
Syntax Analysis:
Context-free Grammars, Pushdown Automata and Parsing

Part - 3

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

What is syntax analysis? (covered in lecture 1)
Specification of programming languages: context-free
grammars (covered in lecture 1)
Parsing context-free languages: push-down automata
(covered in lectures 1 and 2)
Top-down parsing: LL(1) and recursive-descent parsing
Bottom-up parsing: LR-parsing

Y.N. Srikant Parsing

Testable Conditions for LL(1)

We call strong LL(1) as LL(1) from now on and we will not
consider lookaheads longer than 1
The classical condition for LL(1) property uses FIRST and
FOLLOW sets
If α is any string of grammar symbols (α ∈ (N ∪ T)∗), then
FIRST (α) = {a | a ∈ T , and α⇒∗ ax , x ∈ T ∗}
FIRST (ε) = {ε}
If A is any nonterminal, then
FOLLOW (A) = {a | S ⇒∗ αAaβ, α, β ∈ (N ∪ T)∗,

a ∈ T ∪ {$}}
FIRST (α) is determined by α alone, but FOLLOW (A) is
determined by the “context” of A, i.e., the derivations in
which A occurs

Y.N. Srikant Parsing

FIRST and FOLLOW Computation Example

Consider the following grammar
S′ → S$, S → aAS | c, A→ ba | SB, B → bA | S
FIRST (S′) = FIRST (S) = {a, c} because
S′ ⇒ S$⇒ c$, and S′ ⇒ S$⇒ aAS$⇒ abaS$⇒ abac$
FIRST (A) = {a,b, c} because
A⇒ ba, and A⇒ SB, and therefore all symbols in
FIRST (S) are in FIRST (A)
FOLLOW (S) = {a,b, c, $} because
S′ ⇒ S$,
S′ ⇒∗ aAS$⇒ aSBS$⇒ aSbAS$,
S′ ⇒∗ aSBS$⇒ aSSS$⇒ aSaASS$,
S′ ⇒∗ aSSS$⇒ aScS$

FOLLOW (A) = {a, c} because
S′ ⇒∗ aAS$⇒ aAaAS$,
S′ ⇒∗ aAS$⇒ aAc

Y.N. Srikant Parsing

Computation of FIRST : Terminals and Nonterminals

{
for each (a ∈ T) FIRST(a) = {a}; FIRST(ε) = {ε};
for each (A ∈ N) FIRST(A) = ∅;
while (FIRST sets are still changing) {

for each production p {
Let p be the production A→ X1X2...Xn;
FIRST(A) = FIRST(A) ∪ (FIRST(X1) - {ε});
i = 1;
while (ε ∈ FIRST(Xi) && i ≤ n − 1) {

FIRST(A) = FIRST(A) ∪ (FIRST(Xi+1 − {ε}); i ++;
}
if (i == n) && (ε ∈ FIRST(Xn))

FIRST(A) = FIRST(A) ∪{ε}
}

}

Y.N. Srikant Parsing

Computation of FIRST (β): β, a string of Grammar
Symbols

{ /* It is assumed that FIRST sets of terminals and nonterminals
are already available /*
FIRST(β) = ∅;
while (FIRST sets are still changing) {

Let β be the string X1X2...Xn;
FIRST(β) = FIRST(β) ∪ (FIRST(X1) - {ε});
i = 1;
while (ε ∈ FIRST(Xi) && i ≤ n − 1) {

FIRST(β) = FIRST(β) ∪ (FIRST(Xi+1 − {ε}); i ++;
}
if (i == n) && (ε ∈ FIRST(Xn))

FIRST(β) = FIRST(β) ∪{ε}
}

}

Y.N. Srikant Parsing

FIRST Computation: Algorithm Trace - 1

Consider the following grammar
S′ → S$, S → aAS | ε, A→ ba | SB, B → cA | S
Initially, FIRST(S) = FIRST(A) = FIRST(B) = ∅
Iteration 1

