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Abstract

The severity of fat in ultrasonic liver images is quantified based on character-

istics of three regions in the image namely diaphragm, periportal veins and

texture of liver parenchyma. The characteristics of these regions vary with the

severity of fat in the liver, and is subjected to low signal to noise ratio, low

contrast, poorly defined organ boundaries, etc., hence locating these regions

in ultrasound images is challenging task for the sonographers. Automated de-

tection of these regions will help the sonographers to do accurate diagnosis in

shorter time, and also acts as a fundamental step to develop automated diag-

nostic algorithms. In this paper, we propose a novel multi-modal framework

for detecting diaphragm, periportal veins and texture of liver parenchyma in

ultrasonic liver ultrasound images. Since the characteristics of these regions dif-

fer from each other, we propose a specific algorithm for detecting each region.

Diaphragm and periportal veins are detected with the combination of Viola

Jones and GIST descriptor based classifier, while homogeneous texture regions

are detected with the combination of histogram features based classifier and

connected components algorithm. The proposed algorithm when tested on 180

ultrasound liver images, detected the diaphragm, periportal veins and texture

regions with an accuracy of 97%, 91% and 100% respectively.

Keywords: Steatosis, Diaphragm, Periportal veins, Ultrasonic liver

parenchyma texture, Viola Jones, GIST, Histogram features.
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1. Introduction1

Nonalcoholic Fatty Liver Disease (NAFLD) is one of the leading cause for2

the dysfunction of the liver and prevalent in 30% of general population in the3

developed countries [1]. If NAFLD is untreated, it may progress into chronic4

liver diseases such as fibrosis, cirrhosis, hepatocellular carcinoma, liver cancer,5

etc [2], [3]. Depending on the severity of fat, the liver is categorized into Normal,6

Grade I, Grade II and Grade III respectively. If the density of fat is less than7

5% it is considered as Normal, 5 to 33% as Grade I, 33 to 66% as Grade II and8

greater than 66% as Grade III respectively [4]. The severity of fat in the liver9

is determined using invasive and noninvasive procedures. Invasive procedures10

which include blood tests and biopsies are associated with complications like11

bleeding, bile leakage and infections. Hence doctors recommend for noninvasive12

procedures like Magnetic Resonance Imaging (MRI), Computed Tomography13

(CT) and ultrasound scanning [5, 6]. MRI and CT being expensive, doctors14

prefer for ultrasound scanning which has the advantages of real-time imaging,15

safety and less expensive [7, 8]. Although the ultrasound scanning is widely used,16

the diagnostic accuracy in quantifying the fat in the liver is very low due to the17

subjectivity involved in the scanning. Strauss et al. found that there is a low18

mean inter and intra-observability of 72% and 76% respectively in discriminating19

between normal and fatty liver, while inter and intra-observability of 47-59%20

and 59-64% respectively is observed in discriminating the severity of fat within21

Grade I, Grade II and Grade III classes. It is also found that 32 to 34% of22

fatty liver images belong to Grade I and Grade II are not distinguishable to23

sonographers eye [9]. Therefore there is a need for computer-aided diagnosis24

(CAD) algorithms to assist the sonographers to accurately diagnose the fatty25

liver diseases.26

In literature [6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], authors are mainly27

focused on developing CAD algorithms for discriminating normal liver with28

fatty liver images, where fatty liver constituted liver images ranging from Grade29

I to Grade III category, while further distinction within the fatty liver grades is30
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not extensively studied [20]. Accurate quantification of fat in the liver carries31

paramount importance in liver diagnosis, for example in liver transplantation,32

even a Grade I fatty liver of donor can increase the potentiality of liver failure in33

the recipient and also there is a high probability that the donor will get diseased34

[6, 21]. The patients who undergo liver resections with Grade III fatty liver35

are expected likely to suffer from post-operative complications [22]. Therefore36

accurate quantification of fat in the liver will prevent the patients to suffer from37

chronic diseases and complications associated with NAFLD. In [20, 23, 24, 25,38

26, 27, 28], the authors proposed CAD algorithms for quantifying the fatty39

content in the liver. In all these algorithms, authors employed manual cropping40

for detecting the region of interest (RoI). RoI includes the homogeneous texture41

of liver parenchyma, pixels along the direction of wave propagation, etc. To42

avoid manual intervention in CAD, researchers proposed algorithms which works43

on complete images [17, 29, 30, 31, 32]. While dealing with entire image, we are44

extracting the features from the regions which is neither important nor convey45

information useful for diagnosis leading to ineffective feature representation.46

