Sensor Network Programming

" A
| ecture Overview

m 1. Hardware Primer
m 2. Introduction to TinyOS.
m 3. Programming TinyOS.

m 4. Hands on section.

" J
Sensor node(mote):

1.
2.
3.

Node in a wireless sensor network
Capable of performing some processing
Gathers information from sensors

Communicates with other connected nodes
in the network.

" A
Architecture of sensor node:

Mo d
.h
4

o

i
--:-%

l_l

" A
Sensor node:

Two main parts
1. Microcontroller
2. Transceiver

IITH Mote specifications:

http://www.lith.ac.in/~raji/downloads/lI TH-
mote-webpage.pdf

'_
Basic controller architecture

VCC
dao

i

P3.7 ‘T

XTALL
XTALZ

19|

" J
Purpose of controller

Functions of a mote:
- Collecting data from various sensors
- Process data and extract useful information
- Transmitter controlling
Local storage maintenance

" J
Purpose of controller

Data collections:
- Collecting data from various sensors, simultaneously.

- Data collected from individual sensors should have to be
maintained properly.

- Sequential sampling (Reduces data rate).

- Adaptive sampling where one can adapt sampling rate
based on some classification.

" J
Purpose of controller

Data processing:

- Some applications require on board processing of
the collected data.

- Most of the adaptive sampling algorithms use on
board processing due to les delay.

Transceiver control:

- Controller can force transceiver into sleep mode
when it is not needed.

- Can wake up transmitter, when there is some data
to be transmitted.

" J
Purpose of controller

Local storage maintenance:

- If the gateway is not in the range, then the data can
be stored on to the local storage.

- When the gateway comes into vicinity, it can transmit
the stored data and free up the local storage.

Power gating:

- Some of the functional blocks which are not necessary
at present can be switched off to conserve power and
can only be turned on when needed.

10

»
How to select a controller?

Things to keep in mind
- Power consumption
- Processing required

- Mode of communication (Baseband and RF
processing)

- Priority of application (Medical or Pollution data)

11

= I
Simple controller example

ATMEGA128 uC
- 8 bit architecture
- 8 channel ADC (10 bit resolution)
- TWI
- 2 UART interfaces
- SPI interface (To interface additional memory)
- Can run TinyOS & Contiki.

12

» I
Transceiver

AT86RF230:

Low Power 2.4 GHz Transcelver for ZigBee,
IEEE 802.15.4, 6LoWPAN, ISM
Applications.

13

"
IITH Mote(sensor node):

ADC/IO port
User button— UART Power jumper

Microcontroller(ATMEGA1281V)

UART port
Transceiver(AT86RF230)

Reset button
Programming port

Programming jumper

IITH Mote specifications:
http://www.iith.ac.in/~raji/downloads/lITH-mote-webpage.pdf

14

" S
Hardware setup to programming

UART port con.

Programmer
con.

15

UC Berkeley Family of Motes

Mote Type

Year

MO0

Microcontroller

Type

Program memory (KB)
RAM (KB)

Active Power (mW)

Sleep Power (W)
‘Wakeup Time (j1s)

Nonvolatile storage
Chip

Connection type

Size (KB)

Communication

Radio

Data rate (kbps)

Modulation type

Receive Power (mW)

Transmit Power at 0dBm (mW)

Power Consumption
Minimum Operation (V)

Total Active Power (mW)

Programming and Sensor Interface

Expansion

Communication

Integrated Sensors

16

" A
| ecture Overview

m 1. Hardware Primer
m 2. Introduction to TinyOS
m 3. Programming TinyOS

m 4. Hands on section.

17

" S
What Iis TinyOS?

An operation system
An open-source development environment
Not an operation system for general purpose, it is

designed for wireless embedded sensor network.
http://www.tinyos.net/

Programming language: NesC (an extension of C)
It features a component-based architecture.

Supported platforms include Linux, Windows 2000/XP
with Cygwin.

18

http://www.tinyos.net/

INUVV dUuutiio at uic ciiu vl dic e Ut Ny Jiiy.Lo JIIU.CTUU/LITIYUo Tial Uy Hialtl

1.Install Ubuntu 12.04/13.04/14.04
or any higher versions.

