
Syntax Analysis:
Context-free Grammars, Pushdown Automata and Parsing

Part - 2

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

What is syntax analysis? (covered in lecture 1)
Specification of programming languages: context-free
grammars (covered in lecture 1)
Parsing context-free languages: push-down automata
Top-down parsing: LL(1) and recursive-descent parsing
Bottom-up parsing: LR-parsing

Y.N. Srikant Parsing

Pushdown Automata

A PDA M is a system (Q,Σ, Γ, δ,q0, z0,F), where
Q is a finite set of states
Σ is the input alphabet
Γ is the stack alphabet
q0 ∈ Q is the start state
z0 ∈ Γ is the start symbol on stack (initialization)
F ⊆ Q is the set of final states
δ is the transition function, Q × Σ ∪ {ε} × Γ to finite subsets
of Q × Γ∗

A typical entry of δ is given by
δ(q,a, z) = {(p1, γ1), ((p2, γ2), ..., (pm, γm)}
The PDA in state q, with input symbol a and top-of-stack
symbol z, can enter any of the states pi , replace the symbol z
by the string γi , and advance the input head by one symbol.

Y.N. Srikant Parsing

Pushdown Automata (contd.)

The leftmost symbol of γi will be the new top of stack
a in the above function δ could be ε, in which case, the
input symbol is not used and the input head is not
advanced
For a PDA M, we define L(M), the language accepted by
M by final state, to be
L(M) = {w | (q0,w ,Z0) `∗ (p, ε, γ), for some p ∈ F and
γ ∈ Γ∗}
We define N(M), the language accepted by M by empty
stack, to be
N(M) = {w | (q0,w ,Z0) `∗ (p, ε, ε), for some p ∈ Q
When acceptance is by empty stack, the set of final states
is irrelevant, and usually, we set F = φ

Y.N. Srikant Parsing

PDA - Examples

L = {0n1n | n ≥ 0}
M = ({q0,q1,q2,q3}, {0,1}, {Z ,0}, δ,q0,Z , {q0}), where δ
is defined as follows
δ(q0,0,Z) = {(q1,0Z)}, δ(q1,0,0) = {(q1,00)},
δ(q1,1,0) = {(q2, ε)}, δ(q2,1,0) = {(q2, ε)},
δ(q2, ε,Z) = {(q0, ε)}
(q0,0011,Z) ` (q1,011,0Z) ` (q1,11,00Z) ` (q2,1,0Z) `
(q2, ε,Z) ` (q0, ε, ε)

(q0,001,Z) ` (q1,01,0Z) ` (q1,1,00Z) ` (q2, ε,0Z) `
error
(q0,010,Z) ` (q1,10,0Z) ` (q2,0,Z) ` error

Y.N. Srikant Parsing

PDA - Examples (contd.)

L = {wwR | w ∈ {a,b}+}
M = ({q0,q1,q2}, {a,b}, {Z ,a,b}, δ,q0,Z , {q2}), where δ
is defined as follows
δ(q0,a,Z) = {(q0,aZ)}, δ(q0,b,Z) = {(q0,bZ)},
δ(q0,a,a) = {(q0,aa), (q1, ε)}, δ(q0,a,b) = {(q0,ab)},
δ(q0,b,a) = {(q0,ba)}, δ(q0,b,b) = {(q0,bb), (q1, ε)},
δ(q1,a,a) = {(q1, ε)}, δ(q1,b,b) = {(q1, ε)},
δ(q1, ε,Z) = {(q2, ε)}
(q0,abba,Z) ` (q0,bba,aZ) ` (q0,ba,baZ) ` (q1,a,aZ) `
(q1, ε,Z) ` (q2, ε, ε)

(q0,aaa,Z) ` (q0,aa,aZ) ` (q0,a,aaZ) ` (q1, ε,aZ) `
error
(q0,aaa,Z) ` (q0,aa,aZ) ` (q1,a,Z) ` error

Y.N. Srikant Parsing

Nondeterministic and Deterministic PDA

Just as in the case of NFA and DFA, PDA also have two
versions: NPDA and DPDA
However, NPDA are strictly more powerful than the DPDA
For example, the language, L = {wwR | w ∈ {a,b}+} can
be recognized only by an NPDA and not by any DPDA
In the same breath, the language,
L = {wcwR | w ∈ {a,b}+}, can be recognized by a DPDA
In practice we need DPDA, since they have exactly one
possible move at any instant
Our parsers are all DPDA

Y.N. Srikant Parsing

Parsing

Parsing is the process of constructing a parse tree for a
sentence generated by a given grammar
If there are no restrictions on the language and the form of
grammar used, parsers for context-free languages require
O(n3) time (n being the length of the string parsed)

Cocke-Younger-Kasami’s algorithm
Earley’s algorithm

Subsets of context-free languages typically require O(n)
time

Predictive parsing using LL(1) grammars (top-down parsing
method)
Shift-Reduce parsing using LR(1) grammars (bottom-up
parsing method)

Y.N. Srikant Parsing

Top-Down Parsing using LL Grammars

Top-down parsing using predictive parsing, traces the
left-most derivation of the string while constructing the
parse tree
Starts from the start symbol of the grammar, and “predicts”
the next production used in the derivation
Such “prediction” is aided by parsing tables (constructed
off-line)
The next production to be used in the derivation is
determined using the next input symbol to lookup the
parsing table (look-ahead symbol)
Placing restrictions on the grammar ensures that no slot in
the parsing table contains more than one production
At the time of parsing table constrcution, if two productions
become eligible to be placed in the same slot of the parsing
table, the grammar is declared unfit for predictive parsing