Hence, in developing CAD algorithms, we have to ensure that the features47

are extracted only from diagnostically important regions. Detecting RoI’s in48

ultrasonic liver images is challenging due to49

• Low signal to noise ratio, poorly defined organ boundaries, low contrast,50

artifacts caused due to acoustic shadows, etc.51

• Variation in the characteristics of the RoI within intraclass and interclass52

images.53

In this paper, we propose an algorithm for automated detection of the RoI’s54

useful for quantifying the fat in liver ultrasound images. The quantification of55

fat in the liver through ultrasound scanning is done by perceiving characteristics56

in three regions of the liver such as diaphragm, periportal veins and texture of57

liver parenchyma. The RoI’s of the diaphragm, periportal veins and texture58

of liver parenchyma of the liver ultrasound image is shown in Fig. 1. The59

characteristics of these region vary accordingly with the severity of fat present60
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Table 1: Characteristics of the diaphragm, periportal veins and texture of liver parenchyma

corresponding to different grades of fatty liver [20], [33].

Category Characteristics

Normal Visible echogenicity with visible periportal and diaphragm. The texture

of liver parenchyma appears coarser and rugged.

Grade I
Increased hepatic echogenicity with visible periportal and diaphragmatic

echogenicity. The texture appears less coarser and smooth.

Grade II
Increased hepatic echogenicity with imperceptible periportal echogenicity with

partial obscuration of diaphragm. The texture appears more smooth and finer.

Grade III
Increased hepatic echogenicity with imperceptible periportal echogenicity and

obscuration of diaphragm. The texture appears diffused and appears more finer.

in the liver. The characteristics of these RoI’s with respect to different grades61

of fatty liver is discussed in Table. 1 [20], [33]. Based on the characteristics of62

RoI’s, the sonographers quantify the fat in the liver. Automatic detection of63

these regions will assist sonographers to make an accurate diagnosis in short time64

and also serves as a fundamental step for the development of robust automated65

diagnostic algorithms for quantification of fat in the liver.66

Figure 1: Ultrasonic liver images. Red boxes indicates the diaphragm, green boxes indicates

periportal veins and blue boxes indicates RoI corresponding to homogeneous texture.

In this paper, we propose an automatic algorithm for detection of diaphragm,67

periportal veins and homogeneous texture regions of liver parenchyma. Since68
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each RoI is different with respect to other RoI’s, we developed a specific algo-69

rithm for detecting each RoI. The novelties of the paper are:70

• For detecting RoI of a diaphragm, we propose an algorithm which is a71

combination of Viola Jones (VJ) algorithm [34], GIST descriptor [35] based72

cubic SVM classifier and active contour segmentation [36, 37]. The VJ73

algorithm and GIST descriptor based classifier is trained appropriately74

with the images corresponding to the regions of the diaphragm.75

• For detecting RoI of periportal veins, we propose an algorithm which is a76

combination of VJ and GIST descriptor based quadratic SVM classifier.77

Each classifier is trained appropriately with the images corresponding to78

the regions of periportal veins.79

• For detecting RoI for the texture of liver parenchyma, we propose a two-80

stage classifier framework, which is based on the combination of histogram81

features based Gausssian SVM classifier and connected components al-82

gorithm [38]. The histogram based quadratic SVM classifier is trained83

with the images of homogeneous and nonhomogeneous regions of liver84

parenchyma.85

All the three algorithms are applied independently on the image to detect RoI’s86

of the ultrasonic liver image. The main contributions of our work lie in devel-87

oping and integrating different classification frameworks to detect all the RoI’s.88

The performance of the proposed algorithm is evaluated based on its individual89

accuracy in detecting each RoI. The detail explanation regarding the detection90

of each RoI is discussed in Section 2.91

92

The rest of the paper is organized in the following way. In Section 2, we93

discuss in detail about the proposed framework for detecting multiple RoI’s. In94

Section 3, we discuss the database used, and the protocols followed in image95

acquisition. Results of the proposed algorithm is reported in Section 4, and96

Section 5 concludes the paper with implications and future scope of the work.97
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98

2. Multi-modal framework for automatic detection of the diaphragm,99

periportal veins and homogeneous texture of liver parenchyma.100

The block diagram representation of the proposed algorithm is shown in101

Fig. 2. The framework consists of three independent algorithms each specif-102

ically proposed for detecting RoI of a diaphragm, periportal veins and texture103

of liver parenchyma. The detailed description regarding the detection of each104

RoI is discussed in the following sections.105

2.1. Diaphragm detection106

The diaphragm appears like a slanted ‘U’ shape with an upper part trimmed107

in the liver ultrasound image. The shape, size and length of a diaphragm de-108

pends on the anatomy of patient and position of the probe used to acquire the109

liver images. Since the diaphragm lies above the liver, it appears in a lower left110

portion of the ultrasound image when captured from a subxiphoid view [39].111

The block diagram representation of the proposed algorithm for detecting RoI112

of a diaphragm is shown in Fig. 3. Initially, VJ algorithm is used to detect the113

