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Abstract— Medical ultrasound scanning is a widely used
diagnostic imaging modality in health-care. Speckle is inherent
noise present in ultrasound images reducing the diagnostic
accuracy of ultrasound scanning. Speckle noise contributes to
high variance between pixels and delineates boundaries of the
organs. Effective despeckling involves reducing the variance
between pixels corresponding to homogeneous region and to
preserve anatomical details simultaneously. Non-Local Means
filters are highly successful and produced state of the art results
in despeckling ultrasound images. In this paper, we show the
effectiveness of Non-Local Means filter with polynomial regres-
sion kernel in despeckling ultrasound images. The proposed
algorithm is evaluated on software simulated and real time
ultrasound images and proved very effective in both despeckling
and edge preservation.

Index Terms— kernel regression, multiplicative noise, non-
local Means, speckle filtering, ultrasound scanning.

I. INTRODUCTION

Ultrasound images are affected with a multiplicative noise

termed as speckle. The speckle noise appears as dense

granules and small worm like structures in the image.

The speckle noise increases the variance between adjacent

pixels, delineates the contour, masks the fine information

about tissues, thus reducing the diagnostic accuracy of the

ultrasound scanning machine. Ultrasound image restoration

involves reducing the variance in homogeneous region and

preserving the edges simultaneously. Signal dependent nature

of speckle should be taken care while designing a filter for

speckle suppression to preserve anatomical details present in

an image.

In this paper, we used local polynomial regression kernel

as an extension to Non-local Means (NLM) approach. The

proposed approach is strongly motivated from the findings

of [1]. NLM approach [2] gave state of the art results in

removing Gaussian noise in natural images. NLM approach

is extended in [3] with Bayesian inference to effectively

suppress the speckle noise in ultrasound images. In [4]

, modified NLM approach is employed to despeckle the

image, in this method first maximum likelihood estimation

is employed to estimate the noise free pixel and then NLM

is applied to restore the pixel.

The significance of regression kernels in image restoration

is discussed in [5]. In [6], the NLM approach is generalized

via polynomial regression kernel and shown that higher

degrees of polynomial can get better results in denoising

the image. In this paper, we show the effectiveness of

local polynomial regression kernel with NLM framework in

despeckling the ultrasound image.

Despeckling filters proposed in the literature depends on

local statistics of the pixel, where the local statistics of the

pixel corresponds to mean, variance etc., computed around

the neighborhood of a pixel. The common factor seen from

most of the despeckling filters is smoothing, and is differed

by the way how it smooths. The filters proposed in [7], [8],

[9] are based on the same principle, these filters reduce the

variance by smoothing the pixels in homogeneous region

and preserves the edges by unaltering the pixels near the

edges. Filters proposed in [10], [11], [12] are motivated from

heat diffusion and gave state of the art results in preserving

the edges along with speckle suppression but suffers from

over smoothing result in loosing texture information present

in the image. Ultrasound despeckling through sparse and

overcomplete representations are proposed in [13], [14].

Despeckling of ultrasound image is measured with respect

to speckle suppression and edge preservation, so to quantify

the performance of the filter, we need more than one metric.

In this paper, we used four metrics each specific to speckle

suppression, edge preservation and anatomy structure preser-

vation. The computation and significance of each metric is

discussed in results section. The performance of the proposed

filter is compared with Frost [7], Lee [8], Adaptive Weighted

Median Filter (AWMF) [9], SRAD [10] and Optimized

Bayesian Non-local Means (OBNLM) [3]. The algorithms

are tested on Field II software [15] simulated ultrasound

kidney image and real ultrasound liver image. Metrics are

computed for software simulated ultrasound kidney image

and despeckled images of real ultrasound liver images are

presented for visual comparison.

