

- 1. Show that every compact subspace of a metric space is bounded in that metric and is closed. Find a metric space in which not every closed bounded subspace is compact.
- 2. Let A and B be disjoint compact subspaces of the Hausdorff space X. Show that there exist disjoint open sets U and V containing A and B, respectively.
- 3. Show that if $f: X \to Y$ is continuous, where X is compact and Y is Hausdorff, then f is a closed map (that is, f carries closed sets to closed sets).
- 4. Show that if Y is compact, then the projection $\pi_1: X \times Y \to X$ is a closed map.
- 5. Let $f: X \to Y$; let Y be compact Hausdorff. Then f is continuous if and only if the graph of f,

$$G_f = \{ (x, f(x)) \mid x \in X \},\$$

is closed in $X \times Y$.

6. Let A and B be subspaces of X and Y, respectively; let N be an open set in $X \times Y$ containing $A \times B$. If A and B are compact, then there exist open sets U and V in X and Y, respectively, such that

$$A \times B \subset U \times V \subset N.$$

- 7. Prove that if X is an ordered set in which every closed interval is compact, then X has the least upper bound property.
- 8. Let X be a metric space with metric d; let $A \subset X$ be nonempty.
 - (a) Show that d(x, A) = 0 if and only if $x \in \overline{A}$.
 - (b) Show that if A is compact, d(x, A) = d(x, a) for some $a \in A$.
 - (c) Define the ϵ -neighborhood of A in X to be the set

$$U(A,\epsilon) = \{x \mid d(x,A) < \epsilon\}.$$

Show that $U(A, \epsilon)$ equals the union of the open balls $B_d(a, \epsilon)$ for $a \in A$.

- (d) Assume that A is compact; let U be an open set containing A. Show that some ϵ -neighborhood of A is contained in U.
- (e) Show the result in (d) need not hold if A is closed but not compact.
- 9. Recall that \mathbb{R}_K denotes \mathbb{R} in the K-topology.
 - (a) Show that [0,1] is not compact as a subspace of \mathbb{R}_K .
 - (b) Show that \mathbb{R}_K is connected. [Hint: $(-\infty, 0)$ and $(0, \infty)$ inherit their usual topologies as subspaces of \mathbb{R}_K .]
 - (c) Show that \mathbb{R}_K is not path connected.
- 10. Show that a connected metric space having more than one point is uncountable.
- 11. Give $[0,1]^{\omega}$ the uniform topology. Find an infinite subset of this space that has no limit point.
- 12. Show that [0,1] is not limit point compact as a subspace of \mathbb{R}_{ℓ} .
- 13. Let X be limit point compact.
 - (a) If $f: X \to Y$ is continuous, does it follow that f(X) is limit point compact?
 - (b) If A is a closed subset of X, does it follow that A is limit point compact?
- 14. A space X is said to be *countably compact* if every countable open covering of X contains a finite subcollection that covers X. Show that for a T_1 space X, countable compactness is equivalent to limit point compactness.
- 15. Show that X is countably compact if and only if every nested sequence $C_1 \supset C_2 \supset \cdots$ of closed nonempty sets of X has a nonempty intersection.
- 16. Show that the rationals \mathbb{Q} are not locally compact.
- 17. Let X be a locally compact space. If $f : X \to Y$ is continuous, does it follow that f(X) is locally compact? What if f is both continuous and open?
- 18. Show that $[0,1]^{\omega}$ is not locally compact in the uniform topology.