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Abstract—Smart phones or mobile phones enabled with global
positioning system (GPS), different types of sensors, and commu-
nication technologies have become ubiquitous application devel-
opment platform for Internet of Things (IoT) and new sensing
technologies. Improving sensing area coverage, reducing overlap
of sensing area, and energy consumption are important issues
under mobile phone sensing. This paper presents human mobility-
based mobile phone sensors sampling algorithm. Human mobility
patterns and geographical constraints have an impact on perfor-
mance of mobile phone sensing applications. The real-outdoor
location traces of volunteers, collected using GPS-enabled mobile
phones are used for performance analysis of proposed work.
The proposed mobile phone sensor sampling algorithm considers
velocity of human mobility as an important parameter for improv-
ing sensing area coverage and reduction of energy consumption.
To an extent overlap between sensing area coverage is allowed to
overcome, the reduction of sensor data samples caused by spatial
regularities of human mobility. The performance is analyzed and
evaluated by considering general regular sampling and proposed
sampling method for mobile phone sensing activity. The results
show that for normal human walking velocity (<1.5 m/s) pro-
posed mobile phone sensor sampling algorithm performs better
in terms of sensing area coverage and reduction of battery energy
consumption for mobile phone sensing activity.

Index Terms—Global positioning system (GPS), human
mobility, Levy walk, mobile phone sensing, sensor sampling,
spatial coverage.

I. INTRODUCTION

H UMAN mobility patterns and geographical constraints
have an impact on the performance of mobile phone

sensing applications, specifically on mobile phone sensing
coverage and energy consumption. It is necessary to vali-
date the performance of mobile phone sensing algorithms
in real-world environment. This paper extends mobile phone
sensors sampling algorithm proposed in paper [1] by consid-
ering real human location trace data. Human carried smart
phones are becoming ubiquitous application development plat-
form for Internet of Things (IoT) and new sensing paradigms
such as participatory sensing, crowd-sourced sensing, oppor-
tunistic sensing, and human-centric sensing [2]–[5]. Latest
smart phones are coming with different types of sensors
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such as camera, microphone, global positioning system (GPS),
compass, gyroscope, temperature, humidity, barometer, and
accelerometer embedded with them [2]–[4]. Mobile phones are
also embedded with different communication technologies such
as Wi-Fi, Bluetooth, near field communication (NFC) [2]–[4].
Sensors may be inbuilt or externally interfaced to smart phones.
Human carried sensors embedded mobile phones can be used
for monitoring different environmental factors such as tem-
perature, humidity, urban noise pollution, carbon footprint, air
pollution, and urban traffic [2], [3].

Human mobility enables collection of mobile phone sensor
data either by forming cooperative sensing task with surround-
ing neighbors, or individual user’s mobile phone may simply
send its sensor data to designated destinations such as central
or cloud servers to do further processing and mapping of sen-
sor data [2], [4], [6]. In both cases, sensing task assignment to
participating mobile phone users and sending requested sensor
data to designated destination can be done through ad hoc or
infrastructure oriented networking [5], [7], [8].

In the former case (cooperative mobile phone sensing), for-
mation of cooperative mobile phone sensing task requires regu-
lar lookup for neighbors, processing and exchange of messages,
security, and trust protocols [6], [9]. Dynamic and unpre-
dictable human mobility nature and activities affect the perfor-
mance of cooperative mobile phone sensing task. The later type
of mobile phone sensing activity (noncooperative sensing task)
can be useful for sparsely populated and dynamically changing
human networks, where availability of neighbors is sparse or
changing in a short period. Our work is concerned with later
case, i.e., mobile phone sensing at individual user level, which
is also useful when heterogeneous sensing task assignment for
each individual user is required.

Irrespective of scale of mobile phone sensing applications,
for continuous and regular interval of sensing activity, optimiza-
tion of energy consumption is an important issue. Under ran-
dom waypoint (RWP) mobility model, there has been enough
theoretical and practical work done on optimization of energy
consumption and improving sensing area coverage for both
static and mobile networks [10], [11].