RoI of a diaphragm. VJ algorithm which is primarily proposed for detecting114

faces in real-time also proved that the same framework is effective in detecting115

other parts like noses, eyes, upper body parts, cars, stop signs, etc. Recently VJ116

algorithm has been used in medical image analysis to detect organs like carotid117

artery, kidney, pelvis and proximal femur of a hip joint, etc [40, 41, 42], [43].118

The VJ algorithm works in three stages namely feature extraction, AdaBoost119

training and cascade of classifiers.120

2.1.1. Feature extraction121

In this stage, Haar-like features are extracted from the positive and nega-122

tive training images. Haar features are extracted using two, three, and four123

rectangular kernels [44], resulting in large number of features. For an image124

of size 24 × 24 a total of 45,396 features were extracted. For computing these125
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Figure 2: Block diagram representation of the proposed algorithm for detection of RoI’s in

the liver ultrasound image.
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Figure 3: (a). Block diagram representation of the VJ algorithm used for detecting the RoI

of a diaphragm and (b). Algorithm used to reduce the FP’s resulted from VJ algorithm.
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many number of features with less computational complexity, an intermediate126

image representation called integral image approach is employed [45]. To make127

the RoI detection scale invariant, the features are extracted on a pyramid of 11128

images where each image is 1.25 times greater than the previous image.129

2.1.2. AdaBoost based feature selection and learning algorithm130

All the extracted features from RoI are not useful for classification, and131

training a classifier with these many number of features is a computationally132

expensive procedure. To find the most representative features to train a classi-133

fier, an AdaBoost algorithm is used [46]. The decision stumps are used as weak134

learners for classification. The AdaBoost algorithm improves the classification135

performance by combining a collection of weak learners.136

2.1.3. Cascade classifier137

To improve the detection accuracy and to reduce the computation time, a138

cascade of classifiers is used. Each cascade classifier is trained with a combi-139

nation of weak learners. The complexity of detecting the RoI increases with140

increase in the number of cascaded classifiers. The cascaded classifier architec-141

ture improves the detection rate by eliminating the diaphragms in earlier stages142

of the cascaded classifiers. The negative and positive images used in training the143

VJ algorithm for detecting RoI of a diaphragm is shown in Fig. 4 and Fig. 5.144

The positive images are extracted by cropping diaphragm from liver ultrasound145

images. The size of diaphragm used in training the VJ algorithm is varied in the146

range 48 × 48 to 64 × 78 pixels. The entire region of the diaphragm is not con-147

sidered for training due to the complex and varied structure of the diaphragm.148

While for negative training images, care is taken that the images do not contain149

shapes resembling like a diaphragm. We choose kidney ultrasound images as150

negative training examples since no part of the kidney image resemble like a151

diaphragm. The VJ algorithm is trained with 741 labeled diaphragms and 50152

kidney images. The RoI’s detected by the VJ algorithm is shown in Fig. 6.153

Although VJ algorithm results with high accuracy in detecting the diaphragm,154
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Figure 4: Images used as positive examples in training the VJ algorithm for detection of

diaphragm.

Figure 5: Images used as negative examples in training the VJ algorithm for detection of

diaphragm. All these images belongs to the kidney.
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Figure 6: The red rectangular boxes indicates the FP’s and the yellow rectangular boxes

indicates the true positives. (a), (b) Result of the VJ algorithm in detecting the diaphragm.

(c), (d) Elimination of the FP’s after applying GIST based cubic SVM classification.
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it suffered from high false positives (FP’s). While developing CAD algorithms,155

care should be taken that the algorithm will result in less number of FP’s, since156

analyzing the FP’s for diagnosis will lead to a faulty diagnosis. The VJ algo-157

rithm mostly detected border of vein walls and nonhomogeneous texture regions158

as FP’s. To eliminate FP’s, a supervised learning algorithm trained with true159

positives (TP’s) and FP’s resulted from the VJ algorithm is developed. The160

intuition of considering TP’s and FP’s of VJ is to make the classifier robust to161

the false detections. The algorithm is tested with some of the popularly used162

texture features like Histogram of Oriented Gradients (HOG) [47], histogram163

and GIST descriptor [35]. Out of all these features, GIST descriptor performed164

