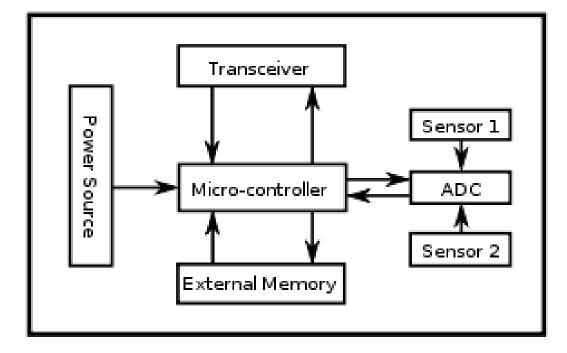


Sensor Network Programming

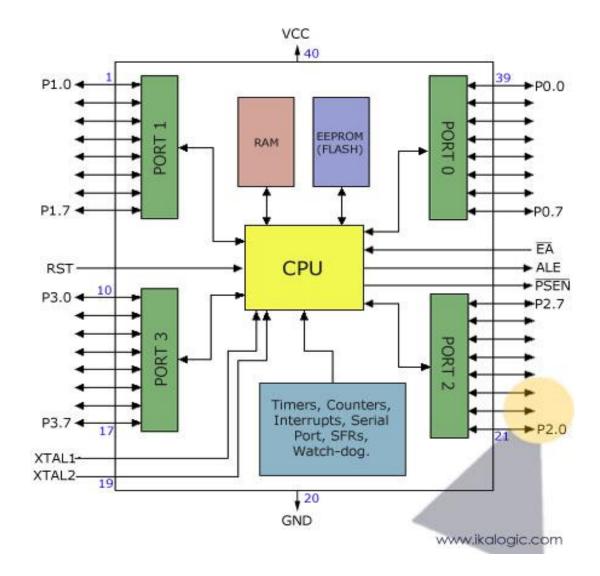

Lecture Overview

- 1. Hardware Primer
- 2. Introduction to TinyOS.
- 3. Programming TinyOS.
- 4. Hands on section.

Sensor node(mote):

- 1. Node in a wireless sensor network
- 2. Capable of performing some processing
- 3. Gathers information from sensors
- 4. Communicates with other connected nodes in the network.

Architecture of sensor node:



Sensor node:

- Two main parts
- 1. Microcontroller
- 2. Transceiver

IITH Mote specifications: http://www.iith.ac.in/~raji/downloads/IITHmote-webpage.pdf

Basic controller architecture

Functions of a mote:

- Collecting data from various sensors
- Process data and extract useful information
- Transmitter controlling
- Local storage maintenance

Data collections:

- Collecting data from various sensors, simultaneously.
- Data collected from individual sensors should have to be maintained properly.
- Sequential sampling (Reduces data rate).
- Adaptive sampling where one can adapt sampling rate based on some classification.

Data processing:

- Some applications require on board processing of the collected data.

- Most of the adaptive sampling algorithms use on board processing due to les delay.

Transceiver control:

- Controller can force transceiver into sleep mode when it is not needed.
- Can wake up transmitter, when there is some data to be transmitted.

Local storage maintenance:

- If the gateway is not in the range, then the data can be stored on to the local storage.
- When the gateway comes into vicinity, it can transmit the stored data and free up the local storage.

Power gating:

 Some of the functional blocks which are not necessary at present can be switched off to conserve power and can only be turned on when needed.

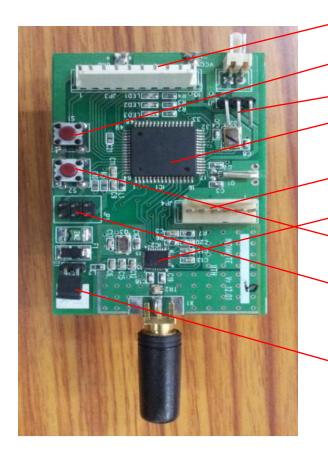
How to select a controller?

Things to keep in mind

- Power consumption
- Processing required
- Mode of communication (Baseband and RF processing)
- Priority of application (Medical or Pollution data)