Mobile phone sensing area coverage depends on sensing
range and velocity of human mobility. Levy walk (LW) depicts
statistical properties of human mobility patterns [12]–[16].
Rhee et al. [12], [13] describe the characteristics of human walk
mobility and provides analytical description of LW mobility
model. In [12] and [13], real human traces are used for anal-
ysis and report that independent of geographical constraints,
the heavy-tail tendency of flight length distribution, super-
and subdiffusive mean-square displacement features must be
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inherent in human walk mobility models. Birand et al. [14]
explore dynamic graph properties under LW mobility model.
In this, they explain that decrease of LW mobility parameter α
leads to high-dynamic human networks [14] and on increase
leads to low-dynamic human networks. Sheng et al. [6] and
Hachem et al. [17] assume that users are aware of their path. In
[6], they use knowledge of mobile phone users path for cloud
based collaborative mobile phone sensing. In [17], users path
information is used for reducing the number of participatory
users.

Thejaswini et al. [1] propose a novel sampling algorithm
based on human-walk velocity for mobile phone sensing and
analyze how the velocity of human-walk affects the sensing
area coverage and energy consumption at individual mobile
phone user level. In this, performance is analyzed under exist-
ing LW mobility model by considering location trace of slow,
medium, and fast moving LW nodes with an average velocity of
2.33, 2.26, and 2.04 m/s, respectively, with total mobility dura-
tion of 16 000 s [18]. The results show that mobile phone sensor
sampling with respect to considered users walking velocity
(1.0 m/s) reduces spatial overlap of sensing area and energy
consumption of sensing process.

In real world, as mobile phones are carried by humans, their
mobility characteristics and geographical constraints have an
impact on mobile phone sensing applications. The velocity of
humans will be varying according to their activities [19]–[21].
LW mobility model does not consider geographical features
such as roads, buildings, and obstacles into account [12], [13].
Under real-world human traces, degree of spatial regularities
is high and constrained by geographical features such as road
width and length.

It is necessary to validate the performance analysis of mobile
phone sensing algorithms by considering real-human mobility
trace data. This paper provides significant improvement over
the mobile phone sensor sampling algorithm proposed in [1], in
particular by modifying the algorithm for handling real-world
human traces and some of the corresponding mathematical
models. The location traces are collected on daily basis using
GPS-enabled mobile phones. To improve the sensing area cov-
erage, percentage of allowed overlap of sensing area coverage
is formulated mathematically. Mobile phone sensing activity
requires energy efficient sensing task management methods.
Sensing activity with GPS may drain significant amount of
mobile phone battery power, affecting other applications run-
ning on it. Ensuring required spatial coverage with minimal
energy consumption is an important issue under mobile phone
sensing. Performance is analyzed and evaluated in terms of
sensing area coverage and battery energy consumption by
considering average velocity of respective location trace of
individuals.

Compared to general regular sensor data sampling method,
the proposed mobile phone sensor sampling with respect to
mobile phone users average velocity performs better in terms of
both spatial coverage and reduces battery energy consumption.
This is achieved by suppressing unnecessary spatial over-
laps caused by human mobility characteristics such as spatial
regularities and pause duration (users are not moving).

This paper is organized as follows. Section II gives
description of considered system models for proposed work.

Section III discusses proposed sampling algorithm for mobile
phone sensing. Section IV discusses evaluation of simulation
results and Section V concludes the paper.

II. SYSTEM MODEL

For simulation of proposed mobile phone sensor sampling
algorithm, considered models, methodologies, and assumptions
are described in this section.

