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Abstract— Tele-sonography works on inherent assumption
that the transmitted medical ultrasound videos scanned from
remote patients contain the representative data for doing the
diagnosis. Due to the high subjectivity involved in scanning and
semi-skilled nature of the operating person, this assumption
may not always be valid. The remotely scanned ultrasound
video contains a lot of redundant information, which is not
useful for diagnosis. Transmitting redundant and large volumes
of medical data to the expert end for analysis may lead to faulty
diagnosis, associated with high transmission cost, and also poses
serious challenges on data storage, processing, infrastructure,
etc. Addressing these issues, we propose a novel WebRTC based
framework to detect representative frames in the ultrasound
video and transmit only those frames to the remote sonographer
for getting a diagnosis. Detection of representative frames in
ultrasound video is done with invariant scattering convolution
network. The entire framework is developed using WebRTC,
which enables the browser to browser communication thus
reducing the computation on end ultrasound scanner and
ensures ubiquitous and secured connectivity between technician
and the sonographer. The proposed video validation algorithm
achieved an accuracy of 96.5% in classifying the representative
frames and nonrepresentative frames in the ultrasound video.

I. INTRODUCTION

Internet of Things (IoT) has been revolutionized the

healthcare, which prompted to connect and integrate every

medical device to the Internet [1] [2]. According to business

insider survey, by the year 2020, 34 billion devices are going

to connect the Internet leading to hyper connectivity [3].

These IoT medical devices generate and exchange a huge

amount of data among them, and causes a serious challenge

on data storage, bandwidth requirements, data processing,

etc. Most of the data generated by the medical IoT devices

are not useful for diagnosis, which is resulted due to the

improper acquisition and continuous monitoring of data from

remote patients [4]. Monitoring large volumes of medical

data in cloud demands for more medical experts, and the

experts need to go through large volumes of data which

all are not useful for diagnosis. Hence, there is a necessity

to devise automated algorithms at the end devices to filter

insignificant data before transmitting it to the cloud for anal-

ysis. Motivated by the problem, we proposed a Web Real-

Time Communication (WebRTC) based diagnostically driven

compression algorithm for IoT enabled tele-sonography [5].

Non-invasive medical imaging like ultrasound scanning,

Magnetic Resonance Imaging (MRI), Computed Tomogra-

phy (CT), Positron Emission Tomography (PET), etc. covers

a wide spectrum of diagnosis in healthcare. The services of

medical imaging have been limited to centralized hospitals

due to high form factor and need for expertise to operate the

device at remote locations. Unlike MRI, CT and PET, ul-

trasound scanners are portable, capable of real-time imaging

and considered to be safest diagnosing modality. Ultrasound

scanning is capable of diagnosing almost all organs in the

body including kidney, liver, heart, fetus monitoring, etc.

Advancement in computing platforms like FPGAs, DSPs,

GPUs, etc. have reduced the size of the ultrasound scanning

to the portable level making the device flexible to use in Point

of Care (PoC) diagnostics such as in ambulances, military,

remote healthcare, etc [6]–[9]. PoC diagnosis is highly

beneficial to infants, pregnant women, senior citizens and

the patients who suffer from mobility problems. Ultrasound

scanning is not used to its potential in PoC diagnostics due

to lack of sonographers.

Tele-sonography is used to address lack of sonographers,

where a nonexpert can scan the patient and send the

scanned ultrasound data to the sonographer present else-

where via wired/wireless communication technologies for

diagnosis [10]–[12]. Recently, smartphone-based ultrasound

scanners are available for clinical practices, thus brings an

inherent advantage of high mobility and data connectivity

which further improved its access for extensive use in tele-

sonography. Voice over IP (VoIP) along with smartphone-

based ultrasound scanners is a potential resource for tele-

sonography, which can unleash the potentiality of ultrasound

scanning to use in remote and PoC diagnostics. In [13],

we analyzed the performance of popular VoIP services like

Skype, Facebook and WebRTC for real-time tele-sonography,

and found that these services are viable for real-time tele-

sonography provided stable network conditions.

In tele-sonography, an inherent assumption is made that

the scanned ultrasound video consists of representative data

(data having sufficient information) for doing the diagno-

sis. But, due to the subjectivity involved in scanning and

semiskilled nature of the operating person, the scanned

ultrasound video may contain a lot of frames which are not

useful for diagnosis. Transmitting all these data to the expert

end will not be useful for diagnosis and involves high cost

due to transmission of huge data. Additionally, the expert
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sitting in the cloud has to go through the huge volume of

data, which is less representative for doing the diagnosis. If

the transmitted data is not representative enough, it may also

lead to faulty diagnosis, or the expert can request to rescan

the patient which is going to be tedious and time-consuming.