Simple controller example

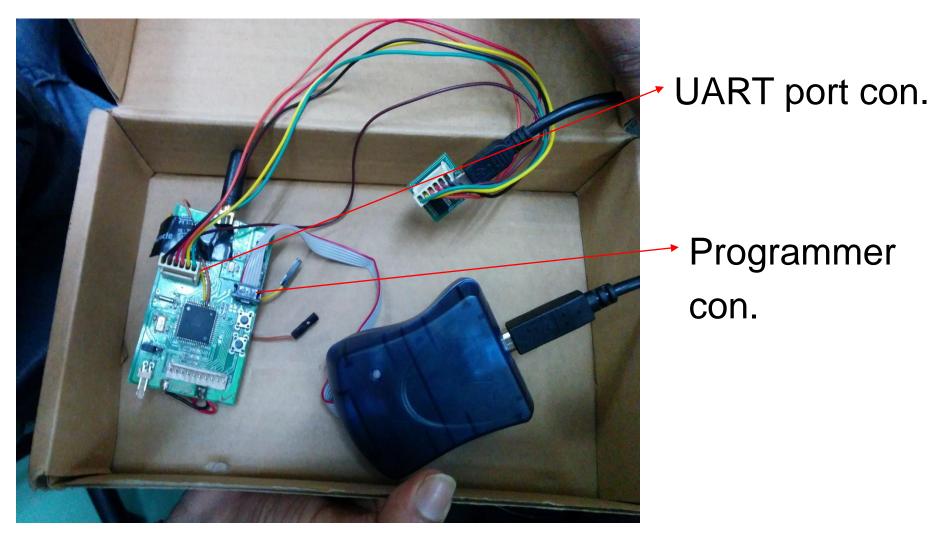
ATMEGA128 uC


- 8 bit architecture
- 8 channel ADC (10 bit resolution)
- TWI
- 2 UART interfaces
- SPI interface (To interface additional memory)
- Can run TinyOS & Contiki.

Transceiver

AT86RF230:

Low Power 2.4 GHz Transceiver for ZigBee, IEEE 802.15.4, 6LoWPAN, ISM Applications.


IITH Mote(sensor node):

ADC/IO port User button UART Power jumper **Microcontroller**(ATMEGA1281V) UART port Transceiver(AT86RF230) Reset button **Programming port** Programming jumper

IITH Mote specifications: http://www.iith.ac.in/~raji/downloads/IITH-mote-webpage.pdf

Hardware setup to programming

UC Berkeley Family of Motes

Mote Type Year	WeC 1998	<i>René</i> 1999	<i>René 2</i> 2000	<i>Dot</i> 2000	<i>Mica</i> 2001	Mica2Dot 2002	<i>Mica</i> 2 2002	<i>Telos</i> 2004	
	@								
Microcontroller						Att.			
Туре	AT90LS8535 ATmega163				TI MSP430				
Program memory (KB)	8			16	ATmega128 128			60	
RAM (KB)	0.5		1		4			2	
Active Power (mW)	15			15 8		33	3		
Sleep Power (μ W)	45		45		75		75	6	
Wakeup Time (µs)	1000		36		180		180	6	
Nonvolatile storage									
Chip	24LC256			AT45DB041B			ST M24M01S		
Connection type	I ² C			SPI			I^2C		
Size (KB)	32			512			128		
Communication									
Radio	TR1000			TR1000	CC	CC2420			
Data rate (kbps)	10			40	3	250			
Modulation type	OOK			ASK	FSK		O-QPSK		
Receive Power (mW)	9			12	29		38		
Transmit Power at 0dBm (mW)	36			36	4	35			
Power Consumption								÷.	
Minimum Operation (V)	2.7 2.7		2.7			1.8			
Total Active Power (mW)		24	3		27	44	89	41	
Programming and Sensor Interfac	ce							36 	
Expansion		51-pin	51-pin	none	51-pin	19-pin	51-pin	10-pin	
Communication	IEEE 1284 (programming) and RS232 (requires additional hardware)						USB		
Integrated Sensors	110	no	no	yes	no	no	no	yes	

Lecture Overview

- 1. Hardware Primer
- 2. Introduction to TinyOS
- 3. Programming TinyOS
- 4. Hands on section.

What is TinyOS?

- An operation system
- An open-source development environment
- Not an operation system for general purpose, it is designed for wireless embedded sensor network.
 Official website: <u>http://www.tinyos.net/</u>
- Programming language: NesC (an extension of C)
- It features a component-based architecture.
- Supported platforms include Linux, Windows 2000/XP with Cygwin.

Install TinyOS

- 1.Install Ubuntu 12.04/13.04/14.04 or any higher versions.
- 2. Enable root user.
- 3. Switch to root user to install TinyOS.
- 4. Open terminal (Ctrl+Alt+T).