better in eliminating the FP’s.165

166

2.1.4. GIST descriptor based SVM classifier167

The block diagram representation regarding the classification between TP’s168

and FP’s is shown in Fig. 3b. The TP’s and FP’s resulted from VJ algorithm is169

of different size. Hence in developing the algorithm, all the TP’s and FP’s images170

are resized to a fixed resolution of 64 × 64 pixels, this size is chosen based on the171

cross-validation. From each resized image, GIST descriptor is extracted. GIST172

descriptor gives the low dimensional representation of the scene by extracting the173

spatial envelope of an image [48]. GIST represent the features like naturalness,174

ruggedness, openness, roughness and expansion of a scene [49]. GIST descriptor175

from image is extracted in the following way. Initially, the image is convolved176

with 32 Gabor filters corresponding to four scales and eight orientation resulting177

in 32 feature maps. Each feature map is divided into 4×4 grid resulting in 16178

regions. The coefficients of each region is averaged resulting in 16 features for179

each feature map. The averaged values of all 32 feature maps will result in180

a total of 16×32=512 GIST descriptor. The extracted features are then used181

to train the cubic SVM classifier. The classifier is trained with 250 TP’s and182

896 FP’s images resulted from the VJ algorithm. With 5 fold cross-validation183

scheme, the algorithm resulted with an accuracy of 94.6% in classifying TP’s184

12



and FP’s.185

After applying the GIST descriptor based SVM classification, the FP’s have186

been significantly reduced. But the output of these algorithm will not give the187

complete detection of the diaphragm. For complete detection of the diaphragm,188

active contour-based segmentation [36], active shape modeling (ASM) [50] algo-189

rithms can be is used. ASM model fails due to high nonrigidness in the shape190

of the diaphragm. Hence we employed active contour-based segmentation for191

detecting the entire contour of a diaphragm.192

2.1.5. Active contour based segmentation193

The block diagram representation for the active contour-based segmentation194

is shown in the Fig. 7. Segmenting RoI in ultrasound image poses a lot of diffi-195

culties due to large variations observed in the diaphragm from image to image.196

The Active Contour Model (ACM)[36] helps to obtain closed object contour as a197

segmentation result under the circumstances of noise and poorly defined bound-198

aries. Many variants of active contours like gradient vector flow [51], balloon199

model [52], diffusion snakes [53], active contours with edges [36], geodesic active200

contours [54], etc., have been proposed in the literature for effective segmen-201

tation. In this paper, we employed region-based active contour segmentation202

[36] to segment the diaphragm region. Active contour is an iterative process,203

which detects the contour based on the evolution. For segmenting the image,204

we need to set the initial state of the active contour by initializing the mask205

near to the diaphragm. The output obtained after VJ and GIST feature based206

cubic SVM classifier is used as a mask for initializing the active contour. Curve207

evolution is stopped when there is no further displacement in the curve, or it208

can be stopped forcibly by fixing the number of iterations. In this work, 300209

iterations is needed for complete detection of the diaphragm. The performance210

of the segmentation task is not quantified in this paper since the focus of the211

work is laid in detecting the RoI for the diaphragm which is used for developing212

CAD algorithms. The performance of the active contour-based segmentation213

for diaphragm detection is shown in Fig. 8.214
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Figure 7: Block diagram representation for the active contour model based segmentation of a

diaphragm.

Figure 8: Diaphragm detection based on active contour segmentation after 300 iterations.

215

2.2. Periportal vein detection216

The algorithm which is used to detect RoI for diaphragm also worked ef-217

fectively in detecting the periportal veins. The segmentation algorithm is not218

employed for periportal vein detection since the entire vein is enclosed inside219

the RoI. Periportal veins are detected in two stages, in the initial stage, VJ220

algorithm is used to detect the periportal veins. The positive training images221

used to train the VJ algorithm is shown in Fig. 9. In general, more than one222

periportal vein vessels will appear in liver ultrasonic images, hence all the vis-223

ible periportal veins are considered in training the VJ algorithm. The size of224

cropped images employed in training the VJ algorithm are in the range of 15225

× 25 to 32 × 42 pixels. The positive training images are extracted by cropping226

the periportal veins corresponding to all grades of fatty liver. We used the same227

negative training images (refer Fig. 5,) which we have used for training the228
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Figure 9: Images used in training the VJ algorithm for detecting the periportal veins.

