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Abstract—Mobile phones or smart phones equipped with
different communication technologies and sensors have become
pervasive application development platform for opportunistic
and human-centric sensing. Optimisation of battery energy
consumption and opportunistic sensing coverage are important
issues under mobile phone sensing. This paper proposes a simple
sampling algorithm based on human-walk velocity for mobile
phone sensing. We analyse the impact of human-walk velocity
on battery energy consumption and spatial coverage for mobile
phone sensing by considering general regular sampling of sensors
and proposed sampling method. When Levy walk mobility
parameter α = 1, the proposed sampling algorithm shows better
performance in terms of both spatial coverage and reduction of
battery energy consumption for mobile phone sensing activity.

I. INTRODUCTION

Latest mobile phones or smart phones are becoming ubiq-
uitous application development platform for the Internet of
Things (IoT), participatory sensing and crowd-sourced sens-
ing, with different types of sensors like camera, microphone,
GPS, temperature, accelerometer and communication tech-
nologies like Wi-Fi, Bluetooth, Near Field Communication
(NFC) embedded with them [1], [2], [3]. Sensors embedded
mobile phones can be used for monitoring different environ-
mental factors like temperature, humidity, urban noise pollu-
tion monitoring, carbon footprint, air pollution monitoring and
urban traffic monitoring.

Human mobility enables collection of aggregated and non-
aggregated mobile phone sensor data by forming co-operative
sensing task with surrounding neighbors, or individual users
mobile phone may simply send its sensor data to designated
destinations like central or cloud servers to do processing,
aggregation, and mapping of sensor data [1], [3], [4]. In both
the cases sensing task assignment to participating users and
sending sensor data to designated destination can be done
through ad-hoc or infrastructure oriented networking.

In former case, formation of co-operative mobile phone
sensing task requires regular lookup for neighbors, processing
and exchange of messages, security and trust protocols. Dy-
namic and unpredictable human mobility nature and activities
affects the performance of co-operative mobile phone sensing
task. The later type of mobile phone sensing activity can
be useful for sparsely populated and dynamically changing
human networks, where availability of neighbors is sparse
or changing in a short period. Our work is concerned with

the later case i.e mobile phone sensing at individual user
level, which is also useful when heterogeneous sensing task
assignment for each individual users is required.

Whatever may be the scale of mobile phone based sensing
applications, for continuous and regular interval of sensing
activity, optimisation of energy consumption is an important
issue under human-centric and opportunistic sensing. There
has been enough theoretical and practical work done on
optimization of energy consumption and improving sensing
area coverage for both static and mobile networks by using
Random waypoint (RWP) mobility model [5] [6]. In this paper,
we assume that each individual user mobile phone sensing task
is carried out without the knowledge of neighbor sensing tasks
for given period of time. We concentrate on analysing sensing
area coverage and reduction of battery energy consumption
for sensing activity at individual user level. We concentrate
only on spatial coverage of mobile phone sensors and not on
temporal coverage.

Mobile phone sensing area coverage depends on sensing
range and velocity of human-walk. Levy walk (LW) depict
statistical properties of human mobility patterns [7], [8], [9],
[10], [11]. Authors of [7], [8] describes the human walk
mobility model using real traces and report that independent
of geographical constraints, the heavy-tail tendency of flight
length distribution, super and sub-diffusive mean-square dis-
placement features must be inherent in human walk mobility
models. The description of LW mobility model is given section
II. Authors of [9] explore dynamic graph properties under
LW mobility model. Decrease of LW mobility parameter
α (Section-II) leads to dynamic human networks [9]. We
use LW mobility model given in [12] for the simulation of
proposed sampling algorithm. Authors of [13] discusses re-
ducing number of participatory users plus improving coverage
by assuming that users are aware of their path. Authors of
[4] presents collaborative mobile phone sensing using cloud
network. They assume that mobile phone users path is known
in advance. In our work we analyse the impact of dynamic
human movements and patterns on spatial coverage for mobile
phone sensing at individual user level.