II. PROPOSED METHOD

In this paper, we assume noise in the final image behaves

as additive Gaussian noise, the additiveness comes from the

application of log operation, which is used for dynamic range

compresion of RF data, and Gaussian assumption for speckle

noise is motivated from [16]. The ultrasound image after log

compression is modeled in the following way

yi = z(xi) + ηi (1)



Fig. 1: Graphical representation of similar patches occurring

in real ultrasound kidney image.

where yi represents observed pixel intensity at spatial

position xi, z(.) is noise free pixel corrupted with noise η,

xi = [x1 x2]
T
i , i ∈ cardinality of the image. The objective

of despeckling filter is to estimate noise free version of the

pixel from yi. Spatially adaptive speckle suppression filters

proposed in the literature are based on the local neighborhood

of data [7], [8], [9]. NLM takes a different approach to

resolve local pixels by comparing with nonlocal patches

(pixel of interest is the center of the patch). The NLM

make use of similar patches occurring in image and use this

similar patches to denoise the image, assuming the noise

in image is uncorrelated. Fig. 1 shows the similar patches

present in ultrasound image, the similar patterns of black

box is represented with blue boxes, dissimilar patches with

red boxes and intermediate one with orange boxes.

Computing the similar patches for each pixel in entire

image is a computationally expensive procedure. To reduce

the computations, the search space for finding the similar

patches is restricted to local neighborhood and this is very

much justified as the probability of getting similar patches

reduces as the patch moves away from the pixel of interest.

In [3], computations are further reduced by block wise

processing of patches instead of pixel wise processing. NLM

uses weighted averaging of pixels, where amount of weight

assigned to each pixel depends upon the similarity of the

patch with respect to patch corresponding to pixel under

consideration. This can be written mathematically as

ẑ(xi) =
1

Ci

∑

j∈I

wijyj , where Ci =
∑

j

wij (2)

Ci is a normalizing constant and the index j runs over the

entire search space of the corresponding pixel of interest.

wij is the weight assigned for each pixel based on the

similarity between neighborhood of a pixel present in the

search space with respect to the pixel of interest. The weights

for a particular pixel is computed as

wij = e−
||V (xi)− V (xj)||

2
a

h
(3)

where V (xi) is the vectored version of a patch centered at

location xi, h is a global smoothing parameter controlling the

amount of smoothing in the denoising process and a is the

variance of the Gaussian distribution used to give decaying

weights for the pixels located away from the pixel of interest.

The weight computation mechanism given in equation (3)

assigns high weight to the similar patches and low weight to

the dissimilar patches. These weights determine the contri-

bution of central pixels in a patch to estimate the despeckled

pixel intensity. The equivalent noise free estimation of pixel

is modeled as an optimization problem in the following way.

ẑ(xi) = arg min
z(xi)

P
∑

j=1

(yj − z(xi))
2wij (4)

= arg min
z(xi)

‖ Yi − 1z(xi) ‖
2
Wi

here Yi stands for lexicographically ordered vectored version

of P pixels within the search window centered around the

pixel value xi. 1 corresponds to column vector with all

ones. Equation (4) can be seen as the cost function trying

to compute a single constant at each pixel location, which

minimizes the error in reconstruction of the patch under

consideration.

The weights are computed likewise within the search

window resulting W = diag[wi1...wij ...wiP ]. The intuition

about weights is to penalize the pixel value which has more

dissimilarity in restoring the pixel. This method does not

make the approach NLM due to limiting the search space to

local neighborhood. The better performance is obtained for

larger neighborhood. In a global sense, the NLM assumes

that the image is modeled as local constancy throughout the

image. Assumption of local constancy does not hold well in

the presence of finer structures and as a result we can see

lack of texture in the despeckled image.

The assumption of local constancy is generalized by

assuming the image is locally sufficiently smooth, Taylor

expansion for the pixel of interest can be written as

z(xj) = z(xi) + {∇z(xi)}
T (xj − xi)+

1

2
(xj − xi)

T {H(z(xi))}(xj − xi) + ....

z(xj) = z(xi) + {∇z(xi)}
T (xj − xi)+

1

2
vechT {H(z(xi))}vech{(xj − xi)(xj − xi)

T }+ ....

