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a b s t r a c t

Fatty liver is a prevalent disease and is the major cause for the dysfunction of the liver. If

fatty liver is untreated, it may progress into chronic diseases like cirrhosis, hepatocellular

carcinoma, liver cancer, etc. Early and accurate detection of fatty liver is crucial to prevent

the fatty liver progressing into chronic diseases. Based on the severity of fat, the liver is

categorized into four classes, namely Normal, Grade I, Grade II and Grade III respectively.

Ultrasound scanning is the widely used imaging modality for diagnosing the fatty liver. The

ultrasonic texture of liver parenchyma is specific to the severity of fat present in the liver and

hence we formulated the quantification of fatty liver as a texture discrimination problem. In

this paper, we propose a novel algorithm to discriminate the texture of fatty liver based on

curvelet transform and SVD. Initially, the texture image is decomposed into sub-band

images with curvelet transform enhancing gradients and curves in the texture, then an

absolute mean of the singular values are extracted from each curvelet decomposed image,

and used it as a feature representation for the texture. Finally, a cubic SVM classifier is used

to classify the texture based on the extracted features. Tested on a database of 1000 image

textures with 250 image textures belonging to each class, the proposed algorithm gave an

accuracy of 96.9% in classifying the four grades of fat in the liver.

© 2017 Published by Elsevier B.V. on behalf of Nalecz Institute of Biocybernetics and

Biomedical Engineering of the Polish Academy of Sciences.
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1. Introduction

Accumulation of excess fat in liver cells termed as Nonalco-
holic Fatty Liver Disease (NAFLD) is an abnormal condition of a
liver etiologically associated with hepatic manifestation of
metabolic syndrome, specifically insulin resistance. NAFLD is
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associated with obesity, type 2 diabetes, hyperlipidemia, side
effects of certain medications, cardiovascular diseases, etc.
NAFLD is one of the leading causes of liver dysfunction and is
rapidly growing health problem in the world. It is estimated
that up to 30% of general population in the developed
countries are prevalence with NAFLD [1]. NAFLD is observed
in 80–90% of obese patients, 30–50% of diabetic patients and
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Fig. 1 – Graphical representation of NAFLD, yellow patches indicates the fat or triglycerides: (a) Normal; (b) Grade I; (c) Grade II;
(d) Grade III fatty liver.
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90% of hyperlipidemia patients [2]. If the underline problem
associated with NAFLD is not detected nor treated, the NAFLD
can progress into chronic liver diseases.

From recent investigations, it is found that 50% of patients
with NAFLD has progressed to liver fibrosis, 15% of patients
with NAFLD has progressed into liver cirrhosis, while 3% of
patients with NAFLD has lead to liver failure resulting in liver
transplantation [3]. Hence, early detection of fatty liver
becomes crucial in preventing the liver progressing into
chronic liver diseases.

The severity of the NAFLD is characterized by the density of
fatty granules accumulated in the tissues of a liver [4]. The
visual representation regarding the presence of fatty granules
corresponding to different grades of the nonalcoholic fatty
liver is shown in Fig. 1.

Brunt et al. categorized NAFLD into simple steatosis
(Normal or Grade 0) and nonalcoholic steatohepatitis (NASH).
NASH is further categorized into Grade I, Grade II and Grade III,
as shown in Table 1 [4]. If the concentration of fat in the liver is
less than 5%, then the liver is considered as Grade 0 which is
treated as a Normal condition. If the concentration of fat in the
liver is in between 5 and 33%, then the liver is considered to be
in Grade I condition. Higher concentration of fatty levels in
liver such as 33–66% is considered as Grade II, and greater than
Table 1 – Grading and condition of NAFLD based on the
percentage of fat present in the liver.

NAFLD Degree of
steotosis

Grading Condition

Simple Steotosis < 5% Grade 0 Normal

NASH 5–33% Grade I Mild
33–66% Grade II Moderate
>66% Grade III Severe
66% is considered as Grade III respectively. In general, Grade 0
and Grade I does not affect the functionality of the liver and
does not require medication. Grade II and Grade III conditions
affect the functionality of the liver and patients need medical
attention to prevent the liver progressing into chronic
diseases.

Fatty liver is diagnosed using invasive and noninvasive
procedures; invasive procedures include biopsies, blood tests,
etc., while noninvasive procedures includes imaging techni-
ques like ultrasound scanning, Magnetic Resonance Imaging
(MRI) and Computed Tomography (CT). Invasive procedures
are painful, and it is associated with complications like
infections, bleeding, bile leakage, etc. Hence, doctors recom-
mend for noninvasive imaging procedures. Ultrasound
scanning is widely used imaging modality for diagnosing
the fatty liver since it offers real-time, safer and economical
compared to MRI and CT. Unlike, MRI and CT (where images
are captured automatically by systems without manual
intervention), the ultrasound scanning is performed by
humans resulting in high subjectivity. The subjectivity
depends on parameters like the skill of a sonographer, age,
gender, body mass index of a patient, etc. Specific to the
quantification of fat in liver through ultrasound scanning,
Strauss et al. [5] reported that there is a mean interobserver
and intraobserver agreement of 72% and 76% respectively in
detecting the normal liver from the fatty livers, while in
quantifying the severity of fat there is a mean interobserver
and intraobserver agreement of 47–59% and 59–64% respec-
tively. Computer aided diagnostic algorithms can nullify the
bias caused due to the subjectivity thus helping sonographers
to take confidence decisions.

