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Abstract—Indoor localization is currently of good interest
concerning both business viability and end user experience. In
this paper, we propose an accurate and robust step detection
algorithm for smartphone based pedestrian dead reckoning
(PDR) systems. The developed algorithm makes use of the
acceleration measured from the smartphone and uses a statistical
threshold based classification to detect the steps accurately. The
statistical thresholds used are derived from extensive field trials
with subjects of different age groups and found to provide good
accuracy when used in real-time. For analyzing the performance
of the proposed algorithm, we have implemented the algorithm
on Android platform and performed extensive field trials. The
analysis proves that the proposed algorithm identifies the user
steps in real-time with an accuracy of more than 99% with
minimum memory requirements.

Index Terms—PDR, SLAM, Step detection, Indoor localization.

I. INTRODUCTION

Indoor localization has a multitude of applications such as

indoor mapping and navigation in commercial buildings, loca-

tion based services, rescue during hazards, etc., [1]. Although

many techniques to provide indoor localization have been

investigated in the literature, no global solution is still available

and is currently an active research area. Multiple problems

such as lack of accuracy, huge manual intervention, need for

pre-deployed stable infrastructure, aggregation of errors over

the time still make it a challenging problem [2], [3]. The

accuracies of traditional GPS based positioning systems are

highly confined due to the indoor structures and are completely

useless for indoor positioning [4]. Later, WiFi based indoor

localization techniques have gained prominence due to the

existence of already deployed WiFi infrastructure in many of

the indoor spaces such as homes, commercial complexes, etc.,

[5], [6]. Although WiFi based localization techniques provide

accuracies up to 3m, main drawbacks involve increased power

consumption and creation of huge fingerprinting database

[7]. Also, the indoor environmental characteristics of many

commercial spaces change rapidly owing to human mobility

and changes in asset positioning such as furniture, tables,

etc. These result in accuracy degradation of WiFi positioning

systems and requires aggregation of new fingerprint database

every time the environment changes. Hence, WiFi based

indoor localization techniques have not witnessed many real-

time deployments. Similarly, other studies existing in literature

investigated the usage of Bluetooth and RFID for localization

in indoor spaces [8]–[11]. In all these studies, for achieving

localization new infrastructure needs to be deployed while the

problems like fingerprinting and accurate estimation of path

loss models persist.

However, with the increased usage of smartphones, the

pedestrian dead reckoning (PDR) based indoor localization

techniques are gaining importance. Using PDR with smart-

phones for localization has significant advantages such as wide

availability of necessary infrastructure with the end users,

low cost, no need for new infrastructure deployment and low

power consumption. In the PDR technologies, the inertial

sensors present on the smartphones can be utilized to track

or detect the user activities such as walking, running, moving

in elevators etc [12], [13]. In all the PDR techniques, the first

step involves the accurate detection of steps and then a proper

stride length estimation model is used to calculate the distance

traveled by the user. Accurate calculation of the step count,

distance traveled by the user and heading direction play a

significant role in determining the user trajectory accurately.

Multiple techniques are investigated in the literature for step

detection using smartphones [14]–[19]. In [14], authors use

the method proposed in [20] for detection of steps where

the magnitude of acceleration is considered for formulating

a Finite State Machine (FSM). In the analysis, the authors

considered a stream of continuous walking data. Usually in a

realistic scenario, the users when navigating with the help of

an indoor map, will have a quasi-continuous movement and the

algorithm needs to be robust enough to detect the steps when

the user movement is discontinuous. In [15], authors developed

a statistical thresholding based step detection algorithm which

estimates the total steps taken by the user accurately when

the user motion is continuous, but fails when discontinuities

occur. Authors in [16], proposed a 3 step calculation of steps

which include identifying the state of user with a decision tree

classifier, exploiting features such as periodicity and estimating

number of peaks in the accelerometer readings. Although the
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computational capabilities of smartphones are increasing, in

order to perform classification and feature extraction in real-

time is difficult, also leads to significant power consumption.