2. Enable root user.

3. Switch to root user to install
TinyOS.

4. Open terminal (Ctrl+Alt+T).

19

http://hinrg.cs.jhu.edu/tinyos

"
Installation procedure:
1. gedit /etc/apt/source.list

Add this at end of the file
deb http://hinrg.cs.jhu.edu/tinyos hardy main

2. apt-get update

3. apt-get install tinyos-2.1.1
4. gedit ~/.bashrc

Add this at end of file

#Sourcing the tinyos environment variable
setup script source /opt/tinyos-
2.1.1/tinyos.sh

20

http://hinrg.cs.jhu.edu/tinyos

"
Compile and install program

Terminal

Setting up for TinyOS 2.1.1
root@amar-ThinkPad-E420:~# [

| Setting up for TinyO0S 2.1.1

root@amar-ThinkPad-E420:~# cd /opt/tinyos-2.1.1/apps/Blirk/
root@amar-ThinkPad-E420: /opt/tinyos-2.1.1/apps/Blink# make iris
mkdir -p build/iris
compiling BlinkAppC to a iris binary
ncc -o build/iris/main.exe -0Os -fnesc-separator=__ -Wall -Wshadow -Wnesc-all -target=iris
_TOS_AM_GROUP=0x22 --param max-inline-insns-single=100000 -DIDENT_APPNAME=\"BlinkAppC\" -DI
ad-E\" -DIDENT_USERHASH=0xe51b2313L -DIDENT_TIMESTAMP=0x54a665d7L -DIDENT_UIDHASH=0xdaa®2b8
ct())' -fnesc-dump='referenced(interfacedefs, components)' -fnesc-dumpfile=build/iris/wirin
compiled BlinkAppC to build/iris/main.exe
2270 bytes in ROM
51 bytes in RAM
avr-objcopy --output-target=srec build/iris/main.exe build/iris/main.srec
avr-objcopy --output-target=ihex build/iris/main.exe build/iris/main.ihex
writing TOS image
root@amar-ThinkPad-E420: /opt/tinyos-2.1.1/apps/Blink# D

O™ @ root@amar-ThinkPad-E420: Jopt/tinyos-2.1.1/apps/Blink

Setting up for TinyOS 2.1.1
root@amar-ThinkPad-E420:~# cd /opt/tinyos-2.1.1/apps/Blink/

| root@amar-ThinkPad-E420: /opt/tinyos-2.1.1/apps/Blink# make iris install,1 avrispmkii,usbl

submission_145.pdr

3:05PM 2 Guest i

Terminal view.

compile

Program installation view on terminal

root@amar-ThinkPad-E420: fopt/tinyos-2.1.1fapps/Blink b -~ 2:38PM % Guest {%

" avrdude: verifying ...

@ avrdude: 1 bytes of hfuse verified
avrdude: reading input file "exff"
avrdude: writing efuse (1 bytes):

Writing | #HEHERHHRRHE R | 100% 0.00s

avrdude: 1 bytes of efuse written

avrdude: verifying efuse memory against @xff:
avrdude: load data efuse data from input Tile @xff:
avrdude: input file @xff contains 1 bytes

avrdude: reading on-chip efuse data:

Reading | #HHHEHHHHERHEHHHHHRH R | 100% 0.00s

avrdude: verifying ...

avrdude: 1 bytes of efuse verified

avrdude: reading input file "build/iris/main.srec.out-1"

avrdude: input file build/iris/main.srec.out-1 auto detected as Motorola S-Record
avrdude: writing flash (2270 bytes):

Writing | ###HHHEEEERT R R i | 100% 0,665
avrdude: 2270 bytes of flash written
avrdude: verifying flash memory against build/iris/main.srec.out-1:
avrdude: load data flash data from input file build/iris/main.srec.out-1:
avrdude: input file build/iris/main.srec.out-1 auto detected as Motorola S-Record
(avrdude: input file build/iris/main.srec.out-1 contains 2270 bytes
avrdude: reading on-chip flash data:
'Reading | T T R R R | 100% 0.65s

avrdude: verifying ...
avrdude: 2270 bytes of flash verified

avrdude: safemode: Fuses OK
avrdude done. Thank you.

rm -f build/iris/main.exe.out-1 build/iris/main.srec.out-1
root@amar-ThinkPad-E420: fopt/tinyos-2.1.1/apps/Blink# [I

" A
| ecture Overview

m 1. Hardware Primer
m 2. Introduction to TinyOS
m 3. Programming TinyOS

m 4. Hands on section.