Installation procedure:

1. gedit /etc/apt/source.list

Add this at end of the file deb <u>http://hinrg.cs.jhu.edu/tinyos</u> hardy main

- 2. apt-get update
- 3. apt-get install tinyos-2.1.1
- gedit ~/.bashrc
 Add this at end of file

#Sourcing the tinyos environment variable
setup script source /opt/tinyos2.1.1/tinyos.sh

Compile and install program

erminal		🐱 🖼 🗧 🖘 🖘 🖘 3:05 PM 👤 Guest 🔱
	Setting up for TinyOS 2.1.1 root@amar-ThinkPad-E420:~#	→Terminal view.
	<pre>setting up for TinyOS 2.1.1 root@amar-ThinkPad-E420: /opt/tinyOs-2.1.1/apps/Blink Setting up for TinyOS 2.1.1 root@amar-ThinkPad-E420:~# cd /opt/tinyOs-2.1.1/apps/Blink# root@amar-ThinkPad-E420:/opt/tinyOs-2.1.1/apps/Blink# make iris mkdir -p build/iris</pre>	-compile
	<pre>ncc -o build/tris/main.exe -Os -fnesc-separator=Wall -Wshadow -Wnesc-all -target=iris _TOS_AM_GROUP=0x22param max-inline-insns-single=100000 -DIDENT_APPNAME=\"BlinkAppC\" -DI ad-E\" -DIDENT_USERHASH=0xe51b2313L -DIDENT_TIMESTAMP=0x54a665d7L -DIDENT_UIDHASH=0xdaa02b8 ct())' -fnesc-dump='referenced(interfacedefs, components)' -fnesc-dumpfile=build/iris/wirin</pre>	3
<u>>_</u> (🛞 🖨 💿 root@amar-ThinkPad-E420: /opt/tinyos-2.1.1/apps/Blink	land all
	Setting up for TinyOS 2.1.1 root@amar-ThinkPad-E420:~# cd /opt/tinyos-2.1.1/apps/Blink/ root@amar-ThinkPad-E420:/opt/tinyos-2.1.1/apps/Blink# make iris install,1 avrispmkii,usb	- install
	pdf submission_145.pdf	

Program installation view on terminal

root@a	mar-ThinkPad-E420: /opt/tinyos-2.1.1/apps/Blink	≷ হ ৰ	2:38 PM	👤 Guest 🔱
	avrdude: verifying			-
	avrdude: 1 bytes of hfuse verified			
	avrdude: reading input file "0xff"			
	avrdude: writing efuse (1 bytes):			
	Writing ###################################			
	avrdude: 1 bytes of efuse written			
	avrdude: verifying efuse memory against 0xff:			
	avrdude: load data efuse data from input file 0xff:			
100	avrdude: input file 0xff contains 1 bytes			
	avrdude: reading on-chip efuse data:			
	Reading ###################################			
(1)				
	avrdude: verifying			
	avrdude: 1 bytes of efuse verified			
	avrdude: reading input file "build/iris/main.srec.out-1"			
2	avrdude: input file build/iris/main.srec.out-1 auto detected as Motorola S-Record avrdude: writing flash (2270 bytes):			
	avioude: writing riash (2270 bytes):			
	Writing ###################################			
	avrdude: 2270 bytes of flash written			
$\Box \Box$	avrdude: verifying flash memory against build/iris/main.srec.out-1: avrdude: load data flash data from input file build/iris/main.srec.out-1:			
	avrdude: input file build/iris/main.srec.out-1 auto detected as Motorola S-Record			
	avrdude: input file build/iris/main.srcc.out-1 contains 2270 bytes			
1-	avrdude: reading on-chip flash data:			
	Reading ###################################			
	avrdude: verifying			
	avrdude: 2270 bytes of flash verified			
6				
	avrdude: safemode: Fuses OK			
	avrdude done. Thank you.			
184	rm -f build/iris/main.exe.out-1 build/iris/main.srec.out-1			
	root@amar.ThinkBad_E420: (ont/tinvos_2 1 1/anns/Blink#			

root@amar-ThinkPad-E420:/opt/tinyos-2.1.1/apps/Blink#

Lecture Overview

- 1. Hardware Primer
- 2. Introduction to TinyOS
- 3. Programming TinyOS
- 4. Hands on section.

Program files

Every application needs 4 files

- 1. Make file (Makefile)
- 2. Configuration file (SensorAppC.nc)
- 3. Module file (SensorC.nc)
- 4. Header file (Sensor.h) (if application needs)

Sensor is application name.

check example application in TinyOS

cd /opt/tinyos-2.1.1/apps/ (path)

cd /opt/tinyos-2.1.1/apps/tutorials (path)