The texture of liver in ultrasound image appears specific to
the concentration of fat present in the liver [6–8]. Sonographers
quantize the fatty content of the liver based on the texture
structural and perceptual properties of a liver; these include



Fig. 2 – Textures correspond to different grades of nonalcoholic fatty liver. Images in each row belongs to a single class.
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texture morphology, echogenicity, and degree of diffusion. The
texture correspond to different grades of fatty liver is shown in
Fig. 2. Perceptually, a minute difference is observed between
different grades of fatty liver. The texture of normal liver
appears coarser and rugged, and it becomes finer and finer as
the concentration of fat increases.

In this paper, we propose an automated algorithm to
classify the ultrasonic texture correspond to different grades of
the nonalcoholic fatty liver. The novelty of the paper is as
follows. We hypothesis that texture of ultrasonic fatty liver can
be discriminated by capturing the curves and gradients
present in the texture. To effectively represent the curve
and gradient information of a texture, we combined the ideas
of curvelet transform and Singular Value Decomposition (SVD)
which is first of its kind in feature representation of a texture.
To enhance the information present in the texture, curvelet
transform, which gives an optimal representation for the
curves is initially applied on the image. Curvelet transform
decomposes the image into sub-bands enhancing the finer
curves present in the texture localized to scale, space and
orientation. The total number of curvelet coefficients collec-
tively present in all the sub-bands are is of high dimension,
which makes it difficult to model or to train a supervised
classifier. To get the compact and efficient representation for
each decomposed image, SVD technique is applied. SVD
applied on each sub-band of curvelet transform projects the
curvelet coefficients in Eigenspace, where magnitude of
projection is given by the singular values. The absolute mean
of the singular values is computed for each sub-band images
and considered as a feature representation of a texture [9].
Cubic kernel SVM and K-Nearest Neighbor (KNN) classifiers are
used to analyze the performance of the proposed feature
extraction scheme in classifying the texture of different grades
of fatty liver.
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The rest of the paper is organized in the following way: in
Section 2, we briefly discuss some of the methodologies
proposed in the literature for quantifying the fat in the liver,
and also we discuss the popularly used texture features for
characterizing the texture of a liver. In Section 3, we introduce
the proposed algorithm. In Section 4, we discuss the database
used for testing the proposed algorithm. The performance and
analysis of the proposed algorithm is reported in Section 5, and
we conclude the paper by mentioning the future direction
of the proposed work in Section 6.

2. Literature review

In literature, most of the work has been reported in classifying
the normal liver ultrasound images with liver diseases such as
fatty, cirrhosis, hepatocellular carcinoma, fibrosis, etc. [10–17].
While classification, authors have considered all grades (Grade
I, Grade II and Grade III) of fatty liver as one class, and further
distinction within the fatty liver is not addressed extensively.
Detecting the severity of fatty liver is of high importance such
that the patients can take appropriate precautions to avoid the
complications associated with the NAFLD. Some of the
methodologies found in the literature exclusively regarding
the quantification of fatty liver are discussed below.

In [18], Lupsor et al. quantified the grades based on the
attenuation coefficient (AC) and gray level co-occurrence
matrix (GLCM) entropy feature and concluded that the AC
performs better compared to GLCM entropy features. The AC is
computed by considering the pixel values along the vertical
line (depth) of the image, while the GLCM entropy feature is
computed from a rectangular region cropped from the
homogeneous texture parenchyma of a liver.

Semra et al. [19] quantified the fatty content based on the
gray relational grade (GRG) feature computed between liver
and kidney parenchyma, for doing this authors have consid-
ered the database having both the liver and kidney organs
present in the same image.
Table 2 – Limitations of the existing methodologies in grading

Method 

M Lupsor et al. [18] The authors computed the attenua
almost spanning the entire ultraso
Due to this, even a small change in
statistics of the attenuation coeffic

Semra Icer et al. [19] The authors used multiple RoI's cor
grade as a feature in doing classific
significant impact on the classifica

Dan Mihai et al. [20] The authors considered RoI coverin
attenuation values. It is difficult to g
is a need to validate the algorithm

Cristian Vicas et al. [21] The authors consider RoI as three v
features from three vertical lines is
three RoIs without hepatic and por

Yin-Yin Liao et al. [22] Authors are dealt only with three c
Classification of moderate NAFLD i

Bharath et al. [23] Formulated the grading of fatty live
coefficients as a feature representa

Proposed Method Formulated the grading of fatty live
We used a novel feature extraction
computationally extensive than [23
Dan Mihai et al. [20], considered two regions of interest from
the liver for feature extraction, the features include: minimum
attenuation (MIA) and maximum attenuation (MAA), maxi-
mum value for region (MAV), minimum value for region (MIV),
median for liver (ML) parenchyma and median for kidney (MK)
parenchyma. The features are extracted from the region of
interest (RoI) cropped from the liver and kidney parenchyma,
and a dichotomy structure is employed for classification.
Similar to [19], the authors considered the database having both
liver and kidney organs present in the same image.

