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Abstract— Fatty Liver Disease (FLD), if left untreated can
progress into fatal chronic diseases (Eg. fibrosis, cirrhosis,
liver cancer, etc.) leading to permanent liver failure. Doctors
usually use ultrasound scanning as the primary modality for
quantifying the amount of fat deposition in the liver tissues, to
categorize the FLD into normal and abnormal. However, this
quantification or diagnostic accuracy depends on the expertise
and skill of the radiologist. With the advent of Health 4.0
and the Computer Aided Diagnosis (CAD) techniques, the
accuracy in detection of FLD using the ultrasound by the
sonographers and clinicians can be improved. Along with an
accurate diagnosis, the CAD techniques will help radiologists
to diagnose more patients in less time. Hence, to improve
the classification accuracy of FLD using ultrasound images,
we propose a novel CAD framework using convolution neural
networks and transfer learning (pre-trained VGG-16 model).
Performance analysis shows that the proposed framework offers
an FLD classification accuracy of 90.6% in classifying normal
and fatty liver images.

I. INTRODUCTION

With the advent of Health 4.0, the way the healthcare

delivered is taking a major leap and seems to be a promising

solution for increasing population [1]. Both the developed

and developing nations are mainly focusing on automated

algorithms and remote healthcare delivery solutions for pro-

viding quality healthcare [2]. Due to degradation of human

lifestyle and food habits, one of the major problem the

population witnessing is Fatty Liver Disease (FLD). The

development of FLD closely relates to the accumulation of

excess fat in the liver cells and tissues. Although FLD in the

initial stages may not cause a fatality, it progress into fatal

chronic diseases (Eg. fibrosis, cirrhosis, liver cancer, etc.)

if left untreated. Studies show that 20-30% of the world

population is affected by the FLD and we strongly feel

that addressing the challenges in accurate identification of

fatty liver is the need of the hour [2]. Hence, our aim is to

develop a novel computer-aided diagnosis (CAD) framework

for accurate classification of FLD using ultrasound images

of the liver.

Doctors treat FLD using both invasive procedures (such as

blood tests and biopsies which involve complications such

as infections, bile leakage, etc.), and noninvasive imaging

techniques (such as ultrasound scanning, computed tomog-

raphy scanning, etc.). However, multiple techniques exist

ultrasound imaging is used widely for treating the FLD

[4], [5]. The popular technique used by the doctors in

identifying FLD is the comparison of liver echogenicity

with the renal cortex [3]. Although this method is well

established for the FLD diagnosis, the clinicians working in

remote areas face difficulties due to their lack of skills and

expertise in identifying the FLD for the ultrasound images of

the liver. Computer-aided diagnosis (CAD) [6], [7] in such

scenarios aid the clinicians to perform an accurate diagnosis

by automating the detection and classification of the FLD.

The CAD techniques also reduce the bias caused due to the

skill of the radiographers. However, the methods proposed

in the literature still suffer from the inaccurate classification

of FLD using liver ultrasound images and hence is an active

research area [6], [7].

The rest of this manuscript is organized as follows. We

discuss the related works in Section II and in Section III,

we present the proposed CAD framework based on deep

learning, transfer learning and fine-tuning along with the

database description used for the experimental analysis.

Finally, Section IV and Section V analyze the performance

of the proposed framework and concludes the paper by

discussing the future scope of the work, respectively.

II. RELATED WORKS

In ultrasound images, the texture appears as granular pat-

terns at the parenchyma of a liver, whereas in the case of FLD

the texture appears finer and smoother as shown in Fig. 1.

Recently several studies proposed novel classification meth-

ods of the normal and fatty liver using ultrasound images.

Andrade et al. in [19] developed an FLD classification model

using Support Vector Machines (SVM) classifier based on

the following features: First-Order Gray Level Parameters

(FOGLP), Gray-Level Co-occurrence Matrix (GLCM), Law

Texture Energy (LTE), Fractal Dimension (FD) with an

accuracy of 79.7%. Singh et al. in [20] performed FLD

classification using Fishers linear discriminant analysis based

on features such as Spatial Gray-Level Co-occurrence Matrix

(SGLCM), Statistical Feature Matrix (SFM), LTE, Fourier

Power Spectrum (FPS) and fractals, with 92% accuracy.