VJ algorithm for detecting the diaphragm detection. Care is taken that kidney229

images used in negative training examples do not have cyst abnormalities, since230

the cyst in kidney resembles like a periportal vein in the liver ultrasound image.231

The VJ algorithm is trained with 829 labeled periportal veins and 50 kidney232

images. The VJ algorithm has resulted in both TP’s and FP’s as shown in233

Fig. 10. The regions where there is enough contrast in images are detected as234

FP’s, since the periportal veins also provide similar contrast in their respective235

spatial locations. To eliminate the FP’s, a second stage classifier algorithm with236

GIST descriptor and quadratic SVM classifier is employed. The second stage237

classifier algorithm is trained with TP’s and FP’s of the VJ algorithm which238

is developed for detecting the periportal veins. Before training the classifier,239

the sizes of all TP’s and FP’s are resized to a standard 32 × 32 pixel size, this240

size is chosen based on cross validation. The second stage of the classification241

algorithm is trained with 350 images of TP’s and 200 images of FP’s resulted242

from the VJ algorithm. With 5 fold cross-validation, the GIST descriptor based243

quadratic SVM classifier resulted in an accuracy of 93.7% in classifying TP’s244

and FP’s of periportal veins.245
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Figure 10: Automated periportal vein detection. Red boxes indicates the FP’s and yellow

boxes indicates TP’s. (a), (b) Performance of the VJ algorithm in detecting the periportal

veins. (c), (d) Performance of the algorithm after applying the GIST feature based quadratic

SVM classifier.
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2.3. Homogeneous texture detection246

The block diagram representation regarding the detection of RoI for homo-247

geneous textures in liver parenchyma is shown in Fig. 11. Since the texture does248

not have any shape specific information, the VJ algorithm performed poorly in249

detecting the RoI in a liver. The liver mainly consists of periportal veins, the250

texture of liver parenchyma and diaphragm. Therefore, the RoI detection for251

homogeneous texture is framed as a binary classification problem, where one252

class belongs to RoI of homogeneous texture regions and another class belongs253

to RoI’s of the diaphragm and periportal veins. The homogeneous texture is254

better represented with histogram features; these include mean, variance, skew-255

ness and kurtosis. The histogram appeared symmetry for homogeneous texture256

and nonsymmetry for nonhomogeneous texture regions giving discriminative257

representation across the homogeneous and nonhomogeneous RoI’s. The ho-258

mogeneous RoI’s in liver parenchyma is detected using a sliding window based259

approach. A window of size 64× 64 with the sliding length of 32 pixels is chosen260

for the analysis. The Gaussian SVM classifier is used to discriminate homo-261

geneous and nonhomogeneous regions based on the histogram features. The262

homogeneous texture patches used in training the classifier is shown in Fig. 12.263

A total of 400 homogeneous textures and 550 diaphragm and periportal images264

extracted from all grades of fatty liver is used in training the Gaussian SVM265

classifier. The sliding window model resulted with 100% accuracy in detecting266

the homogeneous texture regions along with the FP’s. The FP’s are resulted267

due to periportal veins. Since the periportal veins appears as blobs, we elimi-268

nated the FP’s by detecting the blobs in the homogeneous region. This is done269

by using a connected components algorithm [38]. The connected components270

algorithm is applied in the following way. Initially each detected homogeneous271

texture is binarized by setting a threshold to 20. The value 20 is chosen based272

on the cross validation. The pixels with intensity value less than 20 is set to ‘0’,273

while the pixels with intensity greater than or equal to threshold 20 is set to ‘1’.274

Then the number of pixels in each blob is computed by fixing a connectivity to275

6. It is found that we can eliminate all FP’s present in the liver parenchyma276
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Figure 11: Algorithm for detecting RoI corresponding to homogeneous texture of liver

parenchyma.

whose pixel count in each blob is more than 15. The optimal values for the277

connected components algorithm is chosen based on the experimental analysis.278

The performance of the proposed algorithm in detecting the homogeneous tex-279

tures is shown in Fig. 13. The multiple RoI’s are obtained for the homogeneous280

texture since the parenchyma covers wide area in the liver.281

2.4. SVM classifier282

SVM is a binary classifier, which learns a model that best separates the283

features of two classes [55]. SVM can only work if the features of the classes284

are linearly separable. To work with linearly non-separable data, SVM is op-285

erated with various kernel functions [56]. The kernel function projects the fea-286

tures into higher dimensions where the data becomes linearly separable. In this287

work, we evaluated the performance of the SVM classifier with respect to linear,288
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Figure 12: Homogeneous texture patches used to train the classifier for RoI detection of

texture.

Figure 13: Performance of the proposed algorithm in detecting RoI for homogeneous patches.