In [21], Cristian et al. used AC, backscattering coefficient
(BS) and fit error (FE) as features to classify the different grades
of the fatty liver. The features are extracted along the three
vertical lines of the liver parenchyma.

In [22], Yin-Yin Liao et al. extracted multiple features from
the radio frequency (RF) and liver ultrasound image, these
include texture features, signal to noise ratio (SNR) and slope
of the center frequency downshift (SCFD). Texture features
include auto-correlation (AUC), sum average (SA) and sum
variance (SV). The texture features are extracted from the RoI
cropped from the liver parenchyma, while the AC and BS
features are extracted from the RF data. The classification of
fatty liver is based on multinominal logistic model (MLM).

Recently, Bharath et al. [23] used the texture of liver
parenchyma to quantify the fatty content present in the liver,
the authors used scattering coefficients (SC) [24] as features to
quantify the fatty content present in the liver.

In all the methodologies, care is taken that the RoIs are not
enclosed with hepatic and portal veins since these parts do
not directly represent the fatty content of the liver. More
information regarding the database, feature extraction and
performance of these methods are reported in Table 6 in
results section. The limitations of these methodologies in
grading the fatty liver is discussed in Table 2.

The proposed algorithm is compared with popularly used
texture features for ultrasound texture characterization
[15,25–28], these includes GLCM [25,29,30], gray level run
length matrix (GLRLM) [15,26], Gist [31], Laws texture features
 the fat in the liver.

Remarks

tion coefficient from RoI corresponding to the vertical straight line
und image.

 one of the gain knobs of time gain compensation will change the
ients which will have impact on the final classification accuracy.
responding to liver and kidney parenchyma and used gray relational
ation. In this methodology, a cross labeling of RoI's will have
tion accuracy.
g the image region all over the liver parenchyma to compute the
et a RoI of large size without hepatic and portal veins, and also there

 on a larger database.
ertical lines spanning from top to bottom of the image. Extracting the

 highly subjective to time gain compensation knobs, and getting the
tal veins is highly constrained.
lassification namely: Normal, mild NAFLD and severe NAFLD.
s not discussed.
r as purely a texture discrimination problem. Authors used scattering
tion of a texture which is computationally intensive.
r as a texture discrimination problem.

 scheme based on curvelet transform and SVD which is less
] and performed better than existing methods.
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[32], SC [23] and multi-resolution features which includes
energy, magnitude, fractal dimension computed over subband
coefficients of the Daubechies and Gabor wavelets respectively
[33]. The features used in the literature for characterizing the
texture of liver are moderately successful in classifying the
abnormal liver images from normal liver images, hence multi-
fusion and hybrid approaches have been proposed for getting
higher classification accuracy [27,30,34].

The brief description regarding the texture features used for
ultrasound tissue characterization are discussed below:

2.1. GLCM features

The GLCM features capture the spatial relationship between
the pixels present in an image. The spatial relationship
between the pixels is characterized regarding how often two
pixels with intensities i and j occur in specific direction and
distance [35]. To extract the texture features, four GLCM's
corresponding to directions 08, 458, 908 and 1358, with the
distance between two pixels being one unit is computed
[13,25]. From each GLCM, 13 features were extracted, these
include angular second moment, contrast, correlation, vari-
ance, inverse difference moment, sum average, sum variance,
sum entropy, entropy, difference variance, difference entropy,
and two features regarding information measures of correla-
tion. For four GLCM's, a total of 52 features were computed.

2.2. GLRLM features

The GLRLM features captures the texture information by
computing the run-length of a pixel with specific gray value
occurring in a specific direction [36]. Eleven GLRLM features
corresponding to each direction 08, 458, 908, 1358 are computed,
constituting a total of 44 features. The features include short
run emphasis, long run emphasis, gray-level nonuniformity,
run length nonuniformity, run percentage, low gray-level run
emphasis, high gray level run emphasis, short-run low gray level-
emphasis, short-run high gray-level emphasis, long run low gray-
level emphasis and long run high gray-level emphasis [37].

2.3. Laws texture features

In this approach, each pixel is convolved with a set of nine
5 � 5 masks to capture the local variation in the texture.
The convolution masks are generated from the following
vectors: L5 = [1 4 6 4 1] ; E5 = [�1 � 2 0 2 1]; S5 = [�1 0 2 0 � 1]; R5 =
[1 � 4 6 � 4 1] . The vector L5 represent the center weighted
local average, E5 detect the edges, S5 detect the spots, R5 detect
the ripples. The 2D convolution masks are obtained by
computing the outer product of the vectors such as L5E5,
L5R5, E5S5, S5S5, R5R5, L5S5, E5E5, E5R5 and S5R5. For example, the
mask S5R5 is computed as [�1 0 2 0 � 1] � [1 � 4 6 � 4 1]T. After
applying these convolution masks on the image, the energy is
computed over the coefficients of the convolved image
resulting in nine features for a single image [32].

2.4. Gist

Gist captures the gradient information with respect
to different scales and orientations for different parts of the
image giving a rough description of a surface [38]. Gist features
are computed in the following way, initially the image is
convolved with 32 Gabor filters generated by 4 scales and 8
orientations resulting in 32 feature maps. Each feature map is
divided into 16 regions which is obtained by partitioning the
image into a 4 � 4 grid, and coefficients in each region is
averaged. All the averaged values corresponding to 32 feature
maps are concatenated resulting in a total of 512 features.