Y.N. Srikant Parsing

Top-Down LL-Parsing Example

Y.N. Srikant Parsing

LL(1) Parsing Algorithm

Y.N. Srikant Parsing

LL(1) Parsing Algorithm Example

Y.N. Srikant Parsing

Strong LL(k) Grammars

Let the given grammar be G
Input is extended with k symbols, $k , k is the lookahead of
the grammar
Introduce a new nonterminal S′, and a production,
S′ → S$k , where S is the start symbol of the given
grammar
Consider leftmost derivations only and assume that the
grammar has no useless symbols
A production A→ α in G is called a strong LL(k)
production, if in G
S′ ⇒∗ wAγ ⇒ wαγ ⇒∗ wzy
S′ ⇒∗ w ′Aδ ⇒ w ′βδ ⇒∗ w ′zx
|z| = k , z ∈ Σ∗,w and w ′ ∈ Σ∗, then α = β

A grammar (nonterminal) is strong LL(k) if all its
productions are strong LL(k)

Y.N. Srikant Parsing

Strong LL(k) Grammars (contd.)

Strong LL(k) grammars do not allow different productions
of the same nonterminal to be used even in two different
derivations, if the first k symbols of the strings produced by
αγ and βδ are the same
Example: S → Abc|aAcb, A→ ε|b|c
S is a strong LL(1) nonterminal

S′ ⇒ S$⇒ Abc$⇒ bc$, bbc$, and cbc$, on application of
the productions, A→ ε, A→ b, and, A→ c, respectively.
z = b, b, or c, respectively
S′ ⇒ S$⇒ aAcb$⇒ acb$, abcb$, and accb$, on
application of the productions, A→ ε, A→ b, and, A→ c,
respectively. z = a, in all three cases
In this case, w = w ′ = ε, α = Abc, β = aAcb, but z is
different in the two derivations, in all the derived strings
Hence the nonterminal S is strong LL(1)

Y.N. Srikant Parsing

Strong LL(k) Grammars (contd.)

A is not strong LL(1)
S′ ⇒∗ Abc$⇒ bc$, w = ε, z = b, α = ε (A→ ε)
S′ ⇒∗ Abc$⇒ bbc$, w ′ = ε, z = b, β = b (A→ b)

Even though the lookaheads are the same (z = b), α 6= β,
and therefore, the grammar is not strong LL(1)

A is not strong LL(2)
S′ ⇒∗ Abc$⇒ bc$, w = ε, z = bc, α = ε (A→ ε)
S′ ⇒∗ aAcb$⇒ abcb$, w ′ = a, z = bc, β = b (A→ b)

Even though the lookaheads are the same (z = bc), α 6= β,
and therefore, the grammar is not strong LL(2)

A is strong LL(3) because all the six strings (bc$, bbc, cbc, cb$,
bcb, ccb) can be distinguished using 3-symbol lookahead
(details are for home work)

Y.N. Srikant Parsing

Testable Conditions for LL(1)

We call strong LL(1) as LL(1) from now on and we will not
consider lookaheads longer than 1
The classical condition for LL(1) property uses FIRST and
FOLLOW sets
If α is any string of grammar symbols (α ∈ (N ∪ T)∗), then
FIRST (α) = {a | a ∈ T , and α⇒∗ ax , x ∈ T ∗}
FIRST (ε) = {ε}
If A is any nonterminal, then
FOLLOW (A) = {a | S ⇒∗ αAaβ, α, β ∈ (N ∪ T)∗,

a ∈ T ∪ {$}}
FIRST (α) is determined by α alone, but FOLLOW (A) is
determined by the “context” of A, i.e., the derivations in
which A occurs

Y.N. Srikant Parsing

FIRST and FOLLOW Computation Example

Consider the following grammar
S′ → S$, S → aAS | c, A→ ba | SB, B → bA | S
FIRST (S′) = FIRST (S) = {a, c} because
S′ ⇒ S$⇒ c$, and S′ ⇒ S$⇒ aAS$⇒ abaS$⇒ abac$

FIRST (A) = {a,b, c} because
A⇒ ba, and A⇒ SB, and therefore all symbols in
FIRST (S) are in FIRST (A)

FOLLOW (S) = {a,b, c, $} because
S′ ⇒ S$,
S′ ⇒∗ aAS$⇒ aSBS$⇒ aSbAS$,
S′ ⇒∗ aSBS$⇒ aSSS$⇒ aSaASS$,
S′ ⇒∗ aSSS$⇒ aScS$

FOLLOW (A) = {a, c} because
S′ ⇒∗ aAS$⇒ aAaAS$,
S′ ⇒∗ aAS$⇒ aAc

Y.N. Srikant Parsing

Computation of FIRST : Terminals and Nonterminals

{
for each (a ∈ T) FIRST(a) = {a}; FIRST(ε) = {ε};
for each (A ∈ N) FIRST(A) = ∅;
while (FIRST sets are still changing) {

for each production p {
Let p be the production A→ X1X2...Xn;
FIRST(A) = FIRST(A) ∪ (FIRST(X1) - {ε});
i = 1;
while (ε ∈ FIRST(Xi) && i ≤ n − 1) {

FIRST(A) = FIRST(A) ∪ (FIRST(Xi+1 − {ε}); i + +;
}
if (i == n) && (ε ∈ FIRST(Xn))

FIRST(A) = FIRST(A) ∪{ε}
}

}

Y.N. Srikant Parsing