We propose a simple sampling algorithm based on human-
walk velocity and compare how the varying velocity of human-
walk affects the spatial coverage and energy consumption. The
results shows that mobile phone sensor sampling with respect
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to users walking velocity will reduce spatial overlap of sensing
area and reduce energy consumption of sensing process. The
results will be helpful in designing continuous and regular
mobile sensing applications.

The remainder of this paper is organized as follows. Section
II describes system model for the proposed work. Section III
gives description of proposed sampling algorithm for mobile
phone sensing. Section IV discusses evaluation of simulation
results and section V concludes the paper.

II. SYSTEM MODEL

This section provides the description of models used for the
development of proposed work.

A. Levy-Walk Mobility Model

Human walk patterns closely resembles LW patterns [8].
LW is used for modeling animal foraging patterns [14]. In
LW mobility model a step is represented by four variables
(L,Θ,ΔTf ,ΔTp) [8], [9]. L is length of flight (flight is de-
fined as straight line trip without pause or change of direction),
drawn from power law distribution with parameter α and its
probability density function (PDF) [8] is given by:

p(L) ∝ | L |−(1+α), L ∈ (Lmin, Lmax)

0 < α < 2
(1)

Lmin and Lmax are minimum and maximum flight length. At
the beginning of each flight, LW node chooses a direction with
angle Θ randomly from a uniform distribution within range
[0, 2π]. ΔTf [8] is flight time, the time taken by LW nodes to
complete the flight length and is given by below equation:

ΔTf = τL(1−υ), 0 ≤ υ ≤ 1 (2)

τ and υ are constants. ΔTp is pause time, drawn from power
law distributions with parameter β and its PDF [8] is given
by:

p(ΔTp) ∝ | ΔTp |−(1+β), ΔTp ∈ (Tpmin, Tpmax)

0 < β < 2
(3)

Tpmin and Tpmax are minimum and maximum pause time.
The levy distribution [8] is given in equation (4).

fY (y) =
1

2π

∫ +∞

−∞
e−ity−|at|bdt (4)

where a and b are scale factor and exponent parameter
respectively.

Mobile phones are also termed as mobile nodes. We assume
that mobile phones use embedded GPS for getting location
co-ordinates and also embedded with required sensors. Let A
be the communication area and M be a set of mobile nodes.
Simulation duration is represented by T .

Consider single mobile phone user M1, where M1 ∈ M . Let
p be the total number of sensors embedded to a mobile phone
M1 and rs(i) be the sensing range of s(i)th sensor, where
i = 1, 2, .., p. We consider disk model for sensing range of
each sensor. Let ts(i) be the sampling interval of s(i)th sensor.

When mobile node moves in a straight line path with constant
velocity v and without pause or change of direction, then ts(i)
for non-overlap sensing coverage with respect to s(i)th sensor
is given by:

ts(i) = 2 ∗ rs(i)

v
(5)

Let average or preferred human walk velocity be vhw. Under
LW mobility model equation (5) is given by:

ts(i) = 2 ∗ rs(i)

vhw
(6)

We consider energy consumed by mobile phone battery
for sensing and processing a sensor sample δ to be one unit
and energy consumed for a location sample � also to be one
unit. λs(i) gives the total number of samples over simulation
duration T with respect to s(i)th sensor. The total energy
consumed for sensor and location samples over T for single
mobile phone s(i)th sensor is given by equation (8) and
equation (9) respectively. Equation (10) gives sum of total
energy consumed by all the sensors embedded to a mobile
phone including GPS.

