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Abstract— Telesonography suffers from inherent limitations
due to the need of all time availability of experts in cloud
and data connectivity to the device. Computer-aided diagnosis
(CAD) used for automatic detection of abnormalities without
manual intervention can overcome these limitations. Commer-
cially available ultrasound scanners restrict the installation of
new softwares and hence CAD algorithms cannot be integrated
into the existing ultrasound scanners. There is a need for an
external computing device, which can acquire image data from
ultrasound scanners, perform CAD and generate result. Smart-
phones are now widely used in personalized healthcare due to its
ubiquitous computing capability. Smartphones with embedded
CAD can be used as a computing device for automated
diagnosis. In this paper, we have developed an Application
(APP) for a smartphone to automatically diagnose the kidney in
the ultrasound image. With the developed APP, the smartphone
can acquire images from any ultrasound scanner, process it
and give the diagnostic result. Automatic abnormality detection
of kidney is based on Viola Jones algorithm, texture feature
extraction followed by SVM classifier. Stones and cysts are
the abnormalities detected using the algorithm. The developed
APP resulted with an accuracy of 90.91% in detecting the
abnormalities.

Index Terms— Computer aided diagnosis, medical image
analysis, mHealth, personalized healthcare, Telesonography.

I. INTRODUCTION

Hospital centralized heath-care suffers from inherent limi-

tation that patients have to visit the hospitals even for routine

examinations like blood pressure monitoring, electrocardio-

graphy etc. This increases the healthcare cost and also adds

difficulty for aging population and remote patients, who have

mobility problems in reaching hospitals. Healthcare infras-

tructure in developing countries is experiencing pressure due

to population growth. Mobile health (mHealth) can address

the above-said issues by providing out of hospital health-

care [1]. Demand for mHealth is also driven by the needs

of emergency healthcare, point of care (POC) diagnostics,

rural healthcare etc. Smartphones are widely used devices

in mHealth applications due to its ubiquitous computing

capability, inbuilt communication modules like Bluetooth,

Wi-Fi, 3G, 4G, flexibility of running multiple healthcare

applications, adequate memory to store patients data, etc.,

Significance of smartphones in mHealth and its contribution

in improving one’s well-being is reported in [2]. Applications

like fall detection, heart rate monitoring, ECG monitoring

etc., using mobile phones have been reported in [3], [4].

Telediagnosis is used to transmit data from smartphones to

the expert side for getting diagnosis. The physician who

is sitting remotely can guide the patient based on the data

received from the smartphone. In telediagnosis architecture,

still there is a need for the physician to monitor and guide

the patient, which will add to the cost of healthcare and

also this architecture is not suitable for remote areas where

there is no data connectivity. In these situations, computer

aided diagnosis will be very beneficial, thus reducing the

cost of healthcare by minimizing the physician intervention

and eliminating the need of having data connectivity to the

smartphone.

Kidneys are two bean-shaped organs which are located

near the middle of the back just below the rib cage. It serves

various regulatory roles in the human body. Kidneys are

prone to various diseases like cysts, stones, infections, etc.

It is estimated that 26 million people in The United States

are suffering from chronic kidney disease (CKD) and they

don’t know it [5]. Early detection of CKD can prevent the

kidneys from permanent failure. Ultrasound scanning is the

widely used diagnostic imaging modality for diagnosing the

kidney.

Traditionally, ultrasound scanners are localized to well es-

tablished hospitals due to its high form factor, cost and need

for a person trained in sonography for performing scanning.

Recent advancements in computing platforms have realized

portable ultrasound scanners (PUS), which are now used

Fig. 1: Graphical representation of mobile based CAD
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in point of care and emergency healthcare [6], [7]. FPGA

and DSP based PUS are presented in [8]–[10], while hand-

held ultrasound scanning systems based on SOC and mobile

platforms are presented in [11]–[13]. Lack of sonographers

limits the potentiality of using ultrasound scanning in point

of care diagnostics.

In this paper, we developed an Android application for

automatic abnormality detection of the kidney in B-mode

ultrasound images. With the developed application, the

smartphones can acquire ultrasound kidney image from any

ultrasound scanner, process it and give the diagnostic result

of the image as shown in Fig.1. Above all, it doesn’t require

data connectivity or any software to install, it can directly

connect to any ultrasound scanner for automatic abnormality

detection. This can be very beneficial in rural healthcare

where data connectivity is not present.

The rest of the paper is organized in the following way:

in section II, we discuss the proposed algorithm used for

detecting the abnormality in the kidney. In section III,

we discuss the accuracy of the algorithm and its Android

implementation. The paper is concluded with the discussion

on proposed algorithm, implementation, and its benefits.