A. Location Trace Data Collection from GPS-Enabled
Mobile Phones

We have developed an android application for collecting
location trace of persons using GPS-enabled mobile phones on
daily basis [22]–[26]. As the proposed work is concerned with
mobile phone sensing applications, it is assumed that for com-
puting location, mobile phones use inbuilt GPS. The application
logs a location record at every second, which consists of lati-
tude, longitude, satellite time, and speed values. Android phone
id or date and time of logged data is used to differentiate and
identify individual mobile phone users [22], [27]. The logged
data are uploaded to server at regular interval of time (30 s).
The android application is distributed to 15 volunteers and their
location traces obtained from end of April 2014 to May 2014
is considered for analysis of proposed work. Volunteers can run
application whenever they are interested, except when they are
moving in vehicles. The proposed work is relevant to mobile
phone sensor sampling based on average velocity of human’s
and does not consider vehicular velocity. There is no restriction
on them as not to use the application when they are working
or sitting at one place, because pause duration of users is also
an important parameter in analyzing the proposed work. There
is no restriction on collection of location data at any partic-
ular geolocation and on duration. In this paper, the objective
is not to classify exactly the human activities but to consider
and analyze the effect of human mobility patterns and velocity
on sensing area coverage and energy consumption for mobile
phone sensing.

B. Processing GPS Data

The location trace of each individual mobile phone user may
contain error due to very poor position accuracy from mobile
phone GPS device [26]. There are many reasons for inaccu-
racy in GPS data such as receiver clock error, multipath effect,
selective availability, ionospheric error, geometric dilution of
precision error, nonline of sight between mobile phone GPS
receiver and satellite, and low-battery power in mobile phones
[28], [29]. For more information on GPS, error analysis and
correction methods refer [28]–[30]. Due to errors in GPS data,
location trace may have discontinuity in time. Rhee et al. [12]
and Azevedo et al. [31] explain some of the methods to analyze
and correct the collected raw location traces. In [31], differen-
tial correction is used to improve the GPS position accuracy and
displacement is fixed to be ≤2.5 m/s. Rhee et al. [12] explain
rectangular, angle, and pause-based methods to extract the flight
from raw GPS traces. In [12], human walking speed is assumed
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to be 1 m/s to extract the pause time and discontinuity in traces.
In this paper, GPS error data are removed by considering max-
imum distance traveled by normal person at every second to
be less than velocitythreshold meters, where velocitythreshold
gives threshold velocity value. For example, to consider only
human walk traces, velocitythreshold is set to 1.5 m/s [12], [13],
[31]. On daily basis, if the time difference between two suc-
cessive data logs is greater than 5 s, then it is assumed that
there is discontinuity in the location trace. Consider successive
data logs with time t1 and t2, let δt be the time difference, then
δt = t2 − t1, where t2 > t1. If δt > 5 s, then it is assumed that
there is discontinuity in location tracing and it is considered
that t2 is restart time of location trace again. Duration δt is
not accountable for sensing process neither used for calculating
pause time or traveled distance for mobile phone sensing activ-
ity. In other words, for discontinuity time periods, it is assumed
that sensing application is stopped. On restart of location trace,
we assume that sensing processes is restarted.

C. Projection of Location Trace

Mobile phone users are termed as mobile phones or mobile
nodes. The filtered and processed location trace of each individ-
ual, which is collected on daily basis, has to be modified to fit as
mobility trace input to proposed sampling algorithm. Let (γ, μ)
be the latitude and longitude geopoints pair. Let ϕ be the colati-
tude, where ϕ = 90◦ − γ and R be the radius of earth. Spherical
projection formulas are used (1) to project (γ, μ) geopoint pairs
on two-dimensional (2-D) plane as (x, y) coordinate pair [26].
The projected individual persons location trace is considered as
a mobile node location trace, for analyzing proposed sampling
algorithm

x = R ∗ sinϕ ∗ cosμ
y = R ∗ sinϕ ∗ sinμ. (1)

D. Sensing and Energy Model

Furthermore, for simulating proposed algorithm, it is
assumed that mobile nodes are embedded with required sensors
and GPS for getting location coordinates.