λs(i) =
T

ts(i)
(7)

φs(i) =

λs(i)∑
n=1

δn (8)

�s(i) =

λs(i)∑
n=1

�n (9)

E =

p∑
s(i)=1

φs(i) +

p∑
s(i)=1

�s(i) (10)

III. SAMPLING ALGORITHM FOR MOBILE PHONE
SENSING

Human-walk characteristic consists flight truncations and
pause, because of human intensions and activities, contexts,
home coming, geographical-constrains like buildings, small
shops, trees, street structure and boundaries [7], [8]. Whatever
may be the cause of pause and flight truncations, in real-time
they are unpredictable. If we follow equation (6) for mobile
phone based sensor sampling, flight truncations and pause
time causes spatial overlaps. As opposed to Random Way
Point (RWP) mobility model (occurrences of long flights is
more), LW mobile nodes hardly move in straight line path and
consists of flight truncations [7], [8]. To reduce spatial overlap
under LW mobility model we propose a simple sampling
algorithm based on human-walk velocity. We assume that
mobile phones have enough memory space to store sensed
location points. The pseudocode of sampling algorithm for
mobile phone sensing is given Algorithm 1.

We can assign vhw value according to the person walking
context (walking slow, walking fast, jogging or running). Also
it is very easy to program to get adaptive vhw value, ac-
cording to changing person walking context. Preferred human
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Algorithm 1 :Pseudocode of Sampling Algorithm for Mobile
Phone Sensing

1: Consider single mobile phone M1 embedded with p num-
ber of sensors. Consider human-walk velocity vhw and
simulation duration T . Let ts(i) be the sampling interval
of s(i)th sensor, i = 1, 2, .., p.

2: Let B be the set of sensing ranges rs(i), i = 1, 2, .., p.
3: Group B into number of unique subsets, such that C ⊆

B and let rmaxs(i) be the maximum sensor range and
{rs(i)|rs(i), rmaxs(i) ∈ C, rs(i) ≥ 3∗rmaxs(i)

4 ∧ rs(i) ≤
rmaxs(i)}. Let K represents total number of unique sub-
sets of B, then K ≤ p.

4: tstart is starting sample time ∀s(i)
5: ∀K, follow same sampling procedure given below
6: Let maximum sampling interval in C be tmaxs(i)

7: ds(i) term is used for incrementing s(i) sampling interval
8: Start of initial sensor samples collection
9: ds(i) = tstart

10: At tstart get GPS current location co-ordinates
11: Get sensor data of all sensors s(i)|s(i) ∈ C
12: Store current location co-ordinates as previous location
13: ds(i) = ds(i) + ts(i)
14: if (ds(i) < tmaxs(i)) then

15: Get sensor data of s(i) and ts(i) 
= tmaxs(i)

16: ds(i) = ds(i) + ts(i)
17: end if

18: End of initial sensor samples collection
19: for j ← tmaxs(i) : tmaxs(i), T do

20: Get GPS current location co-ordinates
21: Find the minimum distance between all previous and

current location
22: if (minimum distance < tmaxs(i)∗3

4 ) then

23: ds(i) = ds(i) + ts(i) ∗ 2
24: end if

25: if (minimum distance >
tmaxs(i)∗3

4 ) then

26: Get sensor data s(i) and ts(i) = tmaxs(i)

27: if (ds(i) < j) then

28: Get sensor data s(i) and ts(i) 
= tmaxs(i)

29: ds(i) = ds(i) + ts(i)
30: end if

31: end if

32: Store current location co-ordinates as previous location
33: end for

walking speed is ≈ 1 meter/second [15]. For simplifying
the performance analysis, in our simulations we set vhw =
1 meter/second. In Algorithm 1, a mobile phone sensor’s
range rs(i) are grouped into unique subsets K (K ≤ p),
such that in each subset, sensor’s range differ with respect
to each other by ≤ 3

4 . Example, if a mobile node consists of
5 sensors and their sensing ranges are represented in order,
say B={10, 13, 15, 17, 20}, then we can group B into unique
subsets, {10, 13} and {15, 17, 20}. We reduce the number of
sensed location samples by grouping sensors into K number