Minhas et al. in [21] used SVM with features extracted

using Wavelet Packet Transform (WPT) and achieved 95%

accuracy. Acharya et al. in [22] detected the FLD using

features obtained from Wavelet, Higher-Order Spectra (HOS)

and achieved 93.3% accuracy when used along with a

decision tree classifier. Dan et al. [23] used random forest
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(a) Normal Liver

(b) Fatty Liver

Fig. 1: Ultrasound images of liver with and without FLD.

and SVM Classifiers using attenuation gray level, a variance

of the skewness, and the kurtosis measure of the texture

as features and obtained an accuracy of 90.8% and 87.7%,

respectively. In [24], the authors proposed a classification

framework of FLD using the handcrafted texture features

with an accuracy of 95%. Acharya et al. [25] achieved 98%

accuracy using Probabilistic Neural Network (PNN) along

with GIST descriptors. In literature, researchers are mainly

focused on handcrafted features. Hence, in this study, we

propose a convolution neural network (CNN) and transfer

learning (using pre-trained VGG-16 model) based CAD

framework to improve the FLD classification accuracy using

ultrasound images.

Many deep learning techniques have gained significant

attention and are emerging in all the domains of engineering.

Particularly, CNN’s have been proven to be an efficient

and reliable method for many of the computer vision tasks

[8]–[10], which automatically learns mid-level and high-

level abstractions from the database [11]. Recently, deep

learning approaches appear promising in the domain of

medical image analysis. However, in the medical imaging,

acquiring the required amount of data for training the deep

learning models remains to be a significant challenge when

compared to natural images. When deep learning models

are trained with the limited medical data available, deep

CNN tends to suffer from over-fitting, and there arise the

convergence problems. Also, training deep CNNs usually

require large computational resources. To address these is-

sues, a new transfer learning approaches have been applied

to deep CNN’s thereby enabling their use in medical imaging

applications with smaller datasets [18]. Transfer learning

enables us to use the pre-trained CNN models (models

trained using natural image datasets or any other medical

image datasets) for the classification task. The pre-trained

CNN models can be used for generation of features from

the input images which then can be then to train a new

classifier [12]. For example, in [13], the authors used a pre-

trained CNN using adequate natural images and implemented

the convolutional layers of pre-trained CNN in a new CNN

framework for locating the fetal abdominal plane in the

ultrasound video sequence. Tajbakhsh et al. [12] used an al-

ready CNN along with layer-wise fine-tuning to improve the

performance in locating the fetal abdominal standard plane

using a small dataset. Using the available already trained

CNN models in conjunction with fine-tuning for achieving

better classification accuracy is already being explored at

a rapid pace and also found to be successful in diversified

applications [14]–[16]. Also, we would like to advise the

readers to refer [17] for more such applications in the medical

imaging field. Motivated by the success of transfer learning,

in this paper, we adhere to transfer learning and fine-tuning

an already trained CNN layer-wise for classifying the normal

and fatty liver ultrasound image accurately.

III. DATABASE DESCRIPTION AND THE PROPOSED CAD

ALGORITHM FOR CLASSIFICATION OF FATTY LIVER

In this section, we discuss the database considered for

experimental analysis and the proposed CAD framework the

classification of FLD using CNN, transfer learning and fine-

tuning.

A. Description of the Developed Dataset

The open datasets corresponding to FLD is not available

for research activities. Hence, in this study, the database is

collected with the help of two well-trained sonographers. The

database collection involved both male and female patients

with an age group ranging from 20 to 55 years. We have

collected 81 normal liver images and 76 were suffering from

FLD. All the images used for this study are collected from a

Siemens Acuson S1000 ultrasound scanner with curved array

transducer. Every image in the database is labeled by the

radiographers. The excessive blank/black space on either side

of the liver organ does not convey any diagnostic information

and hence it is cropped before training the network. The

cropped images are then resized to a fixed size of 224×224

pixels and are used in our experiment and also for training

the model.