Consider individual mobile node M . Let T be the total
mobility duration of Mth node in an area A. Let n be the total
number of sensors embedded toMth mobile node. Let ri be the
sensing range of ith sensor, where i = 1, 2, . . . , n. Disk model
is considered for sensing range of each sensor (Fig. 1). Let ti be
the sampling interval of ith sensor. When mobile node moves
in a straight line path with constant velocity v, without pause
or change of direction, then ti for nonoverlap sensing coverage
with respect to ith sensor (Fig. 1) is given by

ti = 2 ∗ ri
v
. (2)

Let vhm be the average or preferred velocity of human
mobility, then (2) is given by

ti = 2 ∗ ri
vhw

. (3)

Fig. 1. Nonoverlap sensing area coverage.

ρi gives the total number of samples with respect to ith
sensor over total mobility duration T

ρi =
T

ti
. (4)

From (4), nonoverlap sensing coverage Covi of ith sensor is
given by

Covi = ρi ∗ π ∗ r2i . (5)

It is assumed that mobile nodes have enough memory space
to store sensed location points. Let ι be the total number of
bytes required to store a sensor sample location record, which
consist of location coordinates, speed, and time data. Total
memory space required to store location records of any ith
sensor data samples ρi is ι ∗ ρi. For example, if a sensor sam-
ple location record is of size 48 bytes, then to store 20 sensor
samples location data, it requires 960 bytes of memory.

We consider same energy model used in [1]. Let energy con-
sumed by Mth mobile node battery for sensing and processing
a sample data of ith sensor εi, to be one unit and energy con-
sumed for getting a sensed location sample (from GPS) εi also
to be one unit. The total energy consumed for sensor (φi) and
location samples (ψi) over T for Mth mobile node, ith sen-
sor is given by (6) and (7), respectively. Equation (8) gives
total energy consumed by ith sensor (Ei) and (9) gives total
energy consumed by all the sensors (EM ) embedded to Mth
mobile node for mobile phone sensing activity including sensed
location sampling (from GPS)

φi =

ρi∑
x=1

εix (6)

ψi =

ρi∑
x=1

εix (7)

Ei = φi + ψi (8)

EM =

n∑
i=1

Ei. (9)

In particular, the effect of velocity of human mobility vhm
value on sensing area coverage (Covi) and energy consumption
(EM ) for mobile phone sensing activity is analyzed by consid-
ering the proposed mobile phone sensor sampling method and
general regular sensor sampling method.
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III. PROPOSED SAMPLING ALGORITHM FOR MOBILE

PHONE SENSING

Human walk characteristic consists of flight truncations and
pause [12], [13]. Geographical constraints such as roadways,
streets, city infrastructure (market places, buildings, trees, small
shops), boundaries, human intensions, and contexts such as
home coming, traveling to working places, and daily activities
such as walking, jogging leads to spatial regularities, pause, and
flight truncations in human mobility patterns [12], [13]. If (3)
is followed, mobile phone users flight truncations, pause time,
and spatial regularities leading to spatial overlaps when mobile
phone-based sensing area coverage is considered. The human
walk velocity-based mobile phone sensor sampling algorithm
proposed in [1] is modified to fit the real-human location trace
and pseudocode is given in Algorithm 1.

In Algorithm 1, vhm value can be adaptive and changes
according to individual persons mobility context. For analyzing
the effect of velocity of human mobility on spatial coverage and
energy consumption, each individual location trace is classified
based on normal walking speed (velocitythreshold < 1.5 m/s),
and high velocity (velocitythreshold < 9.0 m/s) [19]–[21],
[32]. The average velocity calculated using the processed and
filtered location trace is considered as vhm value for respective
projected location trace. In Algorithm 1, mobile phone sensors
range ri are grouped into unique subsets K where K ≤ n,
such that in each subset, sensor’s range differ with respect to
each other by ≤ Gr ∗ rmax(i), where Gr is the threshold range
to group sensors and rmax(i) is the maximum sensor range of
respective subset ([1], Algorithm 1, step 4). For example, if a
mobile node consists of five sensors and their sensing ranges in
meters are represented in order, say B = {10, 13, 15, 17, 20}
and assumed value of Gr = 3

4 m. Then, out of many combi-
nations set B can be grouped into unique subsets, {10, 13}
and {15, 17, 20}. The number of sensed location samples is
reduced by grouping sensors into K number of unique subsets
and in each subset, only for the maximum sensor range rmax(i),
location samples are considered with corresponding sensor
samples.