Also, for determining the periodicity, the system introduces

a notable lag which disrupts the user experience. In [17],

authors proposed an FSM to determine the current orientation

of the smartphone and use the appropriate axis for determining

the steps. While determining the steps, authors considered a

single threshold and time interval for detection of steps. The

problem with single threshold involves identification of false

peaks as user steps leading to error accumulation. In addition,

if the orientation change of mobile phone is not detected

accurately, the FSM results in an erroneous state resulting in

a non-recoverable error. In [18], authors used a slightly low

complex approach where the Local Coordinate System (LCS)

is projected to Global Coordinate System (GCS) and used a

simple thresholding for detection of steps. For the analysis

of performance, authors did not consider any scenarios where

false steps occur. Authors in [19] used Continuous Wavelet

Transform (CWT) and simple peak thresholding for detection

of steps. CWT introduces complexity in implementation and

this technique is also prone to error accumulation when false

peaks are generated.

Hence, there is a need for a low-complex real-time step

detection algorithm that is robust enough to false peaks and

discontinuous user movement. Primary contributions of this

paper include:

• Develop a low complex step detection algorithm which

can 1) accurately detect the steps in the presence of

false peaks generated due to mishandling or slipping of

phone, 2) accurately function in both continuous and

discontinuous user motion

• Validation of proposed algorithm using real-time imple-

mentation and field trials

• Comparison of proposed method with existing implemen-

tations

As this study primarily aims at developing a robust step detec-

tion algorithm for indoor navigation applications, we assume,

the user is handling the phone in front of him. This hand-

held position is reasonable and also in good agreement with

the literature as the user to check his position continuously

views his screen [18]. The remainder of this paper is organized

as follows. Section II describes the proposed architecture

for detection of steps. Section III describes the experimental

setup, and analyzes the performance of the proposed model in

various scenarios. Finally, Section IV concludes the paper by

discussing the future scope of this work.

II. HOLISTIC VIEW OF THE SYSTEM ARCHITECTURE

In this section, we discuss the proposed system architecture

for robust, accurate and real-time step detection shown in Fig.

1. The proposed architecture consists of seven functional units,

and are briefly discussed in the following sections.

Accelerometer

(x,y,z)

Filter

Moving Average

High Pass FilterLCS to GCS

Detector
Classifier Haar DWT

Preprocessing of signal

Stance or Swing

Fig. 1: Proposed system architecture for robust and low

complex step detection
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Fig. 2: ax, ay , az and a obtained while the user takes seven

steps with the smartphone held in his hand

A. Accelerometer

An accelerometer is a low-cost inertial measurement unit

(IMU) device which measures the forces applied to the smart-

phone in the three axes including the effect of gravity. It

is widely available in many of the smartphones due to its

low cost and low power consumption. Usually, the human

walking always follows a distinctive pattern, where the forces

applied will be symmetrical on both the legs. These applied

forces create an acceleration during the movement of legs

which get coupled into the human body. As the user holds

the phone in his hand, these applied forces will also result in

the acceleration of the phone and these recorded accelerations

using a smartphone help us in the real-time identification of

the steps taken by the user. Although the accelerometer records

the acceleration generated due to user walking, it also includes

the acceleration generated due to other forces such as random

phone movement while holding in hand which we term it as

noise. Fig. 2 shows the raw acceleration data along x-axis (ax),

y-axis (ay), z-axis (az) and norm (a) consisting of 7 steps

obtained from the smartphone while the user is walking with

the smartphone held in his hand. Although one can observe

the peaks and valleys corresponding to the user steps, it is

still noisy and needs proper filtering to acquire the signal of

interest for accurate step detection.

The dynamics of walking can be classified into a stance

and a swing phase. For every step taken, the entire duration

for which the heel is in the air is regarded as swing phase,

and the moment the heel strikes the ground is considered

as stance phase. During the swing phase, the acceleration
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Fig. 3: Orientation of accelerometer axis within a smartphone

increases initially and then decreases before the heel strikes

the ground thereby resulting in a valley when the heel strikes

the ground.