FIRST(S) = {a, ε} from the productions S → aAS | ε
FIRST(A) = {b} ∪ FIRST(S) - {ε} ∪ FIRST(B) - {ε} = {b,a}
from the productions A→ ba | SB
(since ε ∈ FIRST(S), FIRST(B) is also included;
since FIRST(B)=φ, ε is not included)
FIRST(B) = {c} ∪ FIRST(S) - {ε} ∪{ε} = {c,a, ε}
from the productions B → cA | S
(ε is included because ε ∈ FIRST(S))

Y.N. Srikant Parsing

FIRST Computation: Algorithm Trace - 2

The grammar is
S′ → S$, S → aAS | ε, A→ ba | SB, B → cA | S
From the first iteration,
FIRST(S) = {a, ε}, FIRST(A) = {b,a}, FIRST(B) = {c,a, ε}
Iteration 2
(values stabilize and do not change in iteration 3)

FIRST(S) = {a, ε} (no change from iteration 1)
FIRST(A) = {b} ∪ FIRST(S) - {ε} ∪ FIRST(B) - {ε} ∪{ε}

= {b,a, c, ε} (changed!)
FIRST(B) = {c,a, ε} (no change from iteration 1)

Y.N. Srikant Parsing

Computation of FOLLOW

{ for each (X ∈ N ∪ T) FOLLOW(X) = ∅;
FOLLOW(S) = {$}; /* S is the start symbol of the grammar */
repeat {

for each production A→ X1X2...Xn {/* Xi 6= ε */
FOLLOW(Xn) = FOLLOW(Xn) ∪ FOLLOW(A);
REST = FOLLOW(A);
for i = n downto 2 {

if (ε ∈ FIRST(Xi)) { FOLLOW(Xi−1) =
FOLLOW(Xi−1) ∪ (FIRST (Xi)− {ε})∪ REST;
REST = FOLLOW(Xi−1);

} else { FOLLOW(Xi−1) = FOLLOW(Xi−1) ∪ FIRST (Xi) ;
REST = FOLLOW(Xi−1); }

}
}

} until no FOLLOW set has changed
}

Y.N. Srikant Parsing

FOLLOW Computation: Algorithm Trace

Consider the following grammar
S′ → S$, S → aAS | ε, A→ ba | SB, B → cA | S
Initially, follow(S) = {$}; follow(A) = follow(B) = ∅
first(S) = {a, ε}; first(A) = {a,b, c, ε}; first(B) = {a, c, ε};
Iteration 1 /* In the following, x ∪ = y means x = x ∪ y */

S → aAS: follow(S)∪ = {$}; rest = follow(S) = {$}
follow(A)∪ = (first(S)− {ε}) ∪ rest = {a, $}
A→ SB: follow(B)∪ = follow(A) = {a, $}
rest = follow(A) = {a,$}
follow(S)∪ = (first(B)− {ε}) ∪ rest = {a, c, $}
B → cA: follow(A)∪ = follow(B) = {a,$}
B → S: follow(S)∪ = follow(B) = {a, c,$}
At the end of iteration 1
follow(S) = {a, c,$}; follow(A) = follow(B) = {a, $}

Y.N. Srikant Parsing

FOLLOW Computation: Algorithm Trace (contd.)

first(S) = {a, ε}; first(A) = {a,b, c, ε}; first(B) = {a, c, ε};
At the end of iteration 1
follow(S) = {a, c, $}; follow(A) = follow(B) = {a, $}
Iteration 2
S → aAS: follow(S)∪ = {a, c, $};
rest = follow(S) = {a, c, $}
follow(A)∪ = (first(S)− {ε}) ∪ rest = {a, c, $} (changed!)
A→ SB: follow(B)∪ = follow(A) = {a, c, $} (changed!)
rest = follow(A) = {a, c, $}
follow(S)∪ = (first(B)− {ε}) ∪ rest = {a, c, $} (no change)
At the end of iteration 2
follow(S) = follow(A) = follow(B) = {a, c, $};
The follow sets do not change any further