In this paper, we are proposing a novel algorithm for

automatic validation of scanned ultrasound videos before

transmitting it to the expert for analysis. If the scanned

ultrasound video contains less number of representative

frames, then the non-expertise can go for rescanning until he

obtains the representative data for diagnosis. The proposed

algorithm is based on a supervised learning algorithm. Scat-

tering coefficients [14] are used as features for representing

each frame, while linear SVM [15] classifier is used to

classify each frame as valid or invalid based on the extracted

features. The entire framework is implemented using the

WebRTC [16]. The graphical representation of proposed

framework for WebRTC based video validation algorithm

for tele-sonography is shown in Fig. 1. Upon request, the

application can read each frame in the incoming ultrasound

video, detect valid frames and sends the valid data to the

remote sonographer via data channel.

II. INVARIANT SCATTERING CONVOLUTION NETWORK

BASED ULTRASOUND VIDEO VALIDATION

A. Problem formulation

In general, the ultrasound diagnosis is done by freezing the

representative frames in the ultrasound video and analyzing

it. The ultrasound video consists of frames which are useful

and not useful for diagnosis. The frames with low contrast

and the regions which appear homogeneous throughout the

image without any structure are regarded as the invalid or

nonrepresentative frames. The invalid images occurs due to

improper adjustment of gain knobs, focusing depth, inad-

equate gel between transducer and skin, etc. Sonographers

cannot infer any information from these frames, and hence it

is regarded as invalid frames. The valid frames are considered

as images with good contrast and consist of edges or struc-

tures corresponding to the shape of an organ. The organs are

composed of soft tissues, blood vessels, etc., representing

Remote-

healthcare

Emergency

Clinician

Sonographer

Fig. 1: Architecture of WebRTC based automated validation

of ultrasound videos for IoT enabled tele-sonography.

Fig. 2: (a) Valid ultrasound images, where structures of

different organs can be seen. (b) Invalid ultrasound image,

which appears homogeneous all over the image with low

contrast.
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Fig. 3: Block diagram representation of the proposed ultra-

sound video validation algorithm.

different structures in an ultrasound image. The valid and

invalid images representing organs and no organs is shown

in Fig. 2. Video validation is formulated as detection of a

number of valid frames present in the scanned video useful

for diagnosis.

B. Proposed automated video validation algorithm

The block diagram representation of the proposed video

validation algorithm is shown in Fig. 3. In training phase, a

linear SVM classifier is trained with the scattering coefficient

features of valid and invalid images. In the testing phase,

every frame of video is classified as valid and invalid

based on the scattering coefficient features of a frame. The

valid frames are only transmitted to the sonographer while

dropping the invalid frames.

C. Region of Interest (RoI) detection

The organ information embedded in the ultrasound image

depends on the type of ultrasound probe and excitation used

for scanning the organ. Linear probes with linear excitation
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results in rectangular images, where organ information is

present all over the image. Linear and curvilinear probe with

phased array excitation results in sectored images. In sectored

images, the organ information does not present all over the

image, and it is constrained to center part of the image.

Features are extracted only from the regions where most of

the organ information is present. The ultrasound videos are of

resolution 768×1024. From ultrasound videos, an inference

is made that a rectangular region of width 340×430 at the

center of ultrasound video can cover a maximum region

containing organ information as shown in Fig. 4. RoI is

selected such that it does not include the outer portion of

ultrasound image which does not represent organ information

(pixels lying outside of the sector which has zero gray level).

D. Feature extraction

Scattering coefficients (SC) are used as features for clas-

sifying each frame of ultrasound video. The SC are transla-

tional and deformation invariant and provides robust repre-

sentation for image classification. SC are computed via In-

variant Scattering Convolution Network (ISCN) architecture.

The detailed information regarding the ISCN architecture

for computing the SC can be found in [14], [17]. The

efficiency of SC in classification lies in building invariant

representation for images; it builds the invariant features by

progressively cascading wavelet transform with modulus and

averaging operators. Since high-frequency components are

the main source of variability, ISCN maps high-frequency

wavelet coefficients to lower frequencies and averages the

lower frequencies to get translational invariant representa-

tion. Deformation invariance to the features is obtained with

the wavelet transform since wavelets are localized waveforms

stable to deformations. The layer-wise mathematical opera-

tions involved in ISCN are explained below.