B. Local Co-ordinate System (LCS) to Global Co-ordinate

System Conversion (GCS)

The acceleration obtained due to the footsteps can be well

captured in the vertical axis to the ground. Fig. 3 shows the

orientation of the three axes within a smartphone. Ideally, if the

smartphone is held perfectly parallel to the ground, the effect

of the gravity will be observed only in the az . In Fig. 2, as the

user is holding the phone in hand, the effect of the gravity is

maximally observed in az compared to other two axes. While

the user is walking, the phone orientation changes and z-axis

of the smartphone will no longer be the vertical axis, leading

to the distribution of gravity into all the three axes. Hence we

perform a rotation of 3D acceleration signals obtained from

local coordinate system (LCS) to global coordinate system

(GCS) using the rotation matrix R. aG, which represents the

accelerations after transforming into GCS can be calculated as

shown below.

aG = Ra (1)

C. High-pass Filter (HPF)

The data acquired from the accelerometer of the smartphone

comprises of the effect of gravity. Hence, we use a low

complex high-pass filter to remove the gravity from the GCS

rotated accelerations as shown below.

gi = αgi−1 − (1− α)aG
i (2)

aG
hpf = aG

i − gi (3)

Here, gi represents the vector of 3-dimensional gravity

extracted from the accelerometer data at the time instant i,

and aG
hpf represents the vector of 3-dimensional high-pass

filtered data without the effects of gravity.

D. Haar Discrete Wavelet Transform

In general, the human walking pattern comprises of fre-

quencies varying from 1.2 to 2.5 Hz and all the other high

frequencies may result in false peaks. Hence, we make use

of discrete wavelet transform (DWT) to perform the time

frequency analysis and remove the high-frequency noise.

Although the processing capabilities of the smartphones are
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Fig. 4: Filtered and smoothened accelerations in the vertical

axis with reference to the ground comprising of seven user

steps

increasing, power consumption is still a major challenge. The

main significance in choosing Haar as the mother wavelet lies

in its low-complex decomposition. The vertical axis of the

filtered and GCS rotated acceleration (aGhpf,z) is decomposed

in a single dyadic scale (21) and the approximate coefficients

are used for the detection of steps.

E. Moving Average Filter

Although the noises are removed, to smoothen the acceler-

ation signal, we make use of a moving average filter (MAF).

Fig. 4 plots the smoothened acceleration along the vertical axis

(s) with reference to the ground after all the HPF, Haar DWT

and MAF are performed.

F. Stance or Swing Detector with Classifier

We make use of the smoothened signal (s) for estimating the

peaks and valleys. As soon as the new data is available from

the accelerometer, the preprocessing of the signal is performed,

and the smoothened sample (sn) is obtained. To overcome

the limitations of existing studies where the probability of

detection of false steps is higher, we classify a step in three

phases. We will first detect a peak and then detect if any valley

exists for the detected peak. After detection of the peak and

valley, we then use a binary classifier to classify it as a true

step. The sample sn can be classified as a peak or valley if

it satisfies the below condition where w indicates the window

length.

sn =

{

peak, if sn > max(sn−w:n−1, sn+1,n+w)

valley, if sn < min(sn−w:n−1, sn+1,n+w)
(4)

After the detection of a valid peak or valley, Algorithm 1

and 2 provide the mechanism for detection of a valid step.

The Algorithm 1 is used for the initialization of variables. ap
and av indicate the amplitude of the peak and valley detected

respectively and are initialized to 0 at the beginning of the pro-

cess. np and nv indicate the time stamp of the latest peak and

valley identified. The total number of steps detected (steps) is

initialized to 0, and w indicates the window length considered

for detection of peak and valley. The variable prevState

indicates the previous state detected which includes peak or

valley and is initialized to init at the beginning of the process.
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As the human walking pattern follows periodic dynamics, the

maximum latency between a peak and valley within a step will

be constrained by a maximum delay specified by maxDelay.

Algorithm 1 Parameter Initialization

function initialize()

ap ← 0

av ← 0

np ← 0

nv ← 0

steps ← 0

w ← 5

prevState ← init

maxDelay ←
fs
2

end function

After the initialization, every preprocessed acceleration sam-

ple at time instance n (sn) is classified for identification of

steps as shown in Algorithm 2. The entire process can be

classified into five scenarios depending on the state of the

process as follows

1) Scenario 1 - sn is identified as a peak during initializa-

tion: During the process initialization the prevState is equal

to init, and hence we update the peak parameters ap, np to

sn and n respectively. Also, we update prevSate to peak as

a valid peak is detected.