(5)

where ∇ is a 2 × 1 gradient operator, H is a 2 × 2 Hessian

operator, and vech(.) is a half vectorization operation which

lexicographically order a matrix into vector form. The vech(.)

of a symmetric matrix is defined as

vech(





l m n
m o p
n p r



) = [l m n o p r]T (6)

Considering the symmetry of Hessian matrix, equation (5) is

rewritten as

z(xj) = β{0}i + βT
{1}i(xj − xi)+

βT
{2}ivech{(xj − xi)(xj − xi)

T }+ ....
(7)



where β1 and β2 are defined as

β1 = ∇z(x) =
[

∂z(x)
∂x1

, ∂z(x)
∂x2

]T

(8)

β2 =
1

2

[

∂2z(x)
∂x2

1

, ∂2z(x)
∂x1∂x2

, ∂2z(x)
∂x2

2

]T

(9)

(7) can be written to all the pixels in the search window

centered at any given pixel. The fidelity of the expression

diminishes as we move away from the center of the pixel.

The expansion of the expression is restricted to some order,

say K and the pixel value which best fits (7) is the despeckled

pixel intensity. By minimizing the cost function with respect

to unknown βi parameters, we can compute despeckled

pixel intensity. βi parameters are computed by solving the

objective function

β̂i = argmin
βi

K
∑

j=1

(yj − βT
{0}i − βT

{1}i(xj − xi)−

βT
{2}ivech{(xj − xi)(xj − xi)

T }+ ...)2

(10)

Above equation can be written in matrix form as

β̂i = argmin
βi

K
∑

j=1

‖ Y − φβi ‖
2
Wi

(11)

β̂i = argmin
βi

K
∑

j=1

(y − φβi)
TW (y − φβi)

where Y = [y1, y2, y3...yK ]T , βi = [β0, β1, β2, ...βN ],

φ =









1 (x1 − xi)
T

vech
T {(x1 − xi)(x1 − xi)

T } ..

1 (x2 − xi)
T

vech
T {(x2 − xi)(x2 − xi)

T } ..

. . . ..

. . . ..

1 (xK − xi)
T

vech
T {(xK − xi)(xK − xi)

T } ..









(12)

βi =
[

β{0}i, β{1}i, β{2}i...
]T

(13)

The matrix φ is formed from polynomial basis vectors and βi

is a vector. After computing the elements in βi, the denoised

pixel intensity value is replaced with β{0}i element under

local polynomial data model assumption. Mathematically the

despeckled pixel intensity is given by

ẑ(xi) = cTφβ̂i = β̂{0}i (14)

where cT = [0 0 . 1 . 0 0], one in the array corresponds

to the central pixel in the patch. Equation (11) has a closed

form solution and it is given by

β̂i = (φTWiφ)
−1φTWiyi = Eiyi (15)

The matrix Ei is the equivalent kernel used to perform

weighted averaging process. From equation (14), the de-

speckled intensity value at position xi is retained as ẑ(xi) =
β̂{0}i. The generalization of NLM with zero-th order polyno-

mial regression kernel is obtained by taking only first column

of the φ matrix in equation (12)

β̂i = (1TWi1)
−11TWiyi =

1TWiyi
1TWiyi1

=

P
∑

j=1

wijyj

P
∑

j=1

wij

(16)

The higher orders of polynomial regression with NLM is

dependent on number of terms we retain in Taylor series

expansion. In this paper, the results are reported for first and

second order NLM polynomial regression kernel. The first

and second order NLM polynomial regression is obtained by

taking first two and three columns of φ matrix respectively.

III. EXPERIMENTAL RESULTS

The experiments are conducted on Field II simulated

left kidney image. The kidney phantom image shown in

Fig.2a is downloaded from [17]. The speckles in ultrasound

image is generated by placing one lakh scatters randomly

throughout the phantom image. The scatter amplitude of the

tissue is modeled with Gaussian distribution with variance

depending on the cross section of the tissue. The phantom is

scanned with a 7 MHz, 128 element phased array transducer

with half of the wavelength spacing between elements and

Hanning apodization is used to suppress the side lobes. A

single transmit focus 60 mm from the transducer is used,

and focusing during reception is at 5 to 150 mm in 1

mm increments. The image consists of 128 scan lines with

0.7 degrees between lines. The kidney phantom and its

corresponding ultrasound image is shown in Fig.2.