The first layer of the ISCN starts with low pass filtering

of an image x.

S0 = x ⋆ φ2J , (1)

where, φ denotes Gaussian low-pass filter, ⋆ denotes the

convolution operation and J corresponds to the scale space

Fig. 4: Ultrasound image scanned with curvilinear probe,

rectangular box indicates the RoI used to extract features.

variable. In the second layer, modulus of the complex wavelet

transform of an image is convolved with low pass filter.

Sλ1
=| x ⋆ ψλ1

| ⋆φ2J . (2)

ψ is a complex wavelet filter represented as

ψ(u) = ψa(u) + iψb(u);u = [u1, u2], (3)

u represent the spatial location of the pixel in the image.

The term ψλ(u) = 2−2jψ(2−jrθu) represents all the rotated

and dilated versions of the wavelet with λ = (2j , θ), 0≤j <
J , j is a scale space variable, θ is given by 2πl/L, where

0≤ l < L and r represent group of rotations θ. The third

layer of the network is obtained as

Sλ1,λ2
=|| x ⋆ ψλ1

| ⋆ψλ2
| ⋆φ2J . (4)

The coefficients are computed only for the scales 2j2 <
2j1 , since coefficients of Sλ1,λ2

becomes negligible at 2j2 ≥
2j1 [18]. Similarly, the network can be extended to deeper

layers in the following way.

Sλ1,λ2...λm
=|| ... | x ⋆ ψλ1

| ⋆ψλ2
| .....ψλm

| ⋆φ2J . (5)

After convolving the modulus of complex wavelet trans-

form with φ2J , the image is subsampled with an interval 2J .

The coefficients obtained after subsampling are the SC which

is going to be translational and deformation invariant. The

complex wavelet ψ is chosen to be Morlet wavelet given by

ψ(u) = e−|u|2/(2σ2)α(ei.u.ζ − β). (6)

The Morlet wavelet is obtained by multiplying the Gaussian

window with complex exponential. Here β is adjusted such

that the area under the wavelet becomes zero. For experi-

mentation analysis, σ = 0.8, ζ = 3π/4 is chosen.

SC computed from all the layers are used as features

for classification. As the depth of the network increases,

Fig. 5: Perceptual difference observed in SC of valid and

invalid images. (a), (d). Valid and Invalid image. (b), (e).

First order SC of valid and invalid image. (c), (f). Second

order SC of valid and invalid image respectively.
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more invariant and discriminative features are obtained. To

visualize the discriminative nature of SC, the disk covering

the entire frequency support of image is displayed as sectors

as shown in Fig. 5. If ψ(w) is the Fourier transform centered

at frequency η then ψ(w)2−jr has a support centered at 2−jr
with bandwidth proportional to 2−j . Each sector in the disk

corresponds to local Fourier transform energy of an image

over support of ψλ(w). From Fig. 5, we can infer that SC

gives discriminative features for valid and invalid images

both in the second and third layer. The SC obtained in each

index is of dimension [M/2J−1, N/2J−1], where M,N are

the dimensions of the image. The feature representation for

each index is computed by summing all the SC in each index

resulting in one feature. To reduce the number of computa-

tions in computing the SC, the convolution operations are

computed in the frequency domain. The operations involved

in computing the SC is shown in Fig. 6.

III. FEATURES USED IN THE LITERATURE FOR

ULTRASOUND IMAGE CLASSIFICATION

Some of the popular features used to classify the ultra-

sound images are discussed below.

A. GLCM features

The Gray Level Co-occurrence Matrix (GLCM) captures

the spatial relationship between the pixels present in an

image. The spatial relationship between the pixels is char-

acterized regarding how often two pixels with intensities

i and j occur in specific direction and distance [19]. The

texture features of four GLCM’s corresponding to directions

00, 450, 900, 1350 with distance between two pixels being

one unit is computed [20]. From each GLCM, 13 features

were computed constituting a total of 52 features for four

GLCM.