Yellow boxes indicates the RoI of homogeneous texture patterns corresponding to liver

parenchyma.
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quadratic, cubic and Gaussian kernels. The suitable kernels for the application289

is selected based on the experimental analysis. The inbuilt SVM function avail-290

able in the MATLAB 2017a version is used in the experiment.291

The optimal tuning parameters of different kernels are, for Cubic kernel:292

degree of polynomial=3, for Quadratic kernel: degree of polynomial=2, for293

Gaussian kernel: standard deviation=1. The kernel scale is set to ‘auto’, data294

standardization is set to ‘true’ with iterative single data algorithm as a solver.295

296

3. Ultrasound data acquisition for analysis297

The ultrasound database for the analysis is acquired by four sonographers all298

having more than 15 years of experience in performing ultrasound investigations.299

The ultrasound images are acquired using 3.5 MHz curved array transducer with300

clinical Seimens S1000 ultrasound scanning system. The ultrasound images are301

captured to a depth of 15 cm by adjusting the focal zone to the center of the302

organ for minimal beam diffraction. A total of 537 patients participated in the303

study, and they were in the age group of 18 to 55 years. All the patients were304

explained about the experiments in prior and taken a written consent form re-305

garding the no objection in using their data for the study. A total of 537 liver306

ultrasound images along with 50 kidney image were used in the study. Only307

one image is acquired from a single patient. The images are acquired during the308

time period February 2017 to August 2017.309

A total of 200 images were used in training process; these include 80 Normal, 45310

Grade I, 40 Grade II and 35 Grade III images. The proposed algorithm is tested311

with two sets of the database, one consisting of 180 images which include 75312

Normal, 60 Grade I and 45 Grade II images respectively, here Grade III images313

are not considered due to high obscuration of the RoI’s. The second database314

consists 157 liver images. The images used in the first test case has not been315

used in the second test case. Performance of the proposed algorithm on the316

first database gives the overall accuracy of the algorithm in detecting the RoI’s,317
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while testing on the second database gives the performance of the algorithm on318

individual categories corresponding to different grades of fatty liver.319

320

4. Experimental Analysis321

4.1. Statistical analysis of the features322

In this section, we present the statistical analysis of the features correspond323

to RoI’s and nonRoI’s used to train the classifier. The statistical analysis of324

the GIST features corresponding to diaphragm and periportal veins is shown in325

Table. 2. Since the size of GIST features is of 512, which is of high dimension,326

we presented the analysis only for the first 10 features. The mean for most of327

the GIST features corresponding to the TP’s of the diaphragm is higher than328

that of the FP’s resulted from the VJ algorithm and the standard deviation for329

the GIST features of FP’s is observed to be low compared to the TP’s of the330

VJ algorithm. For periportal veins, a clear distinction between the mean of the331

GIST features of TP’s and FP’s resulted from the VJ algorithm is observed.332

Similar to the diaphragm, the low standard deviation is observed in the GIST333

features of FP’s compared to the TP’s of the VJ algorithm. The similar trend is334

observed for rest of the GIST features. The mean and standard deviation of the335

histogram features extracted from homogeneous and nonhomogeneous regions336

is shown in Table. 3. The mean of histogram features for a homogeneous region337

is observed to be significantly lower than that of nonhomogenous histogram338

features and low standard deviation of the features is observed in histogram339

features of the homogeneous region compared to the nonhomogeneous region.340

341

4.2. Performance analysis342

In this section, we present the performance of the proposed algorithm for de-343

tecting each RoI. The VJ algorithm is trained by setting the following parame-344

ters: number of cascade classifiers=5, merge threshold=80, window enlargement345

in each step is set to 1.1 with sliding window shifted by one pixel.346
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Table 2: Mean and Standard deviation (Std) of the first ten GIST features of TP’s and FP’s

of the diaphragm and periportal veins detected from VJ algorithm.

RoI of Diaphragm RoI of periportal veins

TP’s FP’s TP’s FP’s

No Mean Std Mean Std Mean Std Mean Std

1 0.0245 0.0074 0.0206 0.0001 0.0385 0.0156 0.0503 0.0007

2 0.0253 0.0062 0.0205 0.0002 0.0452 0.0221 0.0373 0.0002

3 0.0204 0.0066 0.0183 0.0003 0.0829 0.0360 0.0427 0.0004

4 0.0196 0.0048 0.0204 0.0002 0.0613 0.0322 0.0491 0.0006

5 0.0133 0.0032 0.0200 0.0001 0.1774 0.0695 0.0654 0.0014

6 0.0305 0.0075 0.0228 0.0002 0.0674 0.0337 0.0946 0.0011

7 0.0470 0.0106 0.0374 0.0001 0.1418 0.0661 0.0962 0.0031

8 0.0524 0.0124 0.0439 0.0004 0.0701 0.0272 0.0761 0.0015

9 0.0602 0.0372 0.0373 0.0002 0.0657 0.0213 0.0694 0.0018

10 0.0744 0.0199 0.0695 0.0002 0.0415 0.0222 0.0489 0.0006

Table 3: Mean and standard deviation of histogram features correspond to homogeneous and

nonhomogeneous RoI.