2.5. Multiresolution features

Multiresolution feature extracts the texture information by
decomposing the image into sub images with various
resolutions. Multiresolution framework proposed in [25,33]
have been used in this paper for comparison. The images are
decomposed using M-band wavelet and Gabor filter bank.
From each decomposed sub image, features like energy,
energy deviation and fractal dimension are computed. Using
M-band wavelet, the image is decomposed into 45 sub images,
resulting in 45 M-band wavelet energy (Wav-Enrg), wavelet
energy deviation (Wav-dev) and wavelet fractal dimension
(Wav-Fd) features. Gabor filter bank with five radial frequen-
cies (
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tions (08, 308, 608, 908, 1208 and 1508) have been used for
obtaining a total of 30 sub images. Energy in Gabor sub images
(Gabor-Enrg), energy deviation in Gabor sub images (Gabor-
dev) and fractal dimension of Gabor sub images (Gabor-Fd) are
used as the features for representing the ultrasonic texture.

3. Proposed algorithm for automated grading
of fatty liver

The block diagram representation of the proposed algorithm
used for classifying the texture of fatty liver is shown in Fig. 3.
Initially, the curvelet transform is applied to decompose the
image into different sub-bands. SVD is applied on each sub-
band for computing the singular values. The singular values
extracted from each decomposed image are integer in nature,
hence averaging the singular values result in a loss of
information, to overcome this, a nonlinear operator modulus
is applied before averaging. The mean of the modulus of the
singular values is then used as a feature to train the SVM
classifier for classifying the texture of an incoming image.

3.1. Curvelet transform

Curvelet transform was proposed by E. Candes and D. Donoho
[39] to overcome the drawbacks of the conventional wavelet
transform. The conventional wavelets lack directional repre-
sentations, which lead to directional wavelets such as Gabor,
curvelets, etc. Gabor wavelets can capture the direction
information isotropically but lacks direction sensitivity which
is addressed with the curvelet transform.

One of the crucial tasks in image classification is to extract
the representative features from an image. The features may
be lines, edges, curves, textures, etc. The features are
characterized with respect to scale, location, direction,
geometry, etc., which motivated researchers to use scale-
space filtering and multiresolution transforms for feature



Fig. 3 – Block diagram representation of the proposed method for classifying the texture of a fatty liver.
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extraction. Curvelets are multiresolution transforms localized
in scale, space and direction, and gives superior performance
in representing the texture, edges and curves. Curvelets
combined with other methodologies gave good results in
various image processing applications like denoising [40],
image representations [41], image enhancements [42], etc.
Recently, curvelet transforms have been widely applied in
medical image processing for developing automated diagnos-
tic algorithms. In [43], Nayak et al. used curvelet transform for
feature extraction to classify normal and pathological brain
MR images. In [44], retinal blood vessels are effectively
detected with high accuracy using the curvelet transform. In
[45], curvelet transform with entropy features are used for
automatic classification of normal and abnormal liver ultra-
sound images.

The objective of applying curvelet transform here is to
enhance the finest curves present in the texture image with
respect to different scales and orientations. The high direc-
tional sensitivity of the curvelets are obtained with the wedge
functions, which makes it to represent the curves much more
efficiently than the traditional wavelets. Curvelets give
optimal sparse representation for the objects with C2 singu-
larities. The wavelet approximation ~f for smooth object f with
C2 singularities using best m term wavelet thresholding can be
obtained with jjf�~f jj22�m�1, while curvelet approximation ~f

c

m

will give jjf �~f cmjj22�Cm�2ðlogmÞ3, resulting in a small asymptotic
error compared to any other representations. Curvelets are
multiscale transforms with strong direction characteristics,
and the elements are highly anisotropic at fine scales with
support following the parabolic scaling width � length2.

To briefly explain the curvelet transform, we introduce the
following notations, x is a spatial variable in R2, w is
a frequency variable, r and u represents the polar coordinates
in the frequency domain. To construct the system of curvelet
functions at each scale j, we define a window function Uj in
Fourier domain as:

Ujðr; uÞ ¼ 2
�3j
4 Wð2�jrÞV ð2½ j2�u

2p

  !
; (1)

where j
2

h i
is the integral part of j

2, W(r) and V(t) are the real
valued, smooth and nonnegative windows supported on r 2 (1/
2, 2) and t 2 [�1, 1] respectively. The support of Ujwill be a polar
wedge defined over the support of W and V. The UjðwÞ is
equivalent to the Fourier transform of mother curvelet cj(x)
defined in Eq. (2). The system of curvelets at scale 2�j is
acquired by translating and rotating the cj, where the se-
quence of equispaced rotation angles is given by
ul ¼ 2p�2�½ j2��l, where l = 0, 1, 2, . . . such that 0 � ul < 2p. With
the sequence of translation parameter k = (k1, k2) 2 Z2, the
curvelet function at scale 2�j, orientation ul and position xð j;lÞ

k ¼
R�1
ul
ðk12�j; k22�

j
2Þ is defined as:

cj;l;kðxÞ ¼ cjðRul ðx�xð j;lÞ
k ÞÞ; (2)

where Ru represent rotations of u radians. The curvelet coeffi-
cients C of an element f 2 R2 is obtained as:

