
1

TinyOS

Sensor Network Programming

2

Lecture Overview

 1. Hardware Primer

 2. Introduction to TinyOS.

 3. Programming TinyOS.

 4. Hands on section.

1. Node in a wireless sensor network

2. Capable of performing some processing

3. Gathers information from sensors

4. Communicates with other connected nodes
in the network.

3

Sensor node(mote):

Architecture of sensor node:

4

Sensor node:

Two main parts

1. Microcontroller

2. Transceiver

IITH Mote specifications:

http://www.iith.ac.in/~raji/downloads/IITH-

mote-webpage.pdf

5

Basic controller architecture

6

Purpose of controller

Functions of a mote:

- Collecting data from various sensors

- Process data and extract useful information

- Transmitter controlling

- Local storage maintenance

7

8

Purpose of controller

Data collections:
- Collecting data from various sensors, simultaneously.

- Data collected from individual sensors should have to be
maintained properly.

- Sequential sampling (Reduces data rate).

- Adaptive sampling where one can adapt sampling rate
based on some classification.

9

Purpose of controller

Data processing:
- Some applications require on board processing of
the collected data.

- Most of the adaptive sampling algorithms use on
board processing due to les delay.

Transceiver control:
- Controller can force transceiver into sleep mode
when it is not needed.

- Can wake up transmitter, when there is some data
to be transmitted.

10

Purpose of controller

Local storage maintenance:

- If the gateway is not in the range, then the data can
be stored on to the local storage.

- When the gateway comes into vicinity, it can transmit
the stored data and free up the local storage.

Power gating:

- Some of the functional blocks which are not necessary
at present can be switched off to conserve power and

can only be turned on when needed.

11

How to select a controller?

Things to keep in mind

- Power consumption

- Processing required

- Mode of communication (Baseband and RF
processing)

- Priority of application (Medical or Pollution data)

12

Simple controller example

ATMEGA128 uC

- 8 bit architecture

- 8 channel ADC (10 bit resolution)

- TWI

- 2 UART interfaces

- SPI interface (To interface additional memory)

- Can run TinyOS & Contiki.

Transceiver

AT86RF230:

Low Power 2.4 GHz Transceiver for ZigBee,

IEEE 802.15.4, 6LoWPAN, ISM

Applications.

13

IITH Mote(sensor node):

14

Microcontroller(ATMEGA1281V)

Transceiver(AT86RF230)

ADC/IO port

UART port

Programming port

Programming jumper

Reset button

User button UART Power jumper

IITH Mote specifications:

http://www.iith.ac.in/~raji/downloads/IITH-mote-webpage.pdf

Hardware setup to programming

15

UART port con.

Programmer

con.

16

UC Berkeley Family of Motes

17

Lecture Overview

 1. Hardware Primer

 2. Introduction to TinyOS

 3. Programming TinyOS

 4. Hands on section.

18

What is TinyOS?
 An operation system

 An open-source development environment

 Not an operation system for general purpose, it is
designed for wireless embedded sensor network.
 Official website: http://www.tinyos.net/

 Programming language: NesC (an extension of C)

 It features a component-based architecture.

 Supported platforms include Linux, Windows 2000/XP

with Cygwin.

http://www.tinyos.net/

Install TinyOS

1.Install Ubuntu 12.04/13.04/14.04
or any higher versions.

2. Enable root user.

3. Switch to root user to install
TinyOS.

4. Open terminal (Ctrl+Alt+T).

19

Now add this at the end of the file deb http://hinrg.cs.jhu.edu/tinyos hardy main

http://hinrg.cs.jhu.edu/tinyos

Installation procedure:

1. gedit /etc/apt/source.list

Add this at end of the file

deb http://hinrg.cs.jhu.edu/tinyos hardy main

2. apt-get update
3. apt-get install tinyos-2.1.1
4. gedit ~/.bashrc

Add this at end of file
#Sourcing the tinyos environment variable

setup script source /opt/tinyos-

2.1.1/tinyos.sh

20

http://hinrg.cs.jhu.edu/tinyos

21

compile

install

Compile and install program

Terminal view.

