Srikant Parsing

LR Parser Generation

Parsing Table

Grammar Table
Generator
| t *\
npu Driver Parsing
Stack Routine Table
E——

Output

LR Parser Generator

Y.N. Srikant Parsing

LR Parser Configuration

@ A configuration of an LR parser is:
(S0 X182Xs...XmSm, ajajr1...an $), Where,
stack unexpended input
So, $1, ---, Sm, are the states of the parser, and Xi, Xs, ..., Xm,
are grammar symbols (terminals or nonterminals)

@ Starting configuration of the parser: (Sp, atas...an$),
where, sy is the initial state of the parser, and ajas...an is
the string to be parsed

@ Two parts in the parsing table: ACTION and GOTO

e The ACTION table can have four types of entries: shift,
reduce, accept, or error

e The GOTO table provides the next state information to be
used after a reduce move

Y.N. Srikant Parsing

LR Parsing Algorithm

Input Initial configuration: Stack = state 0, Input = ws,
a = first input symbol;
repeat {

Parser let s be the top stack state;

let a be the next input symbol;
if (ACTION[s, a] == shift p) {
push a and p onto the stack (in that order);
Table advance input pointer;
} else if (ACTION(s,a] == reduce A 2 a) then {
pop 2*|a | symbols off the stack;
let s” be the top of stack state now;
push A and GOTO(s’, A] onto the stack
(in that order);
} else if (ACTION(s, a] == accept) break;
/* parsng is over */
else error();
}until true; /* for ever */

Stack

Y.N. Srikant Parsing

LR Parsing Example 1 - Parsing Table

STATE ACTION GOTO
a b c $ S A B
s2 S3 1
R1
acc ,
2 s2 | s6 | s3 8 4 :12 g —_))aSAS
3 R3 | R3 | R3 | R3 ‘
4 s2 S3 5 3.53¢
4. A= ba
5 R2 | R2 | R2 | R2 5 A- SB
6 ST 6.B - bA
7 R4 | R4 | R4 | R4 7B>S
8 s2 | 810 | 83 12 9
9 R5 | R5 | R5 | R5
10 S2 | s6 | S3 8 11
1 R6 | R6 | R6 | RB
12 R7 | R7 | R7 | RY
Y.N. Srikant Parsing

