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Abstract—In this paper, we propose a novel low complexity
on-chip ECG data compression methodology targeting remote
health-care applications. This is to the best of our knowledge
the first attempt for on-chip reliable data compression. The
proposed methodology has been implemented targeting Appli-
cation Specific Integrated Circuit platform at 1IMHz at V4
1.62V for UMC 130nm technology library with 16 bits system
word-length. Furthermore the proposed methodology results in
a faithful reconstruction which has been validated using MIT-
BIH PTB-DB as well as our institute’s health repository IITH-
DB. On an average about 90% compression is achieved with
more than 83% R statistics, 98% Cross Correlation and about
99% Regression between the original and the reconstructed data
signifying the diagnostic accuracy. Subsequently the proposed
methodology is capable of storing approximately 47 hrs of data
in the same on-chip memory when compared to that of 5 hours
of continuous data in the state of the art which would lead to
enhanced diagnosis and prognosis in remote health-care.

I. INTRODUCTION

Remote continuous personalized health monitoring in-
volves capturing information from the patients using mobile
devices and transmitting it to a centralized facility. The fact
that these mobile devices are battery powered calls for the
development of low complexity architectural design. Contin-
uous transmission of vital data consumes significant amount
of power. In order to minimize this power consumption,
data can be sent to the centralized facility on a medical
practitioner’s request or at regular intervals of time. This
requires the on-chip storage of ECG data so that it can be
sent on clinician’s request or on occurrence of abnormal
events. The amount of data that can be stored on-chip is
limited. This demands efficient on-chip compression of the
ECG data which enables storage of the data for longer
duration. But the advantage of on-chip local storage of the
ECG data with respect to the continuous transmission would
be negated if the compression architecture consumed more
power than that of the transceiver module. Therefore the
technical challenge here is to propose a low complexity on-
chip ECG compression technique which would accomplish
the following goals.

e The same memory which stores X amount of data in
the state of the art method should be able store nX
amount of data, where n»/ which would help better
diagnosis and prognosis (benefit from medical science
perspective).
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o The power consumption of the chip should be less than
the state of the art, so that the battery backup lasts longer
(benefit from technical perspective).

Compression of any data would mean reduction in the
number of data points with respect to the original signal. In
the current scenario, as the analysis of the ECG signals are
vital for the health of the patient it is important to ensure that
there is no compromise on the quality of the reconstructed
signal. Loss-less and near loss-less compression methods
can ensure the quality of the reconstructed signal. How-
ever, the loss-less compression techniques proposed in the
recent years gives low compression ratios which forced the
designers to think about lossy compression techniques for
ECG data compression[2]. The existing lossy compression
approaches([3],[4],[5],[6]) can be classified into: a) Trans-
form based methods [7],[8],[9] b) parametric methods and
c)Direct methods [11],[12],[13]. They cannot directly be
targeted for on-chip architecture implementation or even
implemented, lose their advantages because of no consid-
eration of hardware implementation while designing the
algorithm.This motivates us to introduce the concept of
"token based" methodology (Section II) in order to achieve
the low complexity on-chip compression, which on an av-
erage gives 90% compression. Subsequently its embedded
architecture has also been implemented and its area and
power analysis(Section III) are also presented.

II. PROPOSED TOKEN BASED METHOD AND

ARCHITECTURE
A. Preprocessing

Daubechies, Haar and Legendre wavelets are frequently
studied for compression purposes using Discrete Wavelet
Transform(DWT)[15]. In this paper we have used Haar
wavelet, because it can be easily implemented in hardware
using simple adders and subtractors [14]. The studies made
on the DWT coefficients of ECG data showed that most of
the energy is contained in the lower frequency components
at higher decomposition levels [15]. Selective thresholding
is done on the DWT coefficients at different levels thus
obtained, which are then compressed using the proposed
algorithm(Section II-B). It has already been studied in [15]
that the percentage of total information contained in the detail
DWT coefficients are 0.00267%, 0.00925%, 0.002545%,
0.05621%, 0.09113% at level 1 to 5 respectively. Whereas
the approximation coefficients at level 5 alone accounts for
99.81528% of total energy.Performing selective thresholding
on the DWT coefficients results in a large number of zeroes
among the coefficients. This motivates us to propose a
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method to store the signal in a more compact manner, instead
of storing all the samples (including the large number of
ZEeroes).

