

Problem 1. Let $\mathbf{x_1}, \mathbf{x_2}, \ldots$ be a sequence of the points of the product space $\prod X_{\alpha}$. Show that this sequence converges to the point \mathbf{x} if and only if the sequence $\pi_{\alpha}(\mathbf{x_1}), \pi_{\alpha}(\mathbf{x_2}), \ldots$ converges to $\pi_{\alpha}(\mathbf{x})$ for each α . Is this fact true if one uses the box topology instead of the product topology?

Problem 2. Let \mathbb{R}^{∞} be the subset of \mathbb{R}^{ω} consisting of all sequences that are "eventually zero", that is, all sequences (x_1, x_2, \ldots) such that $x_i \neq 0$ for only finitely many values of *i*. What is the closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} in the box and product topologies? Justify your answers.

Problem 3. Given sequences $(a_1, a_2, ...)$ and $(b_1, b_2, ...)$ of real numbers with $a_i > 0$ for all i, define $h : \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ by the equation

$$h((x_1, x_2, \dots)) = (a_1x_1 + b_1, a_2x_2 + b_2, \dots).$$

Show that, if \mathbb{R}^{ω} is given the product topology, h is a homeomorphism of \mathbb{R}^{ω} with itself. What happens if \mathbb{R}^{ω} is given the box topology?

Problem 4. 1. In \mathbb{R}^n , define

$$d'(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + \dots + |x_n - y_n|$$

Show that d' is a metric that induces the usual topology of \mathbb{R}^n . Sketch the basis elements under d' when n = 2.

2. More generally, given $p \ge 1$, define,

$$d'(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^{n} |x_i - y_i|^p\right]^{\frac{1}{p}}$$

for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Show that d' is a metric. Show that it induces the usual topology on \mathbb{R}^n .

Problem 5. Show that $\mathbb{R} \times \mathbb{R}$ in the dictionary order topology is metrizable.

Problem 6. Consider the product, box and uniform topologies on \mathbb{R}^{ω} .

- 1. In which topologies are the following functions from \mathbb{R} to \mathbb{R}^{ω} continuous?
 - (a) f(t) = (t, 2t, 3t, ...),
 - (b) g(t) = (t, t, t, ...),
 - (c) $h(t) = (t, \frac{1}{2}t, \frac{1}{3}t, \dots).$

2. In which topologies do the following sequences converge?

- (a) $\mathbf{w_1} = (1, 1, 1, 1, \dots), \mathbf{w_2} = (0, 2, 2, 2, \dots), \mathbf{w_3} = (0, 0, 3, 3, \dots), \dots$
- (b) $\mathbf{x_1} = (1, 1, 1, 1, \dots), \mathbf{x_2} = (0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \dots), \mathbf{x_3} = (0, 0, \frac{1}{3}, \frac{1}{3}, \dots), \dots$
- (c) $\mathbf{y_1} = (1, 0, 0, 0, \dots), \mathbf{y_2} = (\frac{1}{2}, \frac{1}{2}, 0, 0, \dots), \mathbf{y_3} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, \dots),$
- (d) $\mathbf{z_1} = (1, 1, 0, 0, \dots), \mathbf{z_2} = (\frac{1}{2}, \frac{1}{2}, 0, 0, \dots), \mathbf{z_3} = (\frac{1}{3}, \frac{1}{3}, 0, 0, \dots), \dots$

Problem 7. Let \mathbb{R}^{∞} be the subset of \mathbb{R}^{ω} consisting of all sequences that are eventually zero. What is the closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} in the uniform topology? Justify your answer.

Problem 8. Let $\overline{\rho}$ be the uniform metric on \mathbb{R}^{ω} . Given $\mathbf{x} = (x_1, x_2, \dots) \in \mathbb{R}^{\omega}$ and given $0 < \epsilon < 1$, let

$$U(\mathbf{x},\epsilon) = (x_1 - \epsilon, x_1 + \epsilon) \times \cdots \times (x_n - \epsilon, x_n + \epsilon) \times \dots$$

- 1. Show that $U(\mathbf{x}, \epsilon)$ is not equal to the ϵ -ball $B_{\overline{\rho}}(\mathbf{x}, \epsilon)$.
- 2. Show that $U(\mathbf{x}, \epsilon)$ is not even open in the uniform topology.
- 3. Show that

$$B_{\overline{\rho}}(\mathbf{x},\epsilon) = \bigcup_{\delta < \epsilon} U(\mathbf{x},\epsilon)$$

Problem 9. Consider the map $h : \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ defined by the equation:

$$h((x_1, x_2, \dots)) = (a_1 x_1 + b_1, a_2 x_2 + b_2, \dots).$$

Give \mathbb{R}^{ω} the uniform topology. Under what conditions on the numbers a_i and b_i is h continuous? a homeomorphism?

Problem 10. Show that if d is a metric for X, then

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

is a bounded metric that gives the topology of X. [Hint: If f(x) = x/(1+x) for x > 0, use the mean-value theorem to show that $f(a+b) - f(b) \le f(a)$.]

Problem 11. Let X and Y be metric spaces with metrics d_X and d_Y , respectively. Let $f: X \to Y$ have the property that for every pair of points x_1, x_2 of X,

$$d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2)$$

Show that f is an imbedding. It is called an *isometric imbedding* of X in Y.

Problem 12. Let X_n be a metric space with metric d_n , for $n \in \mathbb{Z}_+$.

1. Show that

$$\rho(x, y) = \max\{d_1(x_1, y_1), \dots, d_n(x_n, y_n)\}\$$

is a metric for the product space $X_1 \times \cdots \times X_n$.

2. Let $\tilde{d}_i = \min\{d_i, 1\}$. Show that

$$D(x,y) = \sup \frac{\tilde{d}_i(x_i,y_i)}{i}$$

is a metric for the product space $\prod X_i$.

Problem 13. Show that R_l and the ordered square satisfy the first countability axiom.

Problem 14. Let X be a set and let $f_n : X \to \mathbb{R}$ be a sequence of functions. Let $\overline{\rho}$ be the uniform metric on the space \mathbb{R}^X . Show that the sequence (f_n) converges uniformly to the function $f : X \to \mathbb{R}$ if and only if the sequence (f_n) converges to f as elements of the metric space $(\mathbb{R}^X, \overline{\rho})$.

Problem 15. Let $f_n : \mathbb{R} \to \mathbb{R}$ be the function

$$f_n(x) = \frac{1}{n^3 [x - (1/n)]^2 + 1}$$

Let $f : \mathbb{R} \to \mathbb{R}$ be the zero function.

- 1. Show that $f_n(x) \to f(x)$ for each $x \in \mathbb{R}$.
- 2. Show that f_n does not converge uniformly to f.

Problem 16. Using the closed set formulation of continuity, show that the following are closed subsets of \mathbb{R}^2 :

- 1. $A = \{x \times y | xy = 1\}$
- 2. $S^1 = \{x \times y | x^2 + y^2 = 1\}$
- 3. $B^2 = \{x \times y | x^2 + y^2 \le 1\}.$

The set B^2 is called the closed unit ball in \mathbb{R}^2 .