Cð j; l; kÞ :¼ hf ; cj;l;ki ¼
Z

R2
f ðxÞcj;l;kðxÞdx: (3)

The digital curvelet transforms are always computed in the
frequency domain. The curvelet coefficients in frequency do-
main is computed as:

Cð j; l; kÞ :¼ 1

ð2pÞ2
Z

f̂ ðwÞĉj;l;kðwÞdw

¼ 1

ð2pÞ2
Z

f̂ ðwÞUjðRulwÞeihxkð j;lÞ;widw:
(4)



Fig. 4 – Curvelet coefficients of: (a) Normal; (b) Grade I; (c) Grade II; (d) Grade III images of size 128 T 128. Curvelet coefficients
of finer scale are not shown in figure. Perceptual difference in the curvelet coefficients can be observed in different grades
of fatty liver, which is not obvious in the original texture image.
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Implementation of curvelet transform known as the first
generation of curvelets is very complicated. Candes and
Donoho proposed a simpler and fast second generation
transform called fast discrete curvelet transform (FDCT)
[46]. FDCT is implemented in two versions namely wrapping
of specially selected Fourier samples and unequally spaced
fast Fourier transforms (USFFT), both having same compu-
tational complexity. In this paper, we used USFFT based
curvelet transform. Considering an n � n image in Cartesian
arrays of the form f[t1, t2], 0 � t1, t2 < n, the curvelet
transform of an image using USFFT is obtained in the
following way [47].

1. The Fourier samples of the input arrays are obtained by
applying a 2D fast Fourier transform (FFT) as

f̂ ½n1; n2� ¼
Xn�1

t1 ;t2¼0

f ½t1; t2�e�i2pðn1t1þn2t2Þ=n; �n=2�n1; n2 < n=2: (5)

2. For each pair of scale j and angle l, Fourier samples
f̂ ½n1; n2�n1tanul� are obtained from interpolating f̂ ½n1; n2� for
n1, n2 2 Pj, where

Pj = {(n1, n2) : n10 � n1 < n10 + L1,j;n20 � n2 < n20 + L2,j},
L1,j and L2,j are the length and width of a rectangle, (n10,

n20) are the pixel index corresponding to bottom of the
rectangle.
3. The interpolated samples are then multiplied with
a frequency window ~Uj to obtain

~f j;l½n1; n2� ¼ f̂ ½n1; n2�n1tanul�~Uj½n1; n2�: (6)

4. Curvelet coefficients are obtained by applying the inverse
2D FFT.

CDð j; l; kÞ ¼
X

n1 ;n2 2 PJ

~f j;l½n1; n2�ei2pðk1n1=L1;jþk2n2=L2;jÞ: (7)

The computational complexity of the discrete curvelet
transform is in the order of O(n2logn) and requires O(n2)
storage, where n2 represents the number of pixels. The
curvelet coefficients of the texture of a liver parenchyma is
shown in Fig. 4, the difference in the finer details of the texture
corresponding to different grades is better visualized in the
curvelet coefficients which is not obvious in the original
texture.

3.2. SVD

In general, the classification of images via wavelet models are
built by modeling the wavelet coefficients [48–50]. The number
of wavelet coefficients in each sub image is of very high
dimension, and hence it is complex to model the data.



Fig. 5 – Liver ultrasound image. Rectangular boxes in the
image represents the texture used for classification.
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To reduce the dimension of the wavelet coefficients, features
like energy, mean, standard deviation, fractal dimensions, etc.,
computed over decomposed images have been exclusively
used for classifying the texture. These features are moderately
successful in characterizing the texture of a liver. Hence it
prompted authors to use more than one set of features to
represent the texture of a ultrasonic liver [25].

To quantify the curvelet coefficients in each sub-band and
to get the good representation, SVD is applied on each sub-
band images. SVD have been widely used in image classifica-
tion algorithms [9] image denoising [51], dimensionality
reduction [52], solving system of linear equations [53], etc.
The objective of applying SVD here is to obtain the average
projection of Eigenvectors of curvelet coefficients. If Ci is the
curvelet transformation coefficient matrix then SVD of Ci,
which is of the size M � N is obtained as:

Ci ¼ Pi
X
i

QT
i ; (8)

here, Pi is a M � N orthogonal matrix with Eigenvectors
as columns of CiCT

i , Qi is a N � N orthogonal matrix whose
Eigenvectors are columns of CT

i Ci, and
P

i is a N � N diagonal
matrix with singular values s1, s2 . . . sn arranged in decreasing
order s1 � s2 � s3 � � � � sn � 0. The singular values are comput-
ed as the squareroot of the Eigenvalues of a matrix CiCT

i or CT
i Ci.

The absolute mean of the singular values
P

i are computed and
considered as a feature for each decomposed image.

3.3. Classifiers

The proposed features is evaluated using two supervised
algorithms namely SVM and K-Nearest Neighbour (KNN)
classifier. The brief introduction regarding the classifiers
is given below.