Program installation view on terminal

22

23

Lecture Overview

 1. Hardware Primer

 2. Introduction to TinyOS

 3. Programming TinyOS

 4. Hands on section.

Program files

Every application needs 4 files

1. Make file (Makefile)

2. Configuration file (SensorAppC.nc)

3. Module file (SensorC.nc)

4. Header file (Sensor.h) (if application needs)

Sensor is application name.

check example application in TinyOS

cd /opt/tinyos-2.1.1/apps/ (path)

cd /opt/tinyos-2.1.1/apps/tutorials (path)

To develop application gedit or eclips IDE can be used

https://www.youtube.com/watch?v=IO5spZwKwRQ

24

Editors for writing a application

Gedit:

Create a folder with your application name.

Open terminal

Cntrl+Alt+T

Open a document by using gedit command

And save with your application name.

gedit documentname

create 4 files with mentioned extension in one

folder.
25

Programming structure:

1. Search interfaces required for your

application.

2. Search components which provides those

interfaces.

3. Use commands and events which will be

provided by interfaces to develop

algorithms.

26

How to write a application

27

commands

interface1

Components

interface2

events

interface3

Algorithm layer

Interface layer

components layer

How to write application

Makefile: compiler can compile program.

“COMPONENT= SensorAppC

include $(MAKERULES)”

28

Configuration file(SensorAppC.nc):

File contains components which provides

and uses interfaces.

1. Initialization of components.

2. Wiring of components with interfaces.

Components example:

MainC, LedsC, TimerMilliC.

29

http://www.tinyos.net/tinyos-2.1.0/doc/nesdoc/micaz/

http://www.tinyos.net/tinyos-2.1.0/doc/nesdoc/micaz/

Module file(SensorC.nc):

1.File contains Interfaces initialization and

using interfaces.

2.Interfaces contains commands and

events.

3.Commands and events are used to

develop algorithm.

30

31

configuration SensorAppC

{

}

implementation

{

components MainC, SensorC, LedsC;

components new TimerMilliC() as Timer0;

components new TimerMilliC() as Timer1;

components new TimerMilliC() as Timer2;

SensorC -> SensorC.Boot;

SensorC.Timer0 -> Timer0;

SensorC.Timer1 -> Timer1;

SensorC.Timer2 -> Timer2;

SensorC.Leds -> LedsC;

}

Component

Selection

Wiring the

Components

together

Component Syntax - Configuration

Module syntax:

32

#include "Timer.h"

module SensorC()

{

uses interface Timer<TMilli> as Timer0;

uses interface Timer<TMilli> as Timer1;

uses interface Timer<TMilli> as Timer2;

uses interface Leds;

uses interface Boot;

}

implementation

{

event void Boot.booted()

{

call Timer0.startPeriodic(250);

call Timer1.startPeriodic(500);

call Timer2.startPeriodic(1000);

}

event void Timer0.fired()

{

call Leds.led0Toggle();

}

event void Timer1.fired()

{

call Leds.led1Toggle();

}

event void Timer2.fired()

{

call Leds.led2Toggle();

}

}

= interface X as X

interface X as Y

commands

Event

33

Lecture Overview

 1. Hardware Primer

 2. Introduction to TinyOS

 3. Programming TinyOS

 4. Hands on section

34

Try new applications

35

Further Reading

 Go through the on-line tutorial:
 http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html

 Search the help archive:
 http://www.tinyos.net/search.html

 NesC language reference manual:
 http://www.tinyos.net/tinyos-1.x/doc/nesc/ref.pdf

http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html
http://www.tinyos.net/search.html
http://www.tinyos.net/tinyos-1.x/doc/nesc/ref.pdf

Thank you.

36