Fig. 1. General Sampling Method For Mobile Phone Sensing

of unique subsets and in each subset, only for the maximum
sensor range rmaxs(i), location samples are considered with
corresponding sensor samples. Mobile nodes store sensed
location points. By calculating the disatnce between previous
and currect locations, we reduce the spatial overlap caused
by LW mobile nodes pause or flight truncations. If minimum
distance calculated between all previous sensed location sam-
ples and current location sample is less than 3∗tmaxs(i)

4 (as we
assumed vhw = 1 meter/second), then current sensing process
is skipped for all the sensors of that particular subset. If total
number of unique subsets K < p, equation (9) and (10) is
changed as shown in equation (11) and (12) respectively.

Figure 1 and 2 show location trace of single mobile node
for duration of 1500 seconds with maximum and minimum
pause time set to 10-20 seconds. Assumed range of sensor is
rs = 12 meters. Other considered parameters are shown in
Table 1. In Figure 1 and 2, circles represent sensing range.
Overlaps of circles in Figure 1 represents spatial overlap of
sensing area due to either flight truncation or pause. Figure 2
shows reduction in number of spatial overlap of sensing area
for the same trace after applying proposed sampling algorithm.

�s(i) =

λs(i)∑
n=1

�n, i = 1, 2, ...K (11)

E =

p∑
s(i)=1

φs(i) +

K∑
s(i)=1

�s(i) (12)

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we analyse proposed sampling algorithm for
mobile phone sensing under LW mobility model in terms of
average battery energy consumed and spatial coverage. We
also analyse the effect of LW mobility α parameter on mobile
node average velocity and area coverage in terms of coverage
ratio. We consider 3 different, low, high and medium values
for α, i.e 0.1, 1.9 and 1 (0 < α < 2) respectively. To calculate
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Fig. 2. Proposed Sampling Method For Mobile Phone Sensing

TABLE I
SIMULATION PARAMETERS

Simulation Area A 1.2Km*1.2Km
Flight parameter α 1, 1.9, 0.1
Pause parameter β 1.0

Average flight length 5-1200meters
Pause time 1-2 seconds

vhw 1 meter/second
Location sample interval tls 1 second

Range of sensor1, sensor2, sensor3 20, 17, 15 meters

average velocity of a mobile node we consider average of 500
samples of locations trace and T is set to 16000 seconds.
Other considered parameters are shown in Table 1. For α =
0.1, 1 and 1.9, we got average velocity of a mobile node 2.33,
2.26 and 2.04 meter/second respectively, and the results reveal
that lower the α value, higher will be the average velocity of
mobile node.

For calculating the coverage ratio, simulation area A is
divided into square grids, where length of square is equal
to sensing range (rs(i)). Other considered parameter values
are shown in Table 1. Coverage ratio of any s(i)th sensor
is defined as the ratio of total number of grids covered at
least once by a mobile node at every sample interval ts(i) to
the total number of grids [16]. Large value of coverage ratio
depicts large area covered by a mobile node within total area.

Figure 3, 4 and 5 show coverage ratio, average units of
energy consumed and area coverage for individual user mobile
phone sensing with the assumption that mobile phones having
a single sensor. For all mobile phones, sensor range is assumed
to be 12 meters. Other considered simulation parameters are
given in Table 1. We use term GS to represent general
sampling method, i.e sampling with regular interval of time
(equation (6)). In order to represent proposed sampling method
we use term HWS (Human-Walk Sampling). Figure 3 show
sensing coverage ratio for different values of α. We consider
a mobile node walk duration, T = 16000 seconds. For GS
method, sensor data is collected at every ts(i) time, we get

Fig. 3. Coverage Ratio of Sensing Area

Fig. 4. Average Units of Energy Consumed for Sensing Process

same curve plot for α = 1.0, 1 and 1.9. Figure 3 reveals that
due to reduced number of sampling process for HWS method,
coverage ratio is less then GS method, and it also depicts that
for HWS method, decrease in α value, faster will be increase
in coverage ratio. The objective to analyse the performance of
GS and HWS sampling methods in terms of coverage ratio is
to know only the effect of velocity of mobile nodes on spatial
coverage with time. We need better performance in terms of
reduction of energy consumption and spatial coverage. For
accurate spatial coverage analysis for GS and HWS sampling
methods, we use average sensing area coverage in square
meters by considering the sensed location co-ordinates and
sensor range.