The performance of algorithms are evaluated using the

following metrics.

A. Conventional speckle SNR (α)

Conventional speckle SNR α is used as a measure to

quantify amount of speckle noise present in an image. α is

defined as ratio of mean to the standard deviation of pixels

present in homogeneous region of an image [18]. The higher

values of α implies the goodness of the filter in suppressing

the speckle noise.

Fig. 2: (a) Kidney phantom image. (b) Simulated ultrasound

image of (a)



B. Despeckling index (J)

The Despeckling index J measures how well a filter

reduce variances in homogeneous region while keeping other

classes well separated [19]. J is based on modified Fisher

discriminant contrast metric and it is computed as

J(alg) =

∑

m 6=n

(µcm − µcn)
2

3
∑

m=1
σ2
m

(17)

where

µcm =
1

|cm|

∑

(i,j)∈ck

Ialg(i, j)

σ2cm =
1

|cm|

∑

(i,j)∈ck

(Ialg(i, j)− µcm)2

|cm| represents number of pixels in cluster m, Ialg represents

despeckled image and m represents number of clusters used

in an image. In this paper, we used three clusters to compute

J . The quantity J is sensitive to resolution, to avoid this,

equation (17) is normalized with J of speckle image (Jspk).

J̃alg =
Jalg
Jspk

Higher the value of J̃alg , better is the performance of the

filter in despeckling.

C. Figure of Merit (FOM)

In this paper, we choose Pratt Figure of Merit FOM
[20] to measure the performance of despeckling filter in

preserving the edges. FOM is defined as

FOM =
1

max{Ntem, Nalg}

Ntem
∑

i=1

1

1 + d2i γ
(18)

Ntem, Nalg are the edge pixels of template and despeckled

image respectively, di is the Euclidean distance between the

ith edge pixel in template image to the nearest edge pixel in

despeckled image, γ is a constant typically set to 1/9. FOM
lies in between 0 and 1, and for ideal edge detector FOM
equals to 1. The binary edge map of the images are obtained

using canny edge operator by setting standard deviation of

Gaussian kernel equal to 1.414.

D. Mean Structural Similarity Index (MSSIM)

MSSIM of a despeckled image gives how well a despeck-

led image preserves the information like contrast, luminance

and structure with respect to original image [21]. Structural

Similarity Index (SSIM) is computed for every pixel over

local neighborhood and it is given by

SSIM(i, j)I,J = LI,J(i, j)CI,J(i, j)SI,J(i, j) (19)

here L,C, S represents the luminance, contrast, structural

similarity between i and j pixels corresponds to image I

Fig. 3: (a). Kidney phantom. (b) simulated ultrasound kidney

image. Visual comparison of various despeckling filters on

(b): (c) Lee. (d) Frost. (e) AWMF. (f) SRAD. (g) OBNLM.

(h) Proposed method.

and J respectively. MSSIM is defined as the mean of

SSIM and is given by

MSSIM =
1

MN

N
∑

i=1

M
∑

j=1

SSIMI,J(i, j) (20)

MN represents the cardinality of the image. MSSIM lies in

the range between -1 and 1, and for the ideal edge preserved



Fig. 4: (a). Real Liver ultrasound image. Visual comparison

of various despeckling filters on (a): (b) Frost. (c) Lee. (d)

AWMF. (e) SRAD. (f) OBNLM. (g) Proposed method with

Order 2.

image MSSIM is going to be 1.