B. GLRLM features

The Gray Level Run Length Matrix (GLRLM) features

capture the texture information by computing the run-length

of a pixel with specific gray value occurring in a specific

x̂
FFT

Decimation LPF FFT

IFFT
Modulus

Operator

IFFT

x

Coefficients

Scattering

FFT of

Wavelet

Multiplication

Element wise

Fig. 6: Computational blocks involved in computing SC. FFT

and IFFT represents 2D fast Fourier transform and inverse

fast Fourier transform respectively. LPF denotes low pass

filtering.

direction [21]. Eleven GLRLM’s corresponding to each di-

rection 00, 450, 900, 1350 are computed, constituting a total

of 44 features [22].

C. Multiresolution features

The multiresolution framework proposed in [20] has been

used in this paper for comparison. The images are de-

composed using M-band wavelet and Gabor filter bank.

From each decomposed sub-image, features like energy and

energy deviation are computed. Using M-band wavelet, the

image is decomposed into 45 sub-images, resulting in 45

M-band wavelet magnitude (Wav Mag) and wavelet en-

ergy (Wav Eng) features. Gabor filter bank with five radial

frequencies (
√
2/25,

√
2/24,

√
2/23,

√
2/22and

√
2/21), six

orientations (00, 300, 600, 900 and 1500) have been used for

obtaining a total of 31 sub-images. Energy in Gabor sub-

images (Gabor Eng) and Energy deviation in Gabor sub-

images (Gabor Dev) are used as the features for representing

the image.

IV. WEBRTC IMPLEMENTATION

WebRTC [16] provides browsers real-time communication

capabilities with a set of application programming interfaces

(APIs) and communication protocols. WebRTC is an open

source project supported by Google, Mozilla and Opera. The

standardization of WebRTC is jointly developed by World

Wide Web Consortium (W3C) and the Internet Engineering

Task Force (IETF). The set of real-time communication

protocols is standardized by IETF, while W3C standardizes

APIs. Before WebRTC, to enable voice and video services

within the browser, the user has to install that particular

service real-time communication stack as plug-in. The mul-

timedia communication stack is built into the web browser

internals with WebRTC. Hence the developers can make use

of HTML5 APIs for developing multimedia services. We-

bRTC uses real-time congestion control algorithm proposed

by Google [23]. The complete receiver side congestion of

WebRTC is reported in [24]. WebRTC did not standardize the

signaling protocol and the users can choose any preexisting

signaling protocol like session initiation protocol, jingle,

etc. WebRTC eliminates the need for installing third-party

plugins like flash players, customized multimedia stacks for

playing multimedia content making it widely adaptable in

developing videophone services [25].

WebRTC provides a peer-to-peer communication by ex-

tending client-server semantics. In general, WebRTC uses

Trapezoidal or Triangle architectural web server models. In

WebRTC Trapezoid model, both browsers are running a web

application downloaded from a different server, while in

Triangle model both browsers are running the same web

application downloaded from the same webpage. Here, we

employed the Triangle model web architecture as shown in

Fig. 7. The web application is implemented on a dedicated

server using nodejs [26]. To traverse firewalls and NATs,

we run multiple TURN servers on dedicated machines.

Websockets is used for signaling between browsers and

server. WebRTC supported browsers Google Chrome and
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Fig. 7: WebRTC network architecture.

Firefox are used to establish a connection with a web server

and to download the WebRTC javascript to configure the

browser internals during call establishment. If the end points

are behind NATs and firewalls, the media data flows through

TURN servers else it flows directly between endpoints. The

server application is run on a Intel core i7 processor with 16

GB RAM running on a 2.8 GHz clock cycle.

V. RESULTS

The images for this study is acquired using a Siemens

Acuson S1000 ultrasound scanner with a phased array trans-

ducer from Asian Institute of Gastroenterology, Hyderabad,

India. The database consists of 409 valid, 192 invalid and

20 ultrasound videos. The ground truth for the image is

jointly annotated by the two sonographers, who are vastly

experienced in sonography for more than 20 years. The valid

ultrasound images include 160 kidneys, 125 liver, 80 spleen

and 44 cardiac ultrasound images. Out of 20 ultrasound

videos, ten correspond to the kidney, six correspond to the

liver and four videos correspond to the spleen. The invalid

images are captured corresponding to improper settings of

gain knobs, focusing depth and the images appeared homo-

geneous resembling no information etc.