Under LW mobility model, mobile nodes movement path is
hardly straight and consists of flight truncations and pause [12],
[13]. In LW mobility model, geographical constraints are not
considered [12], [13]. Real-human mobility traces consist spa-
tial regularity and pause duration, which are the main causes
of sensing area overlap. In [1], the allowed degree of spatial
overlap is fixed to tmax(i) ∗ 3

4 m/s (Algorithm 1, step 22). It
means that 25% of spatial overlap is allowed between any pair
of sensor samples coverage area. The mobile phone users path
is constrained by road or streets width. From most of observed
individual persons location traces, users take same path or road
with some meter differences (depends on road width).

This pattern increases the degree of spatial regularity.
Number of sensor samples will be decreased with the decre-
ment of allowed percentage of spatial overlap [33], [34].
Melissen and Schuur [33] deal mathematical formulas for cov-
ering a rectangle with circles. In mobile phone sensor sampling
process, sensed location point is the center of circle. When
mobile phone user walk in same path and if distance between
any two sensed location points is <2ri, overlap between sens-
ing area will occur. If required spatial overlap is not allowed

Algorithm 1. Pseudocode of sampling algorithm for mobile
phone sensing

1: Consider projected trace of any M th mobile phone user as
mobility trace input to M th mobile node. Assume mobile
node M is embedded with n number of sensors. Set vhm
value to be the average velocity of respective M th node
mobility trace. Let total mobility duration be T .

2: Let ti be the sampling interval of ith sensor, i = 1, 2, .., n,
and Gr = 3

4 .
3: Let B be the set of sensing ranges ri, i = 1, 2, .., n.
4: Group B into number of unique subsets, such that C ⊆ B

and let rmax(i) and rmin(i) be the maximum and minimum
sensor range respectively and {ri|ri, rmax(i), rmin(i) ∈
C, ri ≥ (Gr ∗ rmax(i)) ∧ ri ≤ rmax(i)}. Let K represents
total number of unique subsets of B, then K ≤ n.

5: tstart is starting sample time ∀i sensors.
6: ∀K number of unique subsets, follow same sampling

procedure given below
7: Calculate disthresold value using equations (10) and (11)

appropriately.
8: Let maximum sampling interval in any subset C be tmax(i)

9: di term is used for incrementing all sensors i sampling
interval, where i ∈ C

10: Let τ be the timer, and di = tstart and tstart < T
11: start timer τ
12: while (τ ≤ T ) do
13: Start of initial sensor samples collection
14: At τ = tstart get GPS current location coordinates
15: Get sensor data of all sensors i|i ∈ C
16: Store current location coordinates as previous location
17: di = di + ti, ∀i
18: if (di = τ ∧ di < tmax(i)) then
19: Get all i sensors data where ti 	= tmax(i)

20: di = di + ti where ti 	= tmax(i)

21: end if
22: End of initial sensor samples collection
23: for j ← tmax(i) : tmax(i), T do
24: if j = τ then
25: Get GPS current location coordinates
26: Find the minimum distance between all

previous and current location.
27: if (minimum distance<disthreshold) then
28: Skip sensing process ∀i.
29: ∀i, di = di + ti ∗ 2
30: end if
31: if (minimum distance>disthreshold) then
32: Get ith sensor data and ti = tmax(i)

33: if (di = τ ∧ di < j) then
34: Get all i sensors data where ti 	=

tmax(i)

35: di = di + ti where ti 	= tmax(i)

36: end if
37: end if
38: Store current location coordinates as previous

location
39: end if
40: end for
41: end while
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Fig. 2. Sensing area coverage and spatial regularity: location trace on map.

Fig. 3. Sensing area coverage and spatial regularity: projected location trace.

between sensing range, total coverage area of mobile phone
sensor will be reduced.