3.4. SVM

SVM learns a model from the training features that separate
the different classes. SVM is a binary classifier, hence to
classify more than two classes One-vs-One approach is used.
SVM works only with linearly separable data, to work with
linearly non-separable data, SVM is operated with kernel
operators. [54]. However, we evaluated other kernels including
Gaussian, Quadratic and linear for classification, SVM with
cubic kernel performed better over other kernels. The inbuilt
SVM function available in the MATLAB 2017a version is used in
the experiment with following parameters: degree of polyno-
mial = 3, Box constraint = 1, kernel scale is set to auto, data
standardization is set to 'true' with iterative single data
algorithm as a solver.

3.5. KNN

The KNN classify the incoming feature by computing K nearest
neighbors with the training features. The nearest neighbors
between the feature vectors are computed based on the
distance between the features. The features in the training
example which have less distance with the feature that has
to be classified is considered as the nearest neighbor.
The classification is done based on a majority voting rule.
The optimal value of K is computed based on the cross-
validation. The KNN gave high classification accuracy for K=5
with Euclidean as a distance metric.

4. Database acquisition for analysis

The liver ultrasound images for this study is acquired using
a Siemens Acuson S1000 ultrasound scanner with a phased
array transducer from Asian Institute of Gastroenterology,
Hyderabad, India. A total of 650 patients participated in the
study and images were collected during a period from
November 2015 to August 2016. The patients include both
male and female, and they were in the age group of 20–55
years. The ground truth for the images is jointly labeled by two
sonographers (one sonographer has more than thirty years of
experience while another sonographer has more than ten
years of experience in sonography). The database consisted of
196 Normal, 173 Grade I, 157 Grade II and 124 Grade III images.
The texture in all the images is cropped in the homogeneous
regions of liver parenchyma as shown in Fig. 5. Care is taken
that the texture is free from blood vessels, acoustic shadows,
hepatic and portal veins. Each sample cropped from the image
is of size 78 � 100. Multiple samples are cropped from the same
image ensuring overlapping samples does not contain more
than half of the pixels in common, which is similar to the
methodology adapted in [25,33,55]. The cropped texture
patches which are not in agreement between the two
sonographers are not considered for the study. The cropped
texture patches of the liver parenchyma are evaluated
independently by the sonographers. A 17% disagreement
between the cropped texture patterns is observed between the
two sonographers and is not included in the analysis. The
analysis is done on a database consisting of 1000 texture
patches of a liver, where each category consist of 250 images.
We used the same database which has been used in [23].



Table 3 – Accuracy of the proposed algorithm with respect to different scales and image sizes.

Image size Scale Features size Accuracy (%)

Real Complex

KNN SVM KNN SVM

32 � 32 5 42 90 92.8 88.6 93.8
64 � 64 6 74 92.8 94.7 92.1 95.8
128 � 128 7 106 93.7 95.1 93.5 96.9
256 � 256 8 170 92.7 95.0 93.4 95.6
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5. Results

The proposed algorithm is evaluated with widely used ten-fold
cross validation scheme [21]. The performance of the algo-
rithm is measured using accuracy as a metric, which is termed
as ratio of correctly classified to the total number of images
tested.

The advantage of curvelet transform comes from its ability
to represent the curves in an image. The curves can be made
coarser or finer by resizing the image. The number of scales j
the image can be decomposed also depends on the size of the
image. The image can be decomposed to its maximum scale
equal to ln(image size), where size of the image is being power
of 2. More detailed information in images can be extracted by
decomposing the image to its maximum scale. To analyze the
performance of the proposed algorithm with respect to
number of scales and different image sizes, the images are
resized and tested with respect to its maximum scale. The
inbuilt MATLAB function imresize is used to resize the image
from 78 � 100 to the required size. The accuracy of the
proposed algorithm with respect to different scales and image
sizes are shown in Table 3. The proposed algorithm is tested
with both real and complex curvelets. The complex wavelets
performed better than the real curvelet transform. The
maximum accuracy is achieved for the image of size 128 �
128 for both KNN and SVM classifier. KNN gave an accuracy of
93.5%, while SVM classifier reported with a maximum
classification accuracy of 96.9% for complex curvelet trans-
form. The real curvelet transform gave the highest accuracy of
95.1% with SVM classifier while KNN resulted with an accuracy
Table 4 – Accuracy of the proposed algorithm with respect
to the features extracted from the wedges at each scale.
The size of the image considered is 128 T 128. Scale 1
refers the coarser scale, while 7 refers the finer scale.

Scale Feature size Accuracy

Real Complex

KNN SVM KNN SVM

1 1 64.7 25.8 64.3 27.9
2 8 53.8 54.4 52.8 51.7
3 16 63.4 62.6 67.7 67.6
4 16 76.4 75.0 79.1 79.4
5 32 89.9 88.8 90.6 90.9
6 32 88.4 88.7 88.6 88.7
7 1 48.9 25.9 50.6 25.5
of 93.7%. Further, increase in image size to 256 � 256 slightly
reduced the classification accuracy with 95.6% for SVM
classifier and 93.4 % for KNN classifier for the complex curvelet
transform.