B. Proposed On-Chip Compression Methodology

The proposed compression method (Fig 1(a)) works on the

DWT coefficients on which selective thresholding is applied.
In this method both the non-zero data and its position
(called as “token” in this paper) in the signal are stored and
all the zeroes are ignored. Since the position of non-zero
values are known, it is possible to reconstruct the signal by
adding zeroes to the positions which have not been stored
anywhere. In the current state of the art methodologies the
zeros obtained after selective thresholding are not considered
for algorithm implementation. However if implemented on-
chip they will lose the advantages claimed in the algorithm.
Each sample is compared with zero. The data is ignored if
it is a zero. Data is stored if it is a non-zero. Along with
the data its position is also stored. Both non-zero data and
their position are stored in separate memory. The position of
the data points is stored in a memory of width ceil(log(n)),
so that any position in a frame of size n can be represented
in this memory. Fig.2 (a) shows a general array of data and
its compressed form is given in Fig.2 (b). Here ’d’s refer
to non zero data points and ’p’s refer to the corresponding
positions.
Number of bits consumed by the original signal is w*n and
compressed signal is (w + ceil(logn)) * nz, where w is the
word length for data points and # is the frame size and nz is
number of non-zeros data points in DWT coefficients after
selective thresholding.

For example, consider a set of data of 15 samples:

[0; 0; 0; 1.25;-2.25; 0; 0; 0; 0; 0; 0; 0;-1.23; 0.69; 1.72]
The compressed form of the corresponding samples will be:
Data: [1.25;-2.25;-1.23; 0.69; 1.72]

Position/Token: [4; 5; 13; 14; 15]

As shown above, it is to be noted that after compression,
we have 5 non-zero values in the data memory and their
corresponding positions in position memory. Assume word-
length of data to be 16 bits. However, the length of the tokens
will depend on the frame size. Here 4 (ceil(log(15))) bits are
enough to indicate any token within set of 15 data samples.
So we have 5 such 4-bit tokens and 5 16-bit data samples
which amount to (5 data * 16 bit + 5 token * 4 bit) 100
bits in total. In the default case storing the data would have
taken (/5 data * 16 bit) 240 bits.

At the receiver’s end, the compressed signal is recon-
structed (as shown in Figl (b)) from the data in data memory
and position(token) memory. Data is read from both the
memories(data and position) simultaneously. A count of the
number of samples reconstructed is maintained. If the count
is less than the current position read, zeroes are added to the
reconstructed signal. This is done till both the count and the
position become equal. At this stage the current non-zero
data from the data memory is added to the reconstructed
signal. Once this is done the next data and position are read
from memory and the process is repeated till all the data is

Position =0

Read Data
Read Position
Yes
f Count < Positiog

No
Store Data

Count = Count +1
current Data i
last Data
Yes’
@ v

No

Position = Position + 1

No/ StoreData
If Data =0, Store

‘ Position

current Data i
he last sample

Yes

Count=Count+1

(a) (b)
Fig. 1: Flowchart for a) Token based Compression and b) Token
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Fig. 3: Proposed Architecture foé )Token based (a)compression and
(b)reconstruction
read from the memory. After adding all non-zero data points
zeroes are added to the signal till the count is equal to the
total number of samples in the original signal. This is done
to incorporate the cases when the signal ends with a run of
zeroes.
C. Proposed On-Chip Compression Architecture

The compression architecture (Fig 3 (a)) comprises of
only a comparator to compare the data samples to zero and
a counter to keep count of the position. The comparator
compares the input ECG data with zero and produces 0 if
data is non-zero and [/ if data is zero. Its output is given
as the output ctrl signal. The block position counter keeps
count of the position of the data. Both data out and position
out are stored when ctrl is 0.
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At the receiver’s end, the reconstruction architecture (Fig
3 (b)) contains a position counter which keeps the count of
the signal being reconstructed. The comparator is used to
compare the position of reconstructed ECG data with the
output of the counter. It produces an output / if they are
equal, else produce 0. nready is a signal which will remain
1 till all the data has been written. It is ORed with the output
of the comparator to obtain the control signal for the mux.
The mux gives 0 to data out channel if the ctrl signal is
0 else it gives the stored non-zero data. The latter happens
when the count equals the position of the currently read data.
At the end, once all the data has been read from the memory
the output is made 0 and the counter counts till the count
reaches (framesize-1).