Y.N. Srikant Parsing

LL(1) Conditions

Let G be a context-free grammar
G is LL(1) iff for every pair of productions A→ α and
A→ β, the following condition holds

dirsymb(α) ∩ dirsymb(β) = ∅, where
dirsymb(γ) = if (ε ∈ first(γ)) then

((first(γ)− {ε}) ∪ follow(A)) else first(γ)
(γ stands for α or β)
dirsymb stands for “direction symbol set”

An equivalent formulation (as in ALSU’s book) is as below
first(α.follow(A)) ∩ first(β.follow(A)) = ∅

Construction of the LL(1) parsing table

for each production A→ α
for each symbol s ∈ dirsymb(α)
/* s may be either a terminal symbol or $ */

add A→ α to LLPT [A, s]
Make each undefined entry of LLPT as error

Y.N. Srikant Parsing

LL(1) Table Construction using FIRST and FOLLOW

for each production A→ α
for each terminal symbol a ∈ first(α)

add A→ α to LLPT [A,a]
if ε ∈ first(α) {

for each terminal symbol b ∈ follow(A)
add A→ α to LLPT [A,b]

if $ ∈ follow(A)
add A→ α to LLPT [A, $]

}
Make each undefined entry of LLPT as error

After the construction of the LL(1) table is complete
(following any of the two methods), if any slot in the LL(1)
table has two or more productions, then the grammar is
NOT LL(1)

Y.N. Srikant Parsing

Simple Example of LL(1) Grammar

P1: S → if (a) S else S | while (a) S | begin SL end
P2: SL→ S S′

P3: S′ →;SL | ε
{if, while, begin, end, a, (,), ;} are all terminal symbols
Clearly, all alternatives of P1 start with distinct symbols
and hence create no problem
P2 has no choices
Regarding P3, dirsymb(;SL) = {;}, and dirsymb(ε) = {end},
and the two have no common symbols
Hence the grammar is LL(1)

Y.N. Srikant Parsing

LL(1) Table Construction Example 1

Y.N. Srikant Parsing

LL(1) Table Problem Example 1

Y.N. Srikant Parsing

LL(1) Table Construction Example 2

Y.N. Srikant Parsing

LL(1) Table Problem Example 2

Y.N. Srikant Parsing

LL(1) Table Construction Example 3

Y.N. Srikant Parsing

LL(1) Table Construction Example 4

Y.N. Srikant Parsing

Elimination of Useless Symbols

Now we study the grammar transformations, elimination of
useless symbols, elimination of left recursion and left factoring

Given a grammar G = (N,T ,P,S), a non-terminal X is
useful if S ⇒∗ αXβ ⇒∗ w , where, w ∈ T ∗

Otherwise, X is useless
Two conditions have to be met to ensure that X is useful

1 X ⇒∗ w , w ∈ T ∗ (X derives some terminal string)
2 S ⇒∗ αXβ (X occurs in some string derivable from S)

Example: S → AB | CA, B → BC | AB, A→ a,
C → aB | b, D → d

1 A→ a, C → b, D → d , S → CA
2 S → CA, A→ a, C → b

Y.N. Srikant Parsing

Testing for X ⇒∗ w

G’ = (N’,T’,P’,S’) is the new grammar
N_OLD = φ;
N_NEW = {X | X → w , w ∈ T ∗ }
while N_OLD 6= N_NEW do {

N_OLD = N_NEW;
N_NEW = N_OLD ∪{X | X → α, α ∈ (T ∪ N_OLD)∗}

}
N’ = N_NEW; T’ = T; S’ = S;
P’ = {p | all symbols of p are in N ′ ∪ T ′}

Y.N. Srikant Parsing

Testing for S ⇒∗ αXβ

G’ = (N’,T’,P’,S’) is the new grammar
N’ = {S};
Repeat {

for each production A→ α1 | α2 | ... | αn with A ∈ N ′ do
add all nonterminals of α1, α2, ..., αn to N’ and
all terminals of α1, α2, ..., αn to T’

} until there is no change in N’ and T’
P’ = {p | all symbols of p are in N ′ ∪ T ′}; S’ = S

Y.N. Srikant Parsing