5.1. Accuracy of the proposed algorithm for the features
extracted at wedges of each scale

The individual accuracy of the features extracted from the sub-
bands (wedges) corresponding to each scale in quantifying the
fatty liver is shown in Table 4. The accuracy of features
extracted from the wedges corresponding to first three coarser
scales is very low, while for the wedges corresponding to scales
4, 5 and 6 performed moderately, and for the coarser and finer
scale the classification accuracy is very poor. The maximum
classification accuracy is obtained for the features computed
at the scale 5 by complex curvelet transform with an accuracy
of 90.9% followed by the scale 6 at 88.7%. Since the features
computed from wedges of each scale are moderately success-
ful in classifying the texture of fatty liver, we considered the
features from the wedges of all scales to classify the grades of
fatty liver.

5.2. Statistical analysis of the features

Fig. 6 refers the log of mean of features computed over the 250
images of each category. Observing the statistics of features
at coarsest scales J = 2, J = 3 and J = 4, a clear distinction in
mean of the sub-bands between the different grades of fatty
liver is observed. Th features of Normal liver had high mean
followed by Grade I, Grade II and Grade III respectively. At
finer scales J = 5, and J = 6, high deviation in the mean of the
features is observed between Grade I and Normal, Grade II,
Grade III classes, while the mean of the Normal, Grade II and
Grade III are coincided. The high standard deviation is
observed in the features corresponding to textures of all
the categories which makes it difficult to classify the
ultrasonic texture image purely based on the statistics.
Hence, in this paper learning based approach is employed
to classify the ultrasonic texture.

5.3. Comparison of the proposed method with popularly
used texture features

The performance of the proposed method with respect to
some of the popular texture feature schemes used in liver
texture characterization is shown in Table 5. Specific to four



0 20                                40                                60                                80 100 120

Features

1

2

3

4

5

6

7

8

9

lo
g 

( 
M

ea
n)

N
GI
GII
GIII

J:1

J:7

J:3

J:2

J:4

J:5

J:6

Fig. 6 – Log of mean of the features of Normal, Grade I, Grade II and Grade III fatty liver computed over 250 images of each
class. J in the figure correspond to the features in each sub-band. Log of mean and standard deviation is considered for better
visual representation.

b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 3 8 ( 2 0 1 8 ) 1 4 5 – 1 5 7154
category classification, the proposed method performed with
an highest accuracy of 96.9% which is better than SC features
which gave an accuracy of 96.6% in quantifying the fat in the
liver. The next best accuracy 92.8% after SC features is obtained
with the energy features computed from the Gabor filter bank.
In classifying the three categories Grade I, Grade II and Grade
III, the proposed method resulted with an highest accuracy of
98.1%, and the next best accuracy is obtained for SC with 97.3%.
While classifying between Grade II and Grade III categories, the
GLCM, energy and standard deviation features of Gabor
images, SC features and the proposed method resulted with
an accuracy greater than 99%. The SC performed better with
99.8%, while the next best accuracy is achieved with proposed
method along with the energy deviation of the Gabor features
with 99.2%. High classification accuracy is achieved by the
texture features in discriminating Grade II and Grade III fatty
Table 5 – Comparison of the proposed method with some of th
in characterizing the ultrasonic texture.

Feature Feature dimension 

4 class N, G
GIII

KNN 

GLCM 52 86.7 

GLRLM 44 85.8 

Laws texture 9 82.9 

GIST 512 80.8 

Wav_Energ 45 87.5 

Wav_dev 45 88.4 

Wav_Fd 45 88.5 

Gabor_Energ 30 87.4 

Gabor_dev 30 86.3 

Gabor_Fd 30 88.0 

SC 417 93.6 

Proposed method 106 93.5 
liver. The ambiguity in classification is occurred in dealing
with three and four category classification. For all the features,
SVM classifier performed better than the KNN classifier.

5.4. Comparison of the proposed method with other
methodologies

Table 6 compares the performance of different methodologies
used in the literature with our proposed method. The
performance of the methodologies in literature are reported
with Area Under Receiver Operating Characteristics (AUROC)
and accuracy metric. Since the database used in the literature
are not publicly available, and the corresponding databases are
acquired accordingly with author's requirement, it is not
possible to replicate the existing approaches on our database.
The AUROC (True positive vs False positive) of the proposed
e popularly and widely used texture features

Accuracy(%)

Number of classes

I, GII, 3 class GI, GII, GIII 2 class GII, GIII

SVM KNN SVM KNN SVM

92.3 91.6 92.7 98.0 99.0
92.4 91.5 92.9 94.8 98.2
88.5 93.7 95.2 95.8 97.6
90.1 85.3 90.6 88.1 93.0
90.4 91.4 93.0 92.0 94.5
89.9 88.8 90.4 89.2 90.6
90.0 89.2 91.0 90.4 93.0
92.8 91.1 93.5 95.2 99.2
90.6 91.5 93.7 94.8 99.0
91.0 92.3 94.5 94.4 96.2
96.6 94.5 97.3 98.2 99.8
96.9 95.1 98.1 97.2 99.2



Table 6 – Methodology and performance comparison of the proposed method with the existing methodologies. Notations:
N: Normal, GI: Grade I, GII: Grade II, GIII: Grade III, the notation (N, GI) is considered as one class.