The results of the classification algorithm depend on the

number of scales and orientations used to generate the

SC. Table. I refers the accuracy of the proposed algorithm

referring to different scales and orientations. SVM with a

linear kernel is used to classify the extracted features, and

ten-fold cross-validation is employed to validate the proposed

algorithm. The accuracy of the algorithm increased with

increase in scales and orientations. The proposed algorithm

resulted with a maximum accuracy of 96.5% for four scales

and six orientations. Further increase in scales and orienta-

tions did not increase the accuracy of the algorithm. Hence,

the efficiency of the ISCN is studied with four scales and

six orientations.

The classification accuracy of the SC features with respect

to network depth is shown in Table. II. Highest accuracy

is achieved for a network of depth 2. The classification

accuracy reduced as further increase in the depth of the

network. This is resulted due to the propagation of redundant

information from parent layers to the child layers.

The confusion matrix of the proposed algorithm in clas-

sifying the valid and invalid images is shown in Table. III.

The algorithm classified valid images with a sensitivity of

98% (401 out of 409) and invalid images with a specificity

of 93.2% (179 out of 192). High sensitivity is preferred for

the proposed application since we do not want valid images

to classify as invalid images, while low specificity is allowed

since the cost paid in transmitting invalid images is less.

The accuracy of SC compared to other textural features is

shown in Table. IV. Linear SVM classifier is used to evaluate

the performance of all the features. The proposed SC features

performed with the highest accuracy of 96.5% and the next

best accuracy 92.5% is achieved with Wavelet magnitude and

standard deviation of the Gabor coefficients, while GLRLM

features performed with the lowest accuracy of 87.7%.

In general, compression depends on the number of valid

and invalid frames present in the scanned video. To quantify

the amount of compression achieved, the proposed algorithm

is tested on five ultrasound videos, which includes two liver,

two kidneys, and one spleen ultrasound videos. The number

of valid and invalid frames present in each video is shown

in Table. V. The original videos are in avi format, and the

valid frames extracted from ultrasound video is stored in jpg

format. By transmitting only valid images of five ultrasound

videos to the cloud, 66% of the reduction in overall data is

achieved.

Since the smartphone-based ultrasound scanners are

presently available for scanning, which inherently comes

with Internet compatibility, the proposed WebRTC frame-

work can provide easy access to connect any expertise with

high security. The expert can be located anywhere and need

to have a multimedia device with Internet connectivity for

accessing the ultrasound data for analysis. Additionally, the

proposed video validation algorithm filters the insignificant

data getting into the cloud thus helping the experts to

diagnose more patients in less time. By knowing the

TABLE I: Accuracy(%) of the SC features for different scales

and orientations with linear SVM classifier, depth of the

layer=2. Features from all the layers are concatenated as a

single feature vector to represent each image.

Orientations (θ)
Scales (j) 1 2 3 4 5 6 7 8

2 88.5 91.5 92 92.5 92.5 93.2 93.5 93.5
3 91.3 92.5 94.0 94.2 94.5 94.8 94.5 95.7
4 92.2 95.5 96.2 96.5 96.2 96.5 96.0 95.8
5 95.7 96.0 95.0 96.0 95.8 96.0 95.5 95.3
6 95.7 96.2 96.3 96.3 96.3 96.0 96.0 96.0

TABLE II: Efficiency of the SC features in classification with

respect to network depth with j=4 and θ=6.

Network
depth

Feature
Dimension

Accuracy(%)

1 17 93.8
2 113 96.5
3 369 95.3
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TABLE III: Confusion matrix of the proposed algorithm

tested on the ultrasound images.

Predicted class

True class Valid Invalid

Valid (409) 401 8

Invalid (192) 13 179

TABLE IV: Performance comparison of features with linear

SVM classifier.

Features Accuracy(%)

GLCM 91.2
GLRLM 87.7

Wavelet Eng 89.4
Wavelet Mag 92.5
Gabor Eng 91.8
Gabor Dev 92.5

Proposed Method 96.5

TABLE V: Reduction in size of ultrasound data after video

validation.

Video
Total

Frames

Valid

Frames

Invalid

Frames

Video

size(MB)

Data after

validation(MB)

1 78 45 33 7.9 3.7
2 47 10 37 4.9 0.8
3 47 23 24 4.6 1.8
4 75 37 38 7.8 1.9
5 74 24 50 4.5 1.8

number of representative frames present in scanned video,

the technician can scan better by adjusting the scanning

settings or can go for rescanning to get more representative

data for diagnosis. The proposed framework will unleash

the potentiality of ultrasound scanning to widely use in PoC

diagnostics, thus bringing a significant impact in IoT driven

healthcare.
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