II. PROPOSED ALGORITHM

Automated diagnosis of kidney in ultrasound images is

a challenging task due to following reasons: ultrasound

images have low signal to noise ratio due to the presence

of multiplicative noise called as speckles, affected with

acoustic shadowing, complete kidney in ultrasound image is

not visible due to occlusions of other organs like spleen,

variable size and shape of the kidney which depends on

various factors like age, weight and height of the patients,

low contrast, and poorly defined edges of the kidney.

In this paper, we developed an automated algorithm for

classifying cyst and stone abnormalities in kidney ultrasound

images. Stones in kidney are hyperechoic and appear bright

while cysts appear dark compared with surrounding region

of kidney. The cyst and stone abnormalities present in

the kidney are shown in Fig. 2. In [14], we presented a

hard-threshold based algorithm for automatic abnormality

detection of the kidney on an FPGA platform, the algorithm

is based on first and second order texture features extracted

from kidney region. Fuzzy-neural based computer aided

decision support system for kidney abnormality detection is

proposed in [15].

Fig. 2: Abnormalities in Kidney (a) Stone (b) Cyst
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Fig. 3: Block diagram representation of proposed algorithm

for abnormality detection of kidney.

The proposed automated abnormality detection of kidney

is based on Viola Jones, texture feature extraction followed

by SVM classifier. The block diagram representation of the

proposed automated abnormality detection algorithm devel-

oped on the smartphone is shown in Fig. 3. The significance

of each block is explained below.

A. Kidney localization

Kidney abnormalities like cyst and stone are found inside

the kidney, cyst appear darker and stone appear brighter

in ultrasound image. The same characteristics can also be

seen outside the kidney region which may correspond to

hyperechoic tissues (resembling stones) and blood nerves

(resembling cysts) in the surrounding regions of the kidney.

Therefore kidney localization plays a crucial role in detecting

the abnormalities in kidney. Localizing can also be referred

as segmenting the kidney and the various algorithms used

for segmenting the kidney have been reported in [16].

Ultrasound kidney segmentation based on textural and shape

priors are proposed in [17], [18] proposed an algorithm to

segment kidney from ultrasound images using textural based

classification. Automatic kidney detection using Markov

random fields and active contours are proposed in [19], but a

manual adjustment is required before processing the image.

In [20], we have used Viola Jones algorithm for detecting

the kidney in ultrasound image. Viola Jones algorithm which

is developed primarily for detecting faces also worked well

in detecting the kidney in ultrasound images. Based on our

previous results, we have used Viola Jones algorithm for

localizing the kidney. Viola Jones algorithm is a supervised

algorithm, so in training phase, the kidneys in ultrasound

images are manually segmented. From segmented image,

Haar-like features are extracted from kidney region. To

find the optimum features, Adaboost algorithm is used.

Cascade classier architecture is employed to improve the

speed of detection. Viola Jones algorithm results in multiple

detections of kidney as shown in Fig. 4. This is eliminated

using merging technique: if the pixels with more than 75%

overlapping then overlapping windows are merged into a

single window by taking the average of the coordinates of the

overlapping windows. The detailed implementation of Viola

Jones algorithm for kidney detection can be found in [20].
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Fig. 4: Multiple detections of Kidney in ultrasound images

B. Feature Extraction

Texture is one of the important characteristic of ultrasound

image. Texture features represent kidney in reduced and

compact form in order to speed up the decision-making

process for classification. Texture features are effectively

used in detecting the abnormality in kidney image [14],

[15]. Hence in this paper, we have used texture features for

detecting the abnormality in ultrasound image. Three sets

of features namely Intensity histogram features, Gray Level

Co-occurrence Matrix (GLCM) features [21] and Gray Level

Run Length Matrix (GLRLM) features [22] are used in our

algorithm for detecting abnormality in the kidney.

1) Histogram Features: These features give intensity dis-

tribution of pixels in the segmented region. It includes mean,

variance, standard deviation, skewness, kurtosis, and entropy.

2) GLCM Features: Haralick features, also known as

GLCM features, are computed from gray level co-occurrence

matrix having a dimension of Ng×Ng , where Ng represents

number of gray levels. Gray level co-occurrence matrix gives

the spatial relationship between the pixels i.e., probability

of occurrence of each gray level value in specified spatial

relation with other gray level P (i, j) [23]. GLCM features

include autocorrelation, correlation, contrast, cluster shade,

cluster prominence, dissimilarity, entropy, energy, homo-

geneity, maximum probability, sum of squares, sum variance,

sum average, sum entropy, difference entropy, difference

variance, information measure of correlation, inverse moment

normalized, and inverse difference normalized.