ITII. RESULTS AND DISCUSSION
A. Quality Parameters
a) Percentage Compression can be represented as:
Nbc - Nac

be

%Compression = * 100 (1)

where Ny, and N,. are the number of data points in the
original ECG signal and compressed signal respectively.
b) Cross Correlation (CC):

N N/ A IS
CC = % D i (xi — 2)(@ — 1)
N _ N ~ =
JEEY @i - 225 2N, @ - 2
where x and & are the reconstructed and the original ECG

signal respectively and Z and & are their respective means.
¢) R? Statistics :It is given as

2

(1 - (X Y1)
(X = Xx1))
where X and Y denote the original and reconstructed
signal samples arranged as column vector and X') denotes
the column vector formed by multiplying mean of original
samples by a column vector having all entries as 1 and of

length same as X .
d) Regression : It can be defined as :

. { Y (Measured Sample ) X (Derived Sample ) }
’ (X(Measured Sample )? x X(Derived Sample )2)%
4

R?coeff. =100 x (3)

B. Experiment and Implementation Results

The Token based approach proposed in section II has
been tested with real ECG data from PTB DataBase and
IITH DataBase to prove its effectiveness. 25200 frames of
data with 1024 [14] samples each belonging to 7 patients
(with 15 leads each) has been taken from PTB DataBase for
analysis. Apart from this ECG data of 30 patients obtained
from IIT Hyderabad DataBase has been analyzed. DWT was
performed on each frame of data(till 5 levels). Selective
thresholding was performed on the DWT coefficients at
different levels[15]. The threshold values for different levels
were chosen as follows. For the detailed coefficients the
threshold were 64%, 32%, 16% and 8% of the maximum
value for level 2 to 5 respectively. Level 5 approximation

coefficients are retained as they contain 99.81% of the total
information in the signal.

TABLE 1 shows the maximum, mean and minimum %

Compression achieved using the Token based approach for
a word-length of 16. It gave a mean percentage compression
of 89.52 for PTB-DB and 89.28 for IITH-DB.
Consider an ECG machine taking 1024 samples of 16 bit
every second. Storing the ECG data of 5 hours would require
(2*1024*60%60*5) 36864000 bytes or 35.15 MB memory.
The same amount of memory (35.15) can be used to store
the data for longer duration when in compressed form. As
given in TABLE I on an average the proposed token based
compression enables storing 47 hours of data in the same
memory that would have been consumed in 5 hours if data
were to be stored without compression. Another implication
would be, if 5 hours data are expected to be stored in an
on-chip memory, the proposed compression methodology
requires only 3.83 MB memory when compared with the
36 MB memory needed by the state of the art methods.

Graph in Fig 5 (c) and (d) shows the mean % Compression
for different word-length of the ECG data. It can be seen
that % Compression increases as the word-length increases.
This is because when the word length is increased, the
position of the ECG samples are stored in a memory of finite
length(ceil(log n)).

The error in the reconstructed signal is only due to the
selective thresholding of DWT coefficients. But this has been
minimized by the proper selection of threshold values. Based
on the analysis on ECG data samples, a scaling factor of 10
is chosen to be optimal for a word-length of 16. This scaling
factor minimizes the error due to fixed point implementation.
TABLE I gives the performance matrices calculated for ECG
data from PTB-DB and IITH-DB. As we can see, the Token
based approach gives average Cross Correlation of 99.43
and 98.57 for PTBDB and IITHDB respectively. Similarly
they give Regression of 0.9907 & 0.9868 and R? statistics
of 90.41 & 83.76 for the two databases. Fig 4 (a) and (b)
shows the original ECG signal and the signal reconstructed
by token based approach for data from PTB-DB and IITH-
DB respectively

The proposed algorithm after verifying in MATLAB was
implemented in VHDL. VHDL programming was done in
Modelsim. The architecture designed in VHDL was later
synthesized in Cadence RTL Compiler. The analysis was
done for 90nm for 1.62V at 125°C.

Fig 5 a) shows the area required for the compression and
reconstruction block. As observed both the block occupy
very less chip area. The area required for compression block
increased only by 20.1% for an 8-fold increase in the word-
length. Even area for the reconstruction block only doubles
for an 8-fold increase increase in the word-length.

The calculation of power consumption by the designs is
shown in Fig 5 b). Both the compression and reconstruction
block consumes very less energy. The power consumption of
the compression block remains almost constant even when
the word-length is made 8 times. Similarly the power for
reconstruction block increases only by 15% when the word
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TABLE I: Proposed compression leading to longer duration of data storage compared to state of the art’s 5 hours data and compression

performances observed for the proposed token based approach for a word length of 16 bits
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Fig. 5: a) Area, b) power reports for the proposed compression and reconstruction architecture for different word length. % Compression
achieved using Token based approach for data samples from c)PTB Database and d)IITH Database

length changed from 8 to 64.

IV. CONCLUSION

In this paper we proposed an on-chip ECG compression
methodology which have been shown to achieve an average
% Compression of 90% and still maintaing the quality while
reconstruction with CC and Regression around 98.57 and

0.9

868 respectively for real ECG data from PTB-Database

and IITH-Database. The proposed architecture also promises
low complexity and low power consumption on-chip im-
plementation which are vital for battery powered mobile
devices.
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