To show the effect of spatial regularity of human mobility on
mobile phone sensing coverage, consider Fig. 2 which shows
location trace of a individual mobile phone user on map [25],
[35]. Fig. 3 represents the projected location trace of Fig. 2.
Fig. 4 shows the result plot after applying mobile phone sen-
sor sampling algorithm on projected location trace without any
modification ([1], Algorithm 1), i.e., in between sensor data
samples, allowed spatial overlap (sensing coverage area) is
25%. Average velocity vhm = 1.1 m/s (calculated from respec-
tive user location trace, Fig. 2) and assumed ri = 12 m. Fig. 4
shows very less coverage (only 4 circles which represent sens-
ing area coverage). For considered location trace, allowing 25%
spatial overlap between any pair of ith sensor samples reduces
sensing coverage.

To overcome the problem, which is described above, to an
extent, overlapping between sensing area has to be allowed.
In this paper, a new variable is introduced called as σ in m/s
(10) to improve the sensing coverage area. For each K num-
ber of unique subset of sensor ranges (Algorithm 1), σ gives

Fig. 4. Sensing area coverage and spatial regularity: general sampling method
for mobile phone sensing.

Fig. 5. Sensing area coverage and spatial regularity: proposed sampling method
for mobile phone sensing.

allowed percentage of overlap between sensing area. σ value
is calculated as given in (10) and its value depends on χ,
which stands for road width, minimum and maximum sen-
sor range rmin(i) and rmax(i) (m) of considered unique sensor
range subset. (1− σ) ∗ 100 gives allowed spatial overlap area
in percentage. It is assumed that in real sense χ value can be
manually assigned by users or estimated based on geoloca-
tion information [25], [35]. Fig. 5 shows the result plot after
applying modified mobile phone sensor sampling algorithm
(Algorithm 1) on projected location trace (Fig. 2). Fig. 5 shows
improved area coverage as 68% (σ = 1

3.1 m/s, χ = 29 m, and
ri = 12 m) spatial overlap is allowed

σ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.25, if χ < rmin(i)
χ∗10

rmax(i)
, if χ > rmin(i)

χ∗7.5
rmax(i)

, if χ > rmin(i) ∧ rmax(i) ≤ 15m
χ∗4.7
rmax(i)

, if χ > rmin(i) ∧ rmax(i) ≥ 20m.

(10)

By calculating the distance between previous and current
locations, we reduce the spatial overlap caused by individual
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Fig. 6. Reduction of spatial overlap: location trace on Google map.

Fig. 7. Reduction of spatial overlap: projected location trace.

mobile phone users spatial regularity, pause, and flight trunca-
tions. disthreshold is used to represent threshold distance value,
which has to be covered by a mobile node, between succes-
sive sampling intervals ti time. If minimum distance calculated
between all previous sensed location samples and current loca-
tion sample is less than disthreshold (11), then current sensing
process is skipped for all the sensors of that particular subset. If
total number of unique subsets K < n, then total energy con-
sumed by any Mth mobile node will be reduced. Equations (8)
and (9) are changed to (12), as in each subset only for maximum
range sensor, sensed location samples are considered, therefore
i = 1, 2, . . . ,K for location samples ψi

disthreshold = tmax(i) ∗ σ (11)

E =

n∑
i=1

φi +

K∑
i=1

ψi. (12)

Consider Fig. 6 which shows the location trace of an
individual mobile phone user and Fig. 7 represents its
projected location trace. Consider only walking activity
(velocitythresod ≤ 1.5 m/s). Average velocity vhm of projected
location trace is 0.92 m/s, assumed range of sensor ri = 12 m.

Fig. 8. Reduction of spatial overlap: general sampling method for mobile
phone sensing.

Fig. 9. Reduction of spatial overlap: proposed sampling method for mobile
phone sensing.

Figs. 8 and 9 show result plot of general regular sampling
method and proposed sampling method on considered pro-
jected location trace, respectively. In general regular sampling
method, sensing is done at regular interval of time according to
(3), and also respective sensed location data are collected (from
GPS). In Figs. 8 and 9, circles represent sensing range. Overlaps
of circles in Fig. 8 represent spatial overlap of sensing area due
to either flight truncation, pause, or spatial regularities. Fig. 9
shows reduction in number of spatial overlap of sensing area
for the same trace after applying proposed sampling algorithm
(Algorithm 1).