3) GLRLM Features: The Gray Level Run Length Matrix

(GLRLM) method extracts higher order statistical textural

features. The GLRLM is a two-dimensional matrix of Ng×R

elements in which each element P (k, l|θ) gives the total

number of occurrences of runs having length k of gray level l

in a given direction, here R represents the longest run. Seven

statistical textural features are extracted from the Gray Level

Run Length Matrices. They are: Short Runs Emphasis (SRE),

Long Runs Emphasis (LRE), Gray Level Non-uniformity

(GLN), Run Length Non-uniformity (RLN), Run Percentage

(RP), Low Gray Level Runs Emphasis (LGRE), and High

Gray Level Runs Emphasis (HGRE).

C. Feature Selection

After extraction of features from region of interest, we

get 6 histogram features, 19 GLCM features, and 7 GLRLM

features total constituting of 32 features. Few features are

redundant and does not play a crucial role in classification.

Removing the redundant features reduces the computational

time. Genetic algorithm is employed to select the useful

features from a total of 32 features. Genetic algorithms are

effectively used in medical image segmentation [24], and

also used for feature selection and classification [25]. In

this paper, we have used Genetic algorithm for selecting the

optimal features for kidney classification. Applying Genetic

algorithm on 32 features resulted with 10 features which

are skewness, kurtosis, correlation, cluster shade, cluster

prominence, homogeneity, sum of square, gray level non-

uniformity, run length non-uniformity and high gray level

run emphasis. These features are computed as follows:

Skewness =
1

MN
Σi,j

(I(i, j)− µ)3

σ3

Kurtosis =
1

MN
Σi,j

(I(i, j)− µ)4

σ4

Correlation = Σ
Ng

i,j=1

{i× j} × P (i, j)− {µx × µy}

σxσy

Cluster shade = Σi,j(i+ j − µx − µy)
3P (i, j)

Homogeneity = Σi,j

P (i, j)

1 + |i− j|
Cluster prominence = Σi,j(i+ j − µx − µy)

4P (i, j)
Sum of squares = Σi,j(i− µx)

2P (i, j)

GLN =
Σ

Ng

k=1
(ΣR

l=1
p(k, l|θ))2

Σ
Ng

k=1
ΣR

l=1
p(k, l|θ)

RLN =
ΣR

k=1
(Σ

Ng

l=1
p(k, l|θ))2

ΣR
k=1

Σ
Ng

l=1
p(k, l|θ)

HGRE =
Σ

Ng

k=1
ΣR

l=1
k2p(k, l|θ)

Σ
Ng

k=1
ΣR

l=1
p(k, l|θ)

D. SVM Classifier

Support Vector Machine (SVM) is a supervised learning

model, which is highly successful in binary classification

problem [26]. SVM classifier separates the data, only if the

data is linearly separable. So kernel-based methods are used

to project the data from lower dimensional space into higher

dimensional space, by doing this, the non-separable data in

lower dimension space will become separable data in higher

dimensional space. SVM with linear, radial basis function

(RBF), polynomial and multi-layer perceptron (MLP) are

used in this work to evaluate the performance of abnormality

classification.

III. RESULTS

For experimental analysis, the database is acquired using

Siemens ultrasound scanner S1000. 500 patients who are in

the age group of 14 to 65 years participated in the study.

The database is collected during the period May 2014 to June

2015 by acknowledging the patients. The database consists a

total of 900 images with 510 kidney (normal: 250, abnormal:

260) and 390 nonkidney images (liver: 100; carotid: 90;
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spleen:105; heart:95 ). Abnormal kidney images consisted

of 150 cyst and 110 stone kidney images.

For training the Viola Jones algorithm we have used

790 ultrasound images. 400 kidney images (normal:200

and abnormal:200) are used as positive images, while 390

nonkidney images are used as negative images. The positive

Fig. 5: Some of the positive kidney images used for training

Viola Jones algorithm

Fig. 6: Some of the negative kidney images used for training

Viola Jones algorithm

and negative images used in training are shown in Fig.