The result of various despeckling filters applied on kidney

phantom image is shown in Fig. 3. The optimal filter

parameters for the filter with respect to α metric is shown in

Table.1. The metric values for various filters for simulated

kidney phantom image is shown in Table. II. The proposed

method give high values with α = 18.7251 and J = 1.0627
for zero-th polynomial order, FOM = 0.5679 is obtained

for first order, and SSIM = 0.7886 is obtained for second

order polynomial. Proposed method resulted with better

performance with respect to α, J, FOM compared to other

filters and AWMF performed well above all despeckling

filters with respect to MSSIM with 0.8013

The results of various despeckling filters on live ultrasound

image is shown in Fig.4. Perceptually, we can see the

effectiveness of proposed algorithm in improving the visual

quality of the liver image compared to other filters.

TABLE I: Optimal parameters used for the filters for Fig.

3 with respect to metric evaluation. W : window size, It:
Number of iterations, σ: Smoothing Parameter, N : Polyno-

mial order, ∆: Search window.

Filter Optimized parameters

Lee W=5×5
Frost W=5×5
AWMF W=7×7
SRAD It=1500, σ=0.5
OBNLM σ=15, 20; W=5×5, ∆=15 × 15.
Proposed Method σ=15, 20; N=0,1,2 ; W=5×5, ∆=15 × 15.

TABLE II: Comparison of various despeckling filters for

kidney phantom image shown in Fig .3. α is computed for

the window shown in Fig .3a.

Filter α J FOM MSSIM

Noisy 4.9071 - 0.4549 0.7115
Lee 4.9071 0.9985 0.4549 0.7126
Frost 9.1108 0.9982 0.4560 0.8013

AWMF 8.8955 0.9406 0.4246 0.7921
SRAD 6.5032 0.8044 0.4168 0.7175
OBNLM 14.7969 0.7392 0.3883 0.7320
Proposed Metod 18.7251 1.0627 0.5679 0.7886

The visual comparison of proposed method with respect

to different polynomial orders on liver ultrasound images is

shown in Fig.5. The residual image is computed by subtract-

ing the filtered image with original image. The shape patterns

in residual image infers that along with speckles the filter

removes the useful information present in the image. Less

the patterns in the residual image, better is the performance

of the filter in preserving information. From Fig.5, we can

infer that as the order of the polynomial increases, patterns

in residual image also reduces resulting in better preservation

of information in an ultrasound image.

The live ultrasound image is acquired through Toshiba

Capasee SSA-220A ultrasound scanner. From the despeckled

images of liver, we notice that SRAD and OBNLM filter

oversmoothes an image resulting in blurring. Frost, Lee

and AWMF filters preserves the texture in the image, but

fail to effectively suppress the speckle noise. The proposed

algorithm effectively suppressed the speckle noise without

deblurring the image, preserving the edges and contrast

of the image. Perceptually the despeckled image of the

proposed algorithm is also of high quality compared to other

despeckling filters. The despeckling algorithms are realized

using MATLAB software on a PC powered with Intel core

i5 processor, 8GB RAM running with 2.6 GHz clock speed.

The algorithm took 37.18, 50.92, 52.52 seconds for



Fig. 5: (a) Order 0 filtered image. (b) Order 0 residual image.

(c) Order 1 filtered image. (d) Order 1 residual image. (e)

Order 2 filtered image. (f) Order 2 residual image.

executing the proposed method of zero-th, first and second

order respectively for the kidney phantom image which is of

size 179 × 187.

IV. CONCLUSION

In this paper, we extended the Non-Local Means ap-

proach with polynomial regression kernel for despeckling

the ultrasound images. The proposed algorithm on kidney

phantom simulated image performed better with respect to

conventional signal to noise ratio (α), Despeckling index (J)

and Pratt Figure of Merit (FOM ). The optimal results of

the proposed algorithm with respect to α and J is obtained

for zero-th order polynomial, FOM is obtained for first

order polynomial, MSSIM is obtained for second order

polynomial. It is noted that as the polynomial order increases,

the filter better preserves the texture. The proposed algorithm

effectively despeckle the image without deblurring and also

preserve the edges in the image. No same order polynomial

is able to produce the best results with respect to all the

metrics. Finding an optimal polynomial order to get good

results with respect to all metrics will be useful in proposed

approach which is the future scope of work.
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