IV. SIMULATION RESULTS AND DISCUSSION

In this section, proposed sampling algorithm is analyzed for
mobile phone sensing in terms of average battery energy con-
sumed and spatial coverage using real human mobility trace. In
real sense, the sensing area covered results can be considered as
earth surface area covered by mobile phone sensors. The term
general regular sampling (GRS) represents general sampling
method, i.e., sensor data sampling with regular interval of time
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TABLE I
SIMULATION PARAMETERS

ti (3). The term velocity of human mobility-based sampling
(VHMS) represents proposed sampling method. For analyz-
ing the impact of human velocity on mobile phone sensing,
location trace of mobile phone users is classified into two cate-
gories. One is normal human walking, where velocitythreshold
value is set to ≤1.5 m/s and another is high velocity of human
mobility for which velocitythreshold value is set to <9.0 m/s.
Specifically, locations traces of persons where activities such as
jogging and running involved are considered for obtaining high
velocity of human mobility.

By substituting the values of vhm, T (obtained from Mth
mobile phone user projected trace) and assumed sensor range
ri in (2)–(4) gives nonoverlap spatial coverage Covi(5) and
total energy consumption EM (9). Covi will be considered
as required ith sensor coverage area and EM as energy con-
sumption limit to be achieved by considered sampling methods.
Let VHMSCovi and VHMSEM be the sensing coverage area
and total energy consumption achieved with VHMS sampling
method. Let GRSCovi and GRSEM be the sensing coverage
area and total energy consumption achieved with GRS sampling
method.

The importance of the proposed work is to achieve maximum
possible spatial coverage with less energy consumption. For any
considered sampling method, if energy consumption of mobile
nodes is less than or equal to respective EM value (13) and
(14), then the method is considered as suitable, otherwise it is
considered as unsuitable even though it has achieved respective
sensor coverage area greater than respective Covi value

VHMSEM ≤ EM (13)

GRSEM ≤ EM . (14)

A. Single Sensor Results

First, only normal human walking activity is considered,
where average velocity vhm is ≤1.5 m/s. It is assumed that
mobile nodes are embedded with only single sensor (i = 1) and
for all mobile nodes, sensor range ri is set to 12 m (Table I).
For all the location traces, we set χ = 29 m (Table I). χ
value may vary from one geographical area to another. The
results are plotted with respect to each classified individual
users projected location trace (users are indexed, i.e., M =
1, 2, . . . , 10). Table II shows the location trace details of each
indexed individual, where considered velocitythreshold value is
≤1.5 m/s.

Figs. 10 and 11 show sensing area covered and energy con-
sumed for VHMS and GRS methods. In Fig. 10, GRS method
has high-sensing coverage for all the considered mobile phone
users, but consumes more energy than respective EM . Fig. 11
shows that, for proposed VHMS method, energy consumption
is reduced for all indexed users compared to GRS method.

TABLE II
MOBILE PHONE USERS LOCATION TRACE DATA FOR SINGLE AND

MULTISENSORS (velocitythreshold ≤1.5 M/S)

Fig. 10. Sensing area covered.

Fig. 11. Energy consumed.

VHMS method reduces spatial overlaps by reducing number
of sampling process. Better performance is required in terms
of both spatial coverage and reduction of energy consumption.
Because of over consumption of energy and high level of spatial
overlap, GRS method is not suitable sensor sampling method
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Fig. 12. Sensing area covered.

Fig. 13. Energy consumed.

under normal human walking. Combining the results of Figs. 10
and 11, when users are walking with normal speed i.e., average
vhm ≤1.5 m/s, proposed algorithm suits well, covers possible
sensing area with less energy consumption for mobile phone
sensing activity.