5 and Fig. 6 respectively. SVM classifier is trained with

TABLE I: Accuracy of SVM with different kernels in de-

tecting the abnormality in kidney

❵
❵

❵
❵
❵

❵
❵
❵

❵
Feature set

Kernel
Linear RBF Polynomaial MLP

Histogram(6) 80 83.64 77.27 79

GLCM(19) 84.5 86.36 81.82 85.45

GLRLM(7) 78.18 84.55 82.72 81.82

Fused(32) 86.36 90.91 80.90 88.18

selected (10) 86.36 90.91 80.90 88.18

TABLE II: Reduction of feature size using Genetic algorithm

Feature set Original Selected Reduction(%)

Features size Feature size

Histogram 6 2 66.67

GLCM 19 5 73.68

GLRLM 7 3 57.14

Fused 32 10 68.75

390 images consisting of 200 normal and 190 abnormal

images. 190 abnormal images consist of 120 cyst and 70

stone images. The algorithm is tested with a total of 110

kidney images consisting of 50 normal and 60 abnormal

images. The 60 abnormal images constitute 30 cyst and 30

stone images. The images used in testing are not used for

training the algorithm.

Imaging

Kidney

Test

Outcome

Normal

Abnormal

46

4

6

54

Normal

(50) (60)

Abnormal

Sensitivity Specificity

=92% =90%

Negative
Predictive

Value=93.10%

Value=88.46%
Predictive
Positive

abnormality

Patients with kidney

Fig. 7: Results obtained by testing normal and abnormal

kidneys with proposed algorithm

The performance of the proposed algorithm with respect

to different kernels of SVM classifier is shown in Table. I.

The results are tabulated with respect to each set of features.

SVM with RBF kernel for the fused features performed with

maximum accuracy with 90.91%, while polynomial kernel

with fused features performed poorly with 80.90%. Genetic

Algorithm, which is used for feature selection has reduced

the feature size from 32 to 10 features without affecting the

accuracy of the algorithm. The individual reduction of feature

size is shown in Table. II. The Genetic algorithm resulted

with 66.67% reduction in Histogram, 73.68% reduction in

GLCM and 57.14 % reduction in GLRLM features. Overall

Genetic algorithm resulted with 68.75% reduction in feature

size. The reduction in feature size reduced the computation
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thus increasing the speed of the algorithm.

The RBF kernel is chosen for SVM classifier, since it

gives maximum accuracy in detecting the abnormalities. The

confusion matrix of RBF based SVM classifier with selected

10 features is shown in Fig.7. The algorithm performed

with an accuracy 90.91%, sensitivity 92%, specificity 90%,

positive predictive value 88.46% and negative predictive

value 93.10% in detecting the abnormality in kidney. The

algorithm misclassified 4 normal kidney images as abnormal

and 6 abnormal kidney images (cyst:2, stone:4) as normal.

The complete analysis of automatic abnormality detection of

kidney is analyzed using Matlab.

A. Implementation on Mobile

The APP takes the ultrasound image, which is acquired

from ultrasound scanners through wired/wireless medium

based on the availability of communication mode in ultra-

sound scanners. The diagnostic result of ultrasound image is

displayed as text on the screen. The processing of normal

and abnormal kidney images through our APP are shown

in Fig. 8 and Fig. 9 respectively. The segmented image and

diagnostic result of image are stored in the mobile for future

purpose.

Fig. 8: (a) Original image of normal kidney (b) Segmented

kidney image (c) Diagnostic result of kidney image

Fig. 9: (a) Original image of abnormal kidney (b) Segmented

kidney image (c) Diagnostic result of kidney image

The training of Viola Jones algorithm for detecting the

kidney is done with Training Image Labeler APP and

trainCascadeObjectDetector function, which are available in

Matlab R2015b. The trained model is stored in xml file and

is used in localizing the kidney on Andriod platform. The

Andriod APP is developed on Eclipse IDE Juno Platform

by using OpenCV library. The APP on Samsung Galaxy

Grand 2, with Quad-core 1.2 GHz Cortex-A7 processor, 1.5

GB RAM, running Android OS v4.4.2 took 2.3 seconds to

process the image of resolution 678 × 542.

IV. CONCLUSION

The need of all time availability of sonographers in

cloud and data connectivity to the device limit the practical

implementation of telesonography in emergency and rural

healthcare. CAD, which can diagnose without manual inter-

vention can overcome the limitation present in telesonogra-

phy. Since commercially available ultrasound scanners are

proprietary and restricts the installation of new softwares,

we developed an APP for acquiring the ultrasound images

from ultrasound scanners, process it and give the diagnosis

result. The APP is developed for detecting the cyst and stone

abnormalities in the kidney. The APP is beneficial in rural

healthcare and emergency healthcare where data connectivity

and sonographer are needed for diagnosis.
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