Homogeneous

RoI

Nonhomogeneous

RoI

Features Mean Std Mean Std

Mean 0.2669 0.0478 0.3283 0.0659

variance 0.0079 0.0039 0.0340 0.0068

Skewness 0.6886 0.1938 1.2168 0.2566

Kurtosis 2.6839 0.7465 3.8265 0.7945
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The VJ algorithm detects the RoI using sliding window approach due to347

which multiple detections will occur for each RoI. The multiple detections are348

eliminated by merging all the overlapped detections by taking an average for349

the coordinates of detected RoI’s. Decreasing the merge threshold increased the350

number of FP’s along with TP’s and vice-versa. The optimal merge threshold351

of 80 is chosen based on the experimental analysis. The VJ algorithm used 7,352

9, 11, 13 and 19 features at each stage of cascaded classifiers respectively. The353

performance of the proposed algorithm in detecting RoI for a diaphragm when354

VJ algorithm trained with different false alarm rates is shown in Table. 4. The355

algorithm is tested on 180 liver ultrasound images. The maximum classification356

accuracy of 97% is obtained at a false alarm rate of 0.5. Here the VJ algorithm357

detected the diaphragm with an accuracy of 98.2% with 450 FP’s, after applying358

the GIST based cubic SVM classifier, FP’s has been significantly reduced to 113.359

360

The performance of the proposed algorithm in detecting the periportal veins361

is shown in Table. 5. The VJ algorithm used 7, 8, 10, 11 and 14 features362

in each cascaded stage respectively. The optimal trade-off between TP’s and363

FP’s is obtained at a merge threshold of 50. The proposed algorithm detected364

periportal veins with a maximum accuracy of 91% for the VJ algorithm when365

trained with a false alarm rate of 0.5. The VJ algortithm detected periportal366

veins with a maximum accuracy of 96% with 425 FP’s. After applying GIST367

descriptor with quadratic SVM classifier, the number of FP’s have significantly368

reduced to 43, which in turn also reduced the overall detection accuracy of369

periportal veins from 96% to 91%.370

The histogram based Gaussian SVM classifier detected the RoI for homoge-371

neous texture with 100% accuracy. The algorithm resulted with multiple RoI’s372

for homogeneous textures along with FP’s. The FP’s are completely removed373

using the connected components algorithm.374
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Table 4: The accuracy of the proposed algorithm for detecting the RoI of a diaphragm.

False

alarm rate

Performance of Viola Jones

algorithm

Performance of the algorithm after applying

GIST descriptor + cubic SVM classifier

Accuracy(%) FP’s Accuracy(%) FP’s

0.1 91.0 160 85.0 14

0.2 93.5 194 87.4 21

0.3 94.7 260 89.7 44

0.4 96.0 390 96.0 78

0.5 98.2 450 97.0 113

Table 5: Accuracy of the proposed algorithm in detecting the periportal veins

False alarm

rate

Performance of

Viola Jones algorithm

Performance of the algorithm after applying

GIST descriptor + Quadratic SVM classifier

Accuracy

(%)

False

Positive

Accuracy

(%)

False

Positive

0.1 89.7 84 84.0 9

0.2 91.7 131 87.0 15

0.3 93.0 141 89.6 16

0.4 94.9 314 90.7 25

0.5 96.0 425 91.0 43

Table 6: Accuracy of the proposed algorithm in detecting the RoI’s with respect to different

grades of fatty liver.

Category Database Diaphragm (%) Periportal veins (%)

Normal 48 97.5 93.7

Grade I 33 95.5 92.3

Grade II 45 93.2 90.8

Grade III 31 65.7 80.3
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4.3. Performance of the proposed algorithm with respect to different grades of375

fatty liver.376

The performance of the proposed algorithm in detecting the RoI with respect377

to different grades of fatty liver is presented in this section. The liver ultrasound378

images correspond to different grades of fatty liver used in testing the proposed379

algorithm is shown in Fig. 14. The database consisted of 157 ultrasound images380

which include 48 normal, 33 Grade I, 45 Grade II and 31 Grade III images. For381

Normal, Grade I and Grade II images, the diaphragm and periportal veins are382

visible or partially visible to the normal eye. For 31 images of Grade III fatty383

liver, only for 15 images the diaphragm and periportal veins are partially visible,384

whereas for other images diaphragm and periportal veins are totally obscured385

and is not visible to the human eye. The accuracy of the proposed algorithm386

corresponding to different grades of the fatty liver is shown in Table. 6. The387

proposed algorithm detected diaphragm and periportal veins of the normal liver388

with an accuracy of 97.5% and 93.7% respectively. The accuracy of detecting389

diaphragm and periportal veins get reduced with an increase in the severity of390

the fat which resulted in obscuration of RoI. Even there is a high obscuration391

of RoI for Grade III fatty liver, the proposed algorithm detected diaphragm392

and periportal veins with an accuracy of 65.7% and 80.3% respectively. The393

classification accuracy is only computed for the images where diaphragms and394

periportal veins are perceivable to the human eye. For the images where di-395

aphragm and periportal veins are not visible, the algorithm did not detect any396