Figs. 12 and 13 show the results of sensing area coverage and
energy consumptions when velocitythreshold is set to <9.0 m/s.
Table III shows the location trace details of each indexed indi-
vidual, where considered velocitythreshold value is <9.0 m/s,
to consider high velocity of human mobility into account.
Obtained vhm values vary from 1.5 to 2.59 m/s (Table III). GRS
consumes less energy than respective EM and has good cover-
age compared to VHMS. Proposed method shows less coverage
(Fig. 12) or it shows energy consumption greater than GRS
(Fig. 13). Results of Figs. 12 and 13 show that GRS method is
better choice, as it shows good spatial coverage and consumes
energy within the limit of respective EM . But on daily basis,
jogging or running activity is of limited duration compared to

TABLE III
MOBILE PHONE USERS LOCATION TRACE DATA FOR SINGLE AND

MULTISENSORS (velocitythreshold < 9.0 M/S)

Fig. 14. Sensing area covered by Sensor1.

people walking with normal speed (<1.5 m/s). So, more pref-
erence will be given to the results when normal walking speed
is considered.

B. Multi Sensor Results

Figs. 14–21 show performance analysis in terms of sensing
area covered and energy consumed for mobile phone sensing
activity with the assumption that each mobile node has 3 sen-
sors. Considered 3 sensors are termed by Sensor1, Sensor2
and Sensor3 (i = Sensor1, Sensor2, Sensor3), their sensing
ranges are 20, 17, and 15 m, respectively. For Figs. 14–17
velocitythreshold is ≤1.5 m/s. Figs. 14–16 show sensing area
coverage for considered sensors. In Fig. 17, most of the cases,
for all the sensors results, GRS crosses respective EM limit. In
GRS method, it is considered that for each sensor sampling pro-
cess, mobile phone GPS is used to get current location record.
In VHMS method, it is considered that GPS is used only for the
maximum range sensor sampling in each subset of sensors.

For Figs. 18–21, velocitythreshold is set <9.0 m/s. When
velocity of human mobility is quite high, i.e., vhm> 1.5 m/s
proposed VHMS does not achieve good spatial coverage com-
pared to GRS method. The other choice will be to use GRS
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Fig. 15. Sensing area covered by Sensor2.

Fig. 16. Sensing area covered by Sensor3.

Fig. 17. Total energy consumed by all sensors.

Fig. 18. Sensing area covered by Sensor1.

Fig. 19. Sensing area covered by Sensor2.

Fig. 20. Sensing area covered by Sensor3.



THEJASWINI et al.: NOVEL SAMPLING ALGORITHM FOR HUMAN MOBILITY-BASED MOBILE PHONE SENSING 219

Fig. 21. Total energy consumed by all sensors.

method, as it consumes energy less than EM and also achieves
required spatial coverage. The results of VHMS and GRS
under multisensor sampling activity depict the same conclusion
of single sensor sampling activity that under normal walking
speed, in terms of both reduction of energy consumption and
sensing area coverage, proposed VHMS method gives better
performance. When velocity of human mobility is high enough,
GRS method will be the good choice.

V. CONCLUSION

Human mobility characteristics such as flight truncations,
duration of pause, and spatial regularities cause spatial over-
lap for mobile phone-based or human centric sensing activ-
ity. Velocity of human mobility and geographical constraints
affect mobile phone sensing coverage and battery energy con-
sumption. Mobile phone sensor sampling chosen according to
walking speed of individual and allowing spatial overlap to
an extent, gives better performance in terms of both spatial
coverage and reduction of battery energy consumption. For
normal walking speed of human, the proposed mobile phone
sensor sampling algorithm gives better performance in terms
of both battery energy reduction and required area coverage
by suppressing spatial overlaps caused by spatial regularities
and pause duration. In future, an explicit performance analy-
sis, which involves switching between proposed and general
sampling method need to be considered when both normal
and high velocity of human mobility happens interchangeably.
Our future work also involves analyzing the effect of vehicu-
lar mobility (human in vehicles) on mobile phone sensing and
developing an cooperative and more dynamic sensor sampling
algorithm for mobile phone sensing activity.
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