2) Scenario 2 - sn is identified as a peak and prevState is

also a peak: If sn is detected as a peak while the prevState is

also a peak signifies that no valid valley is present in between

the two peaks (current peak at time instant n and previous

peak detected at np). Hence, we check if the amplitude of the

current peak is greater than the previous peak and classify the

previous peak detected as a false peak. Also, we update the

peak parameters ap, np to sn and n respectively. If the current

peak amplitude is found to be smaller than the previous peak,

we consider the current peak as a false peak.

3) Scenario 3 - sn is identified as a peak and prevState

is a valley: If sn is detected as a peak while the prevState

is a valley, we consider the current peak as a new peak and

update the peak parameters ap, np to sn and n respectively.

4) Scenario 4 - sn is identified as a valley and prevState

is also a valley: If sn is detected as a valley while the

prevState is also a valley. it signifies that no valid peak

is present in between the two valleys. Hence, we check if

the amplitude of the current valley is lesser than the previous

valley and classify the previous valley as a false valley.

Also, we update the valley parameters av, nv to sn and n

respectively. If the current valley amplitude is found to be

greater than the previous valley, we consider the current valley

as a false valley.

5) Scenario 5 - sn is identified as a valley and prevState

is a peak: If sn is detected as a valley while the prevState

is a peak, we consider the current valley as a new peak and

update the peak parameters av, nv to sn and n respectively.

Now, we measure the delay between the corresponding peak

and valley (np−nv), and if it does not exceed the maxDelay,

it can be classified as a true step and the steps can be

incremented. If the delay between the corresponding peak and
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Fig. 5: Detection of steps when the user walking is continuous

valley exceeds the maxDelay, it can be regarded as a false

step.

Algorithm 2 Stance or Swing Detection

function stepDetector(sn)

if sn = peak then

if prevState = init then

ap = sn
np = n

prevState = peak

else if prevState = peak then

if sn > ap then

ap = sn
np = n

prevState = peak

else if prevState = valley then

ap = sn
np = n

prevState = peak

end if

end if

else if sn = valley then

if prevState = valley then

if sn < av then

av = sn
nv = n

prevState = valley

else if prevState = peak then

av = sn
nv = n

prevState = valley

if nv -np < maxDelay then

steps = steps + 1

end if

end if

end if

end if

end function

Fig. 5 and 6 plots the detected steps using the proposed

architecture in two different scenarios where the user motion

is continuous and discontinuous respectively. The red marker

indicates the swing phase of the user and the green marker

indicates the stance phase of the user and also a successful step

was taken by the user. It can be observed that the proposed

algorithm can detect the user steps accurately in both the cases.

III. PERFORMANCE ANALYSIS

For analyzing the performance of the proposed algorithm,

we have developed a real-time testbed using Android platform.

The developed application runs on a smartphone or tablet

and counts the number of steps taken by the user using

the proposed algorithm. Fig. 7a and 7b shows the developed

application and the user experimenting using a smartphone

respectively. For the experimentation, we have considered 12

subjects with varying demographics and each user is asked

757



TABLE I: Performance analysis of the proposed system architecture in real-time using a smartphone under two different

scenarios with 12 demographically different subjects

User No. Sex Age Height (cm) T1 - Ground Truth T1 - Proposed Method T1 - Accuracy (%) T2 - Ground Truth T2 - Proposed Method T2 - Accuracy (%)

1 F 26 173 274 273 99.63 271 270 99.63

2 M 30 170 236 238 99.15 236 237 99.57

3 M 33 178 204 204 100 214 213 99.53

4 M 45 180 245 245 100 222 222 100

5 M 24 175 245 245 100 244 245 99.59

6 M 29 165 251 250 99.60 248 247 99.59677

7 M 35 175 240 240 100 237 237 100

8 M 27 168 236 236 100 243 242 99.58

9 M 41 178 231 230 99.56 230 230 100

10 M 25 165 234 234 100 226 226 100

11 F 30 163 260 260 100 272 271 99.63

12 F 25 152 216 216 100 283 282 99.64
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Fig. 6: Detection of the steps when the user walking is

discontinuous

(a) (b)

Fig. 7: (a) Developed Android application for analyzing the

real-time performance (b) Experimental trials at Academic

Block A, IIT Hyderabad

to walk across the hallway of the Academic Block A, IIT

Hyderabad. The path trajectory adhered by every user during

the experimentation is shown in Fig. 8 with A indicating the

starting point and the ending point is represented using B. On

an average, the user walks 176m for every trial considered for

the real-time performance analysis.