RoI in the region with zero FP’s. The proposed algorithm detected RoI for397

homogeneous patches with a 100% accuracy for all the liver ultrasound images.398

Since the organ boundaries are not visible in Grade III fatty liver ultrasound399

images, the RoI’s detected outside the liver image is not recognizable. The brief400

remarks regarding the performance of the proposed algorithm in detecting each401

RoI is discussed in Table. 7. The result of the proposed algorithm in detecting402

the diaphragm, periportal veins and homogeneous texture of liver parenchyma403

is shown in Fig. 15.404

The experiments are performed on a Windows desktop computer with Intel405
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Table 7: A brief summary regarding the performance of the proposed algorithm in detecting

each RoI.

RoI detection Remarks

Diaphragm

The bounding boxes enclosing some part of the diaphragm is detected using

the VJ and GIST descriptor based cubic SVM classifier. The detected RoI is

then used to initialize the active contour algorithm to detect the entire diaphragm.

The bounding box position of RoI enclosing the diaphragm did not have an

effect in detecting the entire contour of diaphragm since the active contour algorithm

tends to capture the strong edges. The accuracy of detecting diaphragm decreased

with increase in severity of fat in the liver due to obscuration of diaphragm.

Periportal

veins

The bounding boxes enclosing periportal veins is detected using the VJ and GIST

descriptor based quadratic SVM classifier. All the detected RoI’s are completely

enclosed within the RoI. The accuracy of detecting periportal veins decreased with

increase in severity of fat in the liver due to obscuration of periportal veins.

Homogeneous

texture

The RoI’s are detected using the combination of histogram features based Gaussian

SVM classifier and connected components algorithm. The algorithm resulted

in multiple overlapping RoI’s, and the end user can select an appropriate number of

RoI’s depending on the application. The accuracy of detecting RoI for homogeneous

texture did not effected with the severity of fat present in the liver.
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Normal

  Grade I

  Grade II

  Grade III

Figure 14: Images correspond to different grades of fatty liver. Images in each row belongs to

single category.
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Figure 15: Performance of the proposed algorithm in detecting the RoI’s. The region enclosed

with red color represents the diaphragm, green boxes indicate the detection of periportal veins

and blue boxes indicates the RoI of a homogeneous texture.

Core i7 processor, 16 GB RAM running with 2.8 GHz clock using MATLAB406

2017a version. For an image of size 500 × 650, the algorithm took approximately407

2.42 s for detecting RoI of a diaphragm, 2.5 s for segmenting the diaphragm after408

initialization, 4.3 s for periportal detection and 2.3 s for homogeneous texture409

detection. The algorithm took approximately 9 s for detecting multiple RoI’s.410

5. Discussion and conclusion411

In this paper, we proposed a multi-model framework for automatic detection412

of diagnostically significant regions of fatty liver namely diaphragm, periportal413

veins and homogeneous texture in ultrasonic liver images. Since the character-414

istics of these regions vary with the fatty content of the liver, it poses a serious415

challenge in detecting these regions. The proposed algorithm detected the di-416

aphragm, periportal veins and homogeneous texture of liver with an accuracy417

of 97%, 91% and 100% respectively. The accuracy of the proposed algorithm in418

detecting the RoI’s in fatty liver decreased with increase in the severity of fat419

in the liver, this is justifiable since the visibility of diaphragm and periportal420

veins reduces with the severity of the disease. In literature, computer-aided421

algorithms developed for diagnosing the fatty liver involves manual intervention422

to crop the RoI’s, hence making the algorithms semi-automated. The proposed423

algorithm eliminates the need for manual intervention by detecting the RoI’s424
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automatically, which can be used to develop accurate and automated diagnos-425

tic algorithms. The proposed algorithm benefits the sonographers to diagnose426

more number of patients by reducing the time needed to locate RoI’s in the427

ultrasound image. As an extension of this work, we will work towards the de-428

velopment of automated algorithms for quantifying the fat in the liver based on429

detected RoI’s.430
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