To develop application gedit or eclips IDE can be used

https://www.youtube.com/watch?v=IO5spZwKwRQ

Editors for writing a application

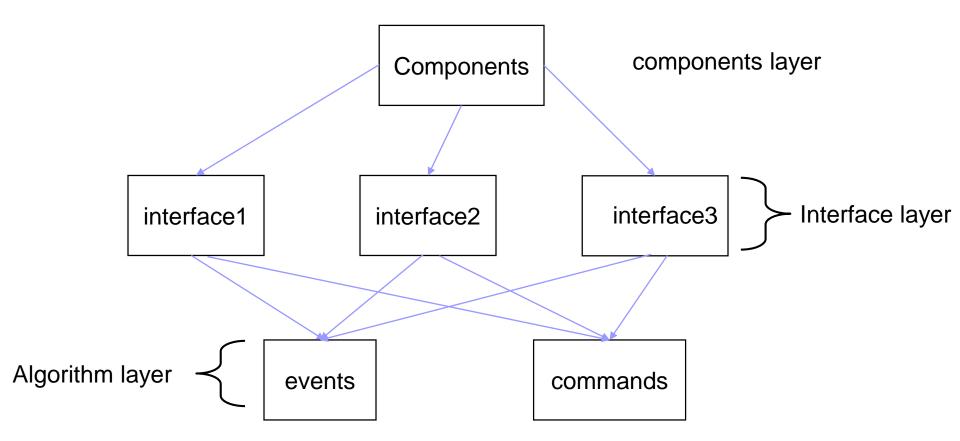
Gedit:

Create a folder with your application name.

Open terminal

Cntrl+Alt+T

Open a document by using gedit command And save with your application name.


gedit documentname

create 4 files with mentioned extension in one folder.

How to write a application

Programming structure:

- 1. Search interfaces required for your application.
- 2. Search components which provides those interfaces.
- Use commands and events which will be provided by interfaces to develop algorithms.

How to write application

Makefile: compiler can compile program.

"COMPONENT= SensorAppC include \$(MAKERULES)"

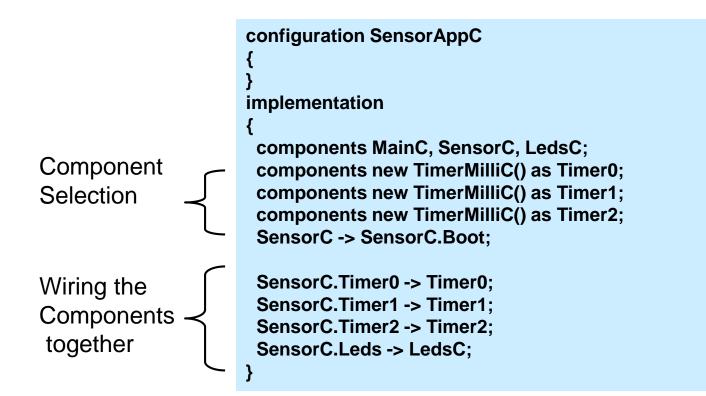
Configuration file(SensorAppC.nc):

File contains components which provides and uses interfaces.

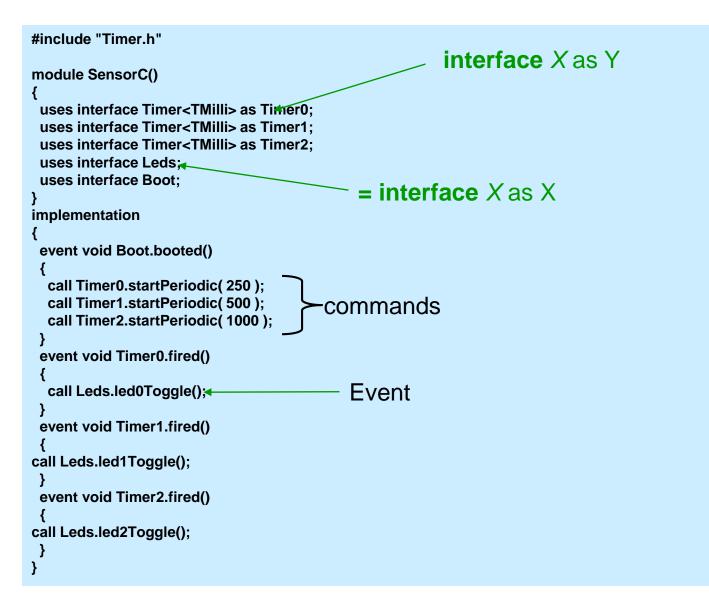
- 1. Initialization of components.
- 2. Wiring of components with interfaces.

Components example: MainC, LedsC, TimerMilliC.

http://www.tinyos.net/tinyos-2.1.0/doc/nesdoc/micaz/


Module file(SensorC.nc):

1.File contains Interfaces initialization and using interfaces.


2.Interfaces contains commands and events.

3.Commands and events are used to develop algorithm.

Component Syntax - Configuration

Module syntax:

Lecture Overview

- 1. Hardware Primer
- 2. Introduction to TinyOS
- 3. Programming TinyOS
- 4. Hands on section

Try new applications

Further Reading

- Go through the on-line tutorial:
 - http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html
- Search the help archive:
 <u>http://www.tinyos.net/search.html</u>
- NesC language reference manual:
 <u>http://www.tinyos.net/tinyos-1.x/doc/nesc/ref.pdf</u>

Thank you.