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TinyOS

Sensor Network Programming
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Lecture Overview 

 1. Hardware Primer

 2. Introduction to TinyOS.

 3. Programming TinyOS.

 4. Hands on section.



1. Node in a wireless sensor network

2. Capable of performing some processing

3. Gathers information from sensors

4. Communicates with other connected nodes 
in the network.
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Sensor node(mote):



Architecture of sensor node:
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Sensor node:

Two main parts

1. Microcontroller 

2. Transceiver 

IITH Mote specifications:

http://www.iith.ac.in/~raji/downloads/IITH-

mote-webpage.pdf 
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Basic controller architecture
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Purpose of controller

Functions of a mote:

- Collecting data from various sensors

- Process data and extract useful information

- Transmitter controlling

- Local storage maintenance
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Purpose of controller

Data collections:
- Collecting data from various sensors, simultaneously.

- Data collected from individual sensors should have to be   
maintained properly.

- Sequential sampling (Reduces data rate).

- Adaptive sampling where one can adapt sampling rate 
based on some classification.
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Purpose of controller

Data processing:
- Some applications require on board processing of
the collected data.

- Most of the adaptive sampling algorithms use on
board processing due to les delay.

Transceiver control:
- Controller can force transceiver into sleep mode
when it is not needed.

- Can wake up transmitter, when there is some data
to be transmitted.
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Purpose of controller

Local storage maintenance:

- If the gateway is not in the range, then the data can
be stored on to the local storage.

- When the gateway comes into vicinity, it can transmit
the stored data and free up the local storage.

Power gating:

- Some of the functional blocks which are not necessary
at present can be switched off to conserve power and

can only be turned on when needed.



11

How to select a controller?

Things to keep in mind

- Power consumption

- Processing required

- Mode of communication (Baseband and RF
processing)

- Priority of application (Medical or Pollution data)



12

Simple controller example

ATMEGA128 uC

- 8 bit architecture

- 8 channel ADC (10 bit resolution)

- TWI

- 2 UART interfaces

- SPI interface (To interface additional memory)

- Can run TinyOS & Contiki.



Transceiver 

AT86RF230:

Low Power 2.4 GHz Transceiver for ZigBee, 

IEEE 802.15.4, 6LoWPAN, ISM 

Applications.
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IITH Mote(sensor node):
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Microcontroller(ATMEGA1281V)

Transceiver(AT86RF230)

ADC/IO port

UART port

Programming port

Programming jumper

Reset button

User button UART Power jumper

IITH Mote specifications:

http://www.iith.ac.in/~raji/downloads/IITH-mote-webpage.pdf



Hardware setup to programming
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UART port con.

Programmer

con.
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UC Berkeley Family of Motes
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What is TinyOS?
 An operation system 

 An open-source development environment

 Not an operation system for general purpose, it is 
designed for wireless embedded sensor network.
 Official website: http://www.tinyos.net/

 Programming language: NesC (an extension of C)

 It features a component-based architecture.

 Supported platforms include Linux, Windows 2000/XP 

with Cygwin.

http://www.tinyos.net/


Install TinyOS  

1.Install Ubuntu 12.04/13.04/14.04   
or any higher versions.

2. Enable root user.

3. Switch to root user to install  
TinyOS.

4. Open terminal (Ctrl+Alt+T).
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Now add this at the end of the file deb http://hinrg.cs.jhu.edu/tinyos hardy main

http://hinrg.cs.jhu.edu/tinyos


Installation procedure:

1. gedit /etc/apt/source.list

Add this at end of the file  

deb http://hinrg.cs.jhu.edu/tinyos hardy main

2. apt-get update
3. apt-get install tinyos-2.1.1
4. gedit ~/.bashrc

Add this at end of file
#Sourcing the tinyos environment variable 

setup script source /opt/tinyos-

2.1.1/tinyos.sh
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http://hinrg.cs.jhu.edu/tinyos
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compile

install

Compile and install program

Terminal view.



Program installation view on terminal
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Program files

Every application needs 4 files

1. Make file (Makefile)

2. Configuration file (SensorAppC.nc)

3. Module file (SensorC.nc)

4. Header file (Sensor.h) (if application needs)

Sensor is application name. 

check example application in TinyOS

cd /opt/tinyos-2.1.1/apps/ (path)

cd /opt/tinyos-2.1.1/apps/tutorials (path)

To develop application gedit or eclips IDE can be used

https://www.youtube.com/watch?v=IO5spZwKwRQ
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Editors for writing a application

Gedit:

Create a folder with your application name.

Open terminal

Cntrl+Alt+T

Open a document by using gedit command

And save with your application name.

gedit documentname 

create 4 files with mentioned extension in one 

folder.
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Programming structure:

1. Search interfaces  required for your 

application.

2. Search components which provides those 

interfaces.

3. Use commands and events which will be 

provided by interfaces to develop 

algorithms.
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How to write a application
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commands

interface1

Components

interface2

events

interface3

Algorithm layer

Interface layer

components layer



How to write application

Makefile: compiler can compile program.

“COMPONENT= SensorAppC

include $(MAKERULES)”
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Configuration file(SensorAppC.nc):

File contains components which provides 

and uses interfaces.

1. Initialization of components.

2. Wiring of components with interfaces.

Components example:

MainC, LedsC, TimerMilliC.
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http://www.tinyos.net/tinyos-2.1.0/doc/nesdoc/micaz/

http://www.tinyos.net/tinyos-2.1.0/doc/nesdoc/micaz/


Module file(SensorC.nc):

1.File contains Interfaces initialization and  

using interfaces.

2.Interfaces contains commands and 

events.

3.Commands and events are used to 

develop algorithm.
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configuration SensorAppC

{

}

implementation

{

components MainC, SensorC, LedsC;

components new TimerMilliC() as Timer0;

components new TimerMilliC() as Timer1;

components new TimerMilliC() as Timer2;

SensorC -> SensorC.Boot;

SensorC.Timer0 -> Timer0;

SensorC.Timer1 -> Timer1;

SensorC.Timer2 -> Timer2;

SensorC.Leds -> LedsC;

}

Component

Selection

Wiring the 

Components

together

Component Syntax - Configuration



Module syntax:
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#include "Timer.h"

module SensorC()

{

uses interface Timer<TMilli> as Timer0;

uses interface Timer<TMilli> as Timer1;

uses interface Timer<TMilli> as Timer2;

uses interface Leds;

uses interface Boot;

}

implementation

{

event void Boot.booted()

{

call Timer0.startPeriodic( 250 );

call Timer1.startPeriodic( 500 );

call Timer2.startPeriodic( 1000 );

}

event void Timer0.fired()

{ 

call Leds.led0Toggle();

}

event void Timer1.fired()

{

call Leds.led1Toggle();

}  

event void Timer2.fired()

{

call Leds.led2Toggle();

}

}

= interface X as X

interface X as Y

commands

Event
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Try new applications
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Further Reading

 Go through the on-line tutorial:
 http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html

 Search the help archive:
 http://www.tinyos.net/search.html

 NesC language reference manual:
 http://www.tinyos.net/tinyos-1.x/doc/nesc/ref.pdf

http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html
http://www.tinyos.net/search.html
http://www.tinyos.net/tinyos-1.x/doc/nesc/ref.pdf


Thank you.
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