We have considered two scenarios for the user walking

along the defined trajectory namely continuous motion (T1)

and discontinuous motion (T2). In the continuous motion

scenario, the user walks continuously from start to end of the

trajectory, while in the latter scenario the user stops walking

for irregular intervals randomly. Table I describes the accuracy

of the proposed system architecture under the two scenarios

BCorridor

A

70m

24m

39m

Fig. 8: Path trajectory adhered for experimental analysis

(T1 and T2). The column T1 - Ground Truth indicates the

actual user steps taken to reach from start to the end of

the trajectory with user motion being continuous and the

column T1 - Proposed Method provides the total number of

steps calculated by the smartphone in real-time. Similarly, the

columns T2 - Ground Truth and T2-Proposed Method provides

the actual steps taken and the steps detected by the smartphone

under scenario T2. One can observe that the proposed method

can accurately determine the total number of steps taken by the

user accurately by achieving a negligible error. On an average

over 12 subjects with varying demographics, the proposed

architecture achieves an accuracy of 99.82% and 99.73% in

both the scenarios T1 and T2 respectively.

Table II compares the performance of the proposed model

with popular existing models. It can be observed that the

proposed method achieves better accuracy compared to the ex-

isting models. Although the authors in [17] claim the accuracy

of the step detection to be 100%, the analysis is performed

under a constrained environment where the artifacts created

due to random hand movements, false steps, etc. are not

considered. Regarding the complexity of the proposed system

architecture, as given in Table II, most of the techniques

offer good accuracy using complex preprocessing techniques

such as continuous wavelet transforms, Fourier transform and

periodicity estimation, etc. Although these techniques improve

the estimation accuracy, it significantly increases the power

consumption of the smartphone and also introduces significant

latency. The proposed architecture in this paper makes use of

very low complex signal conditioning blocks such as Haar

DWT, low complex HPF, etc. which are recursive and a new

sample can be processed immediately as soon as it arrives
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TABLE II: Performance analysis of the proposed architecture

when compared to existing popular models

No. Model Accuracy (%) Drawback

1 [15] 99.5
Results in inaccurate step detection

if the user movement is discontinuous

2 [16] 99
Involves complex techniques such as Fourier,

periodicity and similarity estimation

3 [17] 100
Introduces false steps due to

random hand movements

4 [18] 99
Introduces false steps due to

random hand movements

5 [19] 99 Uses complex Continuous Wavelet Transform

6 Proposed Method 99.73
Robust to false steps,

but smartphone orientation dependent

thereby avoiding additional latency. From the experimental

analysis, it is observed that the proposed system architecture

detects the steps accurately in real-time without any notable la-

tency. Hence, from the performance analysis, we are convinced

that the proposed system architecture can aid in developing

low complex, robust and real-time indoor positioning systems.

IV. CONCLUSION

In this paper, we proposed a novel low-complex, robust and

real-time system architecture for step detection using a smart-

phone. The developed system architecture uses low-complex

signal preprocessing techniques for noise removal, and the

developed peak or valley estimator can accurately estimate

the steps by avoiding the false steps or artifacts generated due

to involuntary hand movements. Performance of the proposed

system architecture is analyzed by developing an Android

application. Twelve subjects with varying demographics are

considered for real-time experimentation in the hallway of

Academic Block A, IIT Hyderabad. Two scenarios which

include both continuous user walking (T1) and discontinuous

user walking (T2) are considered for the performance analysis,

and in each of the scenario, the user walks an average of 176m.

Performance analysis shows that the proposed system architec-

ture achieves an accuracy of 99.82% and 99.73% in both the

scenarios T1 and T2 respectively. Hence, we are convinced that

the proposed system architecture can significantly aid in the

development of a low complex an real-time indoor positioning

system. The future scope of this work is to develop an accurate,

robust, low-complex and real-time indoor positioning system.
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