23

" S
Program files

Every application needs 4 files

1. Make file (Makefile)

2. Configuration file (SensorAppC.nc)

3. Module file (SensorC.nc)

4. Header file (Sensor.h) (if application needs)
Sensor is application name.

check example application in TinyOS

cd /opt/tinyos-2.1.1/apps/ (path)

cd /opt/tinyos-2.1.1/apps/tutorials (path)

To develop application gedit or eclips IDE can be used
https.//www.youtube.com/watch?v=105spZWKwWRQ

24

" S
Editors for writing a application

Gedit:

Create a folder with your application name.
Open terminal

Cntri+Alt+T

Open a document by using gedit command
And save with your application nhame.
gedit documentname

create 4 files with mentioned extension Iin one
folder.

25

" J
How to write a application

Programming structure:

1. Search interfaces required for your
application.

2. Search components which provides those
interfaces.

3. Use commands and events which will be
provided by interfaces to develop
algorithms.

26

interfacel

Algorithm layer {

Components

interface?2

events

components layer

interface3

commands

} Interface layer

27

"
How to write application

Makefile: compiler can compile program.

“COMPONENT= SensorAppC
include $(MAKERULES)”

28

" S
Configuration file(SensorAppC.nc):

File contains components which provides
and uses interfaces.

1. Initialization of components.
2. Wiring of components with interfaces.

Components example:
MainC, LedsC, TimerMilliC.

http.//www.tinyos.net/tinyos-2.1.0/doc/nesdoc/micaz/

29

http://www.tinyos.net/tinyos-2.1.0/doc/nesdoc/micaz/

" J
Module file(SensorC.nc):

1.File contains Interfaces initialization and
using interfaces.

2.Interfaces contains commands and
events.

3.Commands and events are used to
develop algorithm.

30

" S
Component Syntax - Configuration

Component
Selection -

Wiring the
Components <<
together

configuration SensorAppC

{

}

implementation

{
components MainC, SensorC, LedsC;
components new TimerMilliC() as TimerO0;
components new TimerMilliC() as Timer1;
components new TimerMilliC() as Timer2;
SensorC -> SensorC.Boot;

SensorC.Timer0 -> TimerO;
SensorC.Timerl -> Timer1;
SensorC.Timer2 -> Timer2;
SensorC.Leds -> LedsC;

31

" J
Module syntax:

#include "Timer.h"

Interface X as Y
module SensorC() /
{
uses interface Timer<TMilli> as Tidrer0;

uses interface Timer<TMilli> as Timer1;
uses interface Timer<TMilli> as Timer2;

uses interface Leds;

uses interface Boot;~\)
} = interface X as X
implementation

{

event void Boot.booted()

{
call TimerO.startPeriodic(250);

call Timerl.startPeriodic(500); Commands
call Timer2.startPeriodic(1000);

}
event void TimerO.fired()
{
call Leds.led0Toggle():« Event
}

event void Timerl.fired()

{
call Leds.led1Toggle();

}

event void Timer2.fired()

{
call Leds.led2Toggle();

}
}

32

" A
| ecture Overview

m 1. Hardware Primer
m 2. Introduction to TinyOS
m 3. Programming TinyOS

m 4. Hands on section

33

Try new applications

" N
Further Reading

m Go through the on-line tutorial:
O http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html

m Search the help archive:
O http://www.tinyos.net/search.html

m NesC language reference manual:
O http://www.tinyos.net/tinyos-1.x/doc/nesc/ref.pdf

35

http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html
http://www.tinyos.net/search.html
http://www.tinyos.net/tinyos-1.x/doc/nesc/ref.pdf

Thank you.

36