Authors Features Classifier Database Performance measure

M Lupsor et al. [18] AC SA N: 24
NASH: 96

AUROC:
Nvs GI: 0.951,
N, GI vs GII, GIII: 0.879,
N, GI, GII vs GIII: 0.859

Semra Icer et al. [19] GRG SA N:45
GI: 30,
GII: 55,
GIII: 10

AUROC:
N vs GI: 0.975,
GI vs GII: 0.958,
GII vs GIII: 0.949

Dan Mihai et al. [20] MIA,
MAA,
MAV,
MIV,
ML,
MK

RF N:10,
GI: 70,
GII: 33,
GIII: 7.

Accuracy:
91.7%

Cristian Vicas et al. [21] AC,
BS,
FE

SVM N: 25,
GI: 32;
GII: 37,
GIII: 17.

AUROC:
N vs GI, GII, GIII: 0.84,
N, GI vs GII, GIII: 0.73,
N, GI, GII vs GIII: 0.66

Yin-Yin Liao et al. [22] AUC, SA,
SV, SNR,
SCFD, AC, BS

MLM N: 151,
Mild NAFLD: 127,
Severe NAFLD: 106.

AUROC:
N vs mild NAFLD: 0.73,
N vs Severe NAFLD:0.81

Bharath et al. [23] SC SVM N: 250
GI: 250
GII: 250
GIII: 250

Accuracy: 96.6%

Proposed Method SVM N: 250
GI: 250
GII: 250
GIII: 250

Accuracy: 96.9%
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method resulted 1 for (N vs GI, GII, GIII), (GII vs N, GI, GIII), (GIII
vs N, GI, GII), (GI vs GII), (GII vs GIII), 0.98 for (GI vs N, GII, GIII),
and 0.99 for (N vs GI) which is better than the previous
methodologies.

5.5. Confusion matrix

The confusion matrix for the proposed algorithm is shown in
Table 7. Grade II classified with an accuracy of 99.6%, while
Grade I and Grade III classified with an accuracy of 93.2% and
96.8% respectively. The algorithm resulted with an accuracy of
98% in correctly classifying the Normal liver. From observa-
tions, we infer that five images of the Normal liver are
misclassified as Grade I fatty liver, and a clear distinction is
observed between Normal and Grade II, Normal and Grade III
classes. While classifying the Grade I, 17 images are mis-
classified, out of which eight images are classified as Normal,
six images as Grade II and three images as Grade III
Table 7 – Confusion matrix of the proposed algorithm.

True class Predicted class

Normal Grade I Grade II Grade III

Normal (250) 245 5 0 0
Grade I (250) 8 233 6 3
Grade II (250) 0 1 249 0
Grade III (250) 0 3 5 242
respectively. Since Grade I lies between Normal and Grade II
categories, misclassifications of the Grade I to Normal and
Grade II can be justifiable, but surprisingly three classes of
Grade I is misclassified as Grade III. In classifying the Grade II
images, only one image is misclassified as Grade I, and a clear
distinction is observed between Grade II and Normal, Grade II
and Grade III classes. Eight images of Grade III fatty liver is
misclassified, out of which five images are misclassified as
Grade II and three images as Grade I. It is worthy to note that
only eight images of Grade I is misclassified as Normal, and no
image of Grade II and, Grade III is misclassified as Normal
which is crucial in medical diagnostics. Considering Grades I, II
and III as positive cases (images with disease) and Normal
images as negative cases, the proposed algorithm resulted
with a sensitivity of 98.9% (742 images out of 750 fatty liver
images classified correctly) and specificity of 98% (245 images
out of 250 normal liver images classified correctly).

6. Conclusion

In this paper, we hypothesis that the ultrasonic liver textures
corresponding to different fatty grades can be discriminated by
enhancing the curves and gradients present in the texture.
Based on the hypothesis, we proposed a novel feature
extraction scheme using curvelet transform and SVD for
representing the texture and classified different grades of fatty
liver with an accuracy of 96.9%. The previous best classification
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accuracy of 96.6% is achieved on the same database with SC
features. The SC feature extraction is computationally inten-
sive and took 1.3 s in MATLAB while the proposed algorithm
took only 0.3 s on an Intel core i7 processor with a 16 GB RAM
running with 2.8 GHz clock. Since the grading of ultrasonic
fatty liver involves high subjectivity, the proposed algorithm
will be beneficial and can be used as a tool to assist the
sonographers to accurately diagnose fatty liver with high
confidence. Additionally, proposed algorithm can improve the
diagnostic accuracy by eliminating the subjectivity caused due
to skill of the sonographer.

In this paper, we evaluated the proposed algorithm by
extracting the RoI cropped from the texture of liver parenchy-
ma. Depending on the fatty liver deposition, the textures are
not homogeneous through out the liver parenchyma (refer
Fig. 1), and hence to quantify the fat in the liver image, we have
to consider multiple texture lesions from the liver parenchyma
and need to come up with a unified decision based on the
multiple texture lesions in grading the fatty liver. As a future
extension of this work, we will try to detect the multiple
homogeneous textures lesions automatically from different
spatial locations of a liver parenchyma and grade the fatty liver
based on the classification results obtained by applying the
proposed algorithm on detected texture lesions.
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