In Figure 4 and 5, for each different values of α, we consider
average of 500 samples for plotting the results. First we ex-
plain GS method performance for varying α values. As in GS,
sensor data is collected at every ts(i) time, we get same results
for average units of energy consumed for sensing process
irrespective of any α value for given walk duration (Figure
4, equation (10)). Coming to HWS performance discussion,
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Fig. 5. Average Sensing Area Covered

the proposed method reduces spatial overlaps by reducing
number of sampling process. Figure 4 shows that, for proposed
HWS method, average energy consumption is reduced for all
considered values of α, compared to GS method.

For α = 0.1 to 1, mobile nodes velocity varies from normal
to high. For GS technique sensor coverage area decreases
for α = 0.1 and 1, compared to α = 1.9 (Figure 5). We
require better performance in terms of both spatial coverage
and reduction of energy consumption. Combining the results
of Figure 4 and 5, when vhw is set to 1 meter/second, GS
technique suits for slow walkers. When α = 1 proposed
algorithm HWS shows better performance in terms of both
battery energy reduction and coverage of sensing area, so
HWS suits well for normal walking speed.

Figure 6, 7 and 8 show performance of HWS and GS
sampling methods in terms of coverage ratio, Figure 9 shows
performance in terms of average units of energy consumed and
Figure 10, 11 and 12 shows performance analysis in terms of
average sensing area covered for mobile phone sensing activity
with the assumption that each mobile node has three sensors.
Considered three sensors are termed by sensor1, sensor2 and
sensor3, their sensing ranges and other considered parameters
are given in Table 1. In Figure 6, 7 and 8, for HWS sampling
method, coverage ratio is faster when α = 0.1, as velocity of
mobile node is high compared to other considered α values.

For Figure 9 to 12, average of 500 simulation runs, each
of duration T = 16000 seconds is considered to plot results.
Figure 9 shows average units of energy consumed for mobile
phone sensing activity versus walk durations. In Figure 9,
for GS technique, there is drastic increase in units of energy
consumption for sensing process, as we consider that for each
sensor sampling process, mobile phone GPS is used to get
current location record. In HWS method we consider that GPS
is used only for the maximum range sensor sampling in each
subset of sensors. The results of mobile phone multi-sensor
sampling activity depict the same conclusion of single sensor
sampling activity that, in terms of both energy consumption
(Figure 9) and sensing area coverage (Figure 10, 11 and 12),

Fig. 6. Coverage Ratio-sensor1

Fig. 7. Coverage Ratio-sensor2

Fig. 8. Coverage Ratio-sensor3

GS technique gives better performance for α = 1.9. When
human-walking velocity is neither too high nor too low, i.e
when α = 1, the proposed algorithm shows better performance
in terms of less battery energy consumption and spatial cov-
erage of sensing area.

V. CONCLUSION

Human-walk velocity affects mobile phone sensing cover-
age and battery energy consumption. Mobile phone sensor
sampling chosen according to waking speed of individual
gives better performance in terms both spatial coverage and
reduction of battery energy consumption. For normal walking
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Fig. 9. Average Units of Energy Consumed by all sensors

speed of human, the proposed mobile phone sensor sampling
algorithm gives better performance in terms of both battery
energy reduction and area coverage. Our future work involves
developing adaptive sampling and reduction of spatial overlap
and battery energy consumption by considering realistic hu-
man mobility models and co-operative sensing tasks for mobile
phone sensing.
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