B. Proposed automated CAD framework for the classifica-

tion of fatty liver in ultrasound images

Fig. 2 shows the proposed CAD architecture comprising

of the pre-trained VGG-16 model along with the transfer

learning and fine-tuning. A VGGNet using CNN is designed

markedly with different layer depths for image recognition.

The VGGNet gave an accuracy of 92.7% when validated us-

ing the ImagNet dataset consisting of 14 million images from

1000 classes [26]. To reduce the complexity of computing

weight parameters, a small (3×3) convolution filter with a

stride size of 1 is utilized for all the convolutional layers. The

max-pooling considers a 2×2 pixel window, with a stride of

2 pixels for the last convolutional layer of each block as

shown in Fig. 2.

From Fig. 2, one can observe that three fully-connected

(FC) layers follow the stack of convolutional layers. The
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Fig. 2: The proposed VGG-16 architecture using CNN with transfer learning and fine-tuning. We fine tuned the last two

blocks in the proposed architecture for getting optimal classification.

Fig. 3: Fatty liver ultrasound images generated using data

augmentation technique.

TABLE I: Performance analysis of the proposed algorithm

for detection and classification of FLD for 100 epochs

Class Precision Recall F1score Support

Normal 0.92 0.85 0.88 13

Abnormal 0.90 0.95 0.92 19

Avg/total 0.91 0.91 0.91 32

first two FC layers have 4096 nodes each, while the third

layer performs classification using 1000 nodes (one for

each class). In addition Rectified Linear Unit (ReLU) is

used as activation function in all the hidden layers, while

the softmax activation function is employed in the final

layer of the FC layers. In this paper, we make use of the

VGG-16 comprising 16 layers along with convolution blocks

(comprises of convolutional layers and max-pooling layers)

and a fully-connected classifier. The fine-tuning is carried

out using the pre-trained VGG-16 model in Keras. In the

model shown in Fig. 2, the convolution 2D layers of the

conv block 5 consists of 512 nodes for convolution layers,

in our experiment we fine-tuned the network from using 512

nodes to 256 nodes. Also, we fine-tuned fully connected

layers (Fc 1 and Fc 2) having 4096 nodes to 256 nodes,

and the output layer comprises two neurons whose output

corresponds to the two classes (normal and abnormal) in

this study. The weight parameters of the output layer are

initialized randomly which follows a Gaussian distribution,

and the training is performed using 100 epochs to prevent the

over-fitting. Because the usage of fine-tuning also requires

moderate size database and considering the limitation of

having a small database, we used augmentation techniques

based on transformations to increase the size of the database.

The image transformation techniques like vertical flipping,

horizontal flipping, rotation, zoom range, shear range with

different orientations are used to generate the new training

images. The new training images resulted from the data

augmentation is shown in Fig. 3.

IV. RESULTS

From a total of 157 ultrasound liver images, 125 images

are used for training and 32 images are used for testing

the trained model. Using the 125 images of the training

set, a total of 2500 images are generated with different

transformations using data augmentation techniques. This

training set of 2500 images are used for training the model

described in Section III. The performance of the proposed

model is analyzed using classification accuracy, confusion

matrix, Fscore, Precision, and Recall is shown in Table. I.

The description of the considered performance metrics are

given below:

Fscore = 2
recall ∗ precision

(recall + precision)
, (1)

Recall =
N(TP )

N(TP ) +N(FN)
, (2)

Precision =
N(TP )

N(TP ) +N(FP )
, (3)

Accuracy =
N(TP ) +N(TN)

N(TP ) +N(TN) +N(FP ) +N(FN)
,

(4)

Where N(TP ) indicates the total true positives, N(FP )
indicates total false positives, N(TN) indicates total true

negatives and N(FN) indicates the false negatives. All

these measures are computed for each class, and an overall

measure of the algorithm is computed by taking the average

of all these measures across the two classes.

The proposed network is trained for 100 epochs. Fig. 4

shows the training and testing accuracy of the proposed

model at various epochs. From the Fig. 4, it can also be

observed that the proposed framework achieves an overall

classification accuracy of 90.6%. Also, the performance

comparison of the proposed method is with basic CNN,

VGG-16 transfer learning and fine-tuning the FLD is shown

in Table II. The architecture of basic CNN consists of

six convolutional layers followed by max-pooling layers
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TABLE II: Performance analysis of the proposed classification algorithms

Classifier Sensitivity(%) Specificity(%) Accuracy(%)

CNN 0.89 0.85 84.3

VGG16 + Transfer Learning 0.95 0.76 87.5

VGG16 Transfer Learning + Fine Tuning 0.95 0.85 90.6
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Fig. 4: Training and validation accuracy of the proposed

CNN concerning the number of epochs (blue curve indicates

training accuracy and green curve indicates the validation

accuracy).
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Fig. 5: The ROC curve for the proposed architecture

and four FC layers. In all hidden layers, ReLu is used

as an activation function and softmax activation function

is employed for the FC layer. A 3X3 convolutional filter

size is employed for convolutional layers with the stride

1 and a size of 2X2 is used for max-pooling with the

stride 2. The convolutional layers future map 32 is employed

for the first two layers followed by 128 to the next two

convolutional layers and the last two layers with the 256.

All the FC layers with the 256 nodes gave an accuracy

of 84.3%. VGG-16 with transfer learning without changing

the intermediate layers parameters, last output classification

layer is changed to two nodes achieved an accuracy of

87.5% and VGG-16 model with fine tuning last layers of the

network achieved an accuracy of 90.6%. VGG-16 fine tuning

TABLE III: Confusion matrix obtained using the proposed

CAD framework

True class Predicted class

Normal Abnormal

Normal (13) 11 2
Abnormal (19) 1 18

performed better compared to transfer learning and basic

CNN model. The performance of the proposed algorithms

is assessed with the sensitivity, specificity and accuracy.

Sensitivity is defined as the ratio of the true positives that are

correctly identified and specificity is the proportion of true

negatives that are correctly identified. Table. III provides the

confusion matrix obtained using the proposed algorithm and

the receiver operating characteristics (ROC) curve for the

proposed algorithm is shown in Fig. 5. The ROC represents

the performance of the proposed algorithm concerning true

positive and false positive rate, the proposed algorithm gave

an ROC of 0.96.

The proposed CAD architecture is implemented using Ten-

sorflow and Keras frameworks in Python. The simulations are

performed on Intel Xeon(R) E5-2650 V2 CPU running at 2.6

GHz with 16 parallel cores and an NVIDIA GeForce GTX

1080 GPU. The model classifies the FLD using ultrasound

images with better accuracy and we strongly feel that this

study will have a significant impact in driving the future

research in this area.

V. CONCLUSION

In this paper, we proposed a novel CAD architecture to

accurately detect the fatty liver disease using ultrasound

images. In many of the developed and developing nations,

due to the rapid growth of population, the healthcare delivery

is becoming a challenging problem due to the unavailability

of skilled clinicians. Especially, in the cases of fatty liver

diseases are increasing, and it is estimated that about 15-

20% of the world population is suffering from FLD. While

ultrasound is the primary modality used for treating the

FLD, due to unavailability of the skilled sonographers, the

quality of diagnosis offered is being affected severely. To

address this problem, we proposed deep learning, transfer

learning and fine-tuning for classifying the fatty liver in

ultrasound images. The performance analysis of the proposed

framework shows that the FLD in ultrasound images can be

detected with an accuracy of 90.6%. As a future extension

of this work, we try to port the developed algorithm on the

hardware